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Abstract: We introduce the notion of ∧- and ∨-pairs of functions on lattices as an ab-
straction of the notions of metric and its related entropy for probability distributions.
This approach allows us to highlight the relationships that exist between various prop-
erties of metrics and entropies and opens the possibility of extending these concepts to
other algebraic structures.
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1 Introduction

The notion of entropy plays an important role in statistical physics and is a cor-
ner stone of information theory. More recently, several applications of entropy
in data mining [Simovici et al. 2000], [Simovici and Jaroszewicz 2003], study of
biodiversity [Fritsch and Hsu 1999], circuit design [Cheng and Agrawal 1990],
[Hwang and Wu 1997], [Cheushev et al. 1998], [Lloris-Ruiz et al. 1993], etc. have
been investigated. A variety of axiomatizations of the notion of entropy have
been developed, including axiomatizations that have an algebraic flavor, see, for
instance, the papers [Ingarden and Urbanik 1962], [Mathai and Rathie 1975], or
[Simovici and Jaroszewicz 2002].

In this paper we undertake a study of the relationships that exists between
entropy and entropy-like concepts, their associated metrics and conditional en-
tropies. The chosen framework is lattice theory, where we show that these notions
can be naturally placed.

A lattice is defined as a partially ordered set (P,≤) such that sup{x, y} and
inf{x, y} exist for all x, y ∈ P . It is well known that lattices can be regarded as
algebras of the form (P,∧,∨), where “∧” and “∨” are commutative, associative
and idempotent operations linked by the absorption laws

x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x,

for x, y ∈ P . The partial order relation “≤” consists of those pairs (x, y) ∈ P 2

such that x = x ∧ y or, equivalently, y = x ∨ y.
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If a least element of the partial ordered set (P,≤) exists we denoted it by
0; the largest element of (P,≤) is denoted by 1. If a lattice (P,≤) has both a
least and a largest element we denote it as an algebra by (P,∧,∨, 0, 1), where
we regard 0 and 1 as zero-ary operations.

A partition of a set S is a non-empty collection of non-empty subsets of S,
π = {Bi | i ∈ I} such that

⋃
π = S and Bi∪Bj = ∅ when i �= j for i, j ∈ I. The

sets Bi are the blocks of π. The set of partitions of S is denoted by PART(S).
A partial order relation on PART(S) is defined by π ≤ σ for π, σ ∈ PART(S)

if every block of B is included in a block of σ. This is easily seen to be equivalent
to requiring that each block of σ is a union of blocks of π.

The partially ordered set (PART(S),≤) is actually a bounded lattice. The
infimum π ∧ π′ of two partitions π and π′ is the partition that consists of non-
empty intersections of blocks of π and π′. For a description of the supremum
π ∨π′ of the partitions π, π′ see [Grätzer 2003], p. 251. The least element of this
lattice is the partition αS = {{s} | s ∈ S}; the largest is the partition ωS = {S}.

The partition σ covers the partition π if σ is obtained from π by fusing two
blocks of this partition. This is denoted by π ≺ σ. We have π ≤ π′, if and only
if there exists a sequence of partitions σ0, σ1, . . . , σr such that π = σ0 ≺ σ1 ≺
· · · ≺ σr = π′.

Let C be a subset of the set S and let π = {Bi | i ∈ I} ∈ PART(S) be a
partition. The trace of π on C is the partition πC = {Bi∩C | Bi∩C �= ∅ and i ∈
I}.

We introduce and study properties of pairs of functions (d, η) defined on lat-
tices that formalize, in a general background, metrics and entropy-like functions
defined on sets of partitions, which we investigated previously in the papers
[Simovici and Jaroszewicz 2002], [Simovici et al. 2000]. This study illuminates
the links that exist between various metric properties (non-negativity, defined-
ness, triangular inequality) and monotonicity or modularity properties of entropy
or conditional entropy.

2 Function Pairs on Lattices

Let L = (L,∨,∧, 0, 1) be a lattice that has the least element 0 and the largest
element 1.

Definition 1. Let d : L2 −→ R, η : L −→ R be two functions defined on the
lattice L.

The pair (d, η) is a ∧-pair on L if

d(x, y) = 2η(x ∧ y) − η(x) − η(y) (1)

for every x, y ∈ L.
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The pair (d, η) is a ∨-pair if

d(x, y) = η(x) + η(y) − 2η(x ∨ y) (2)

for every x, y ∈ L.
If (d, η) is both a ∧-pair and a ∨-pair, then we refer to (d, η) as a double pair.

Note that for any ∧-pair or ∨-pair the function d is symmetric.
If (d, η) is a ∧-pair (a ∨-pair) on the lattice L, then (d, k+η) is also an ∧-pair

(a ∨-pair) on the same lattice for any number k ∈ R. This shows that the first
component does not determine the second component of an ∧-pair or a ∨-pair.

Also, observe that for an ∧-pair or a ∨-pair we have η(x) = η(1)+ d(x, 1) for
every x ∈ L; thus, the first component and the value η(1) determines the second
component of an ∧-pair or a ∨-pair.

If η(1) = 0, then we say that the pair (d, η) is regular. In a regular ∧-pair
each component determines the other.

The function η : L −→ R is said to be strictly anti-monotonic if u < v implies
η(u) > η(v).

The collection of pairs introduced here formalize in the realm of lattices the
notions of partition entropy (η) and metric generated by an entropy (d).

Theorem 2. Let (d, η) be an ∧-pair or a ∨-pair on the lattice L = (L,∨,∧, 0, 1).
We have:

1. If x ≤ y, then d(x, y) = η(x) − η(y).

2. If x ≤ t ≤ y, then d(x, t) + d(t, y) = d(x, y).

3. If (d, η) is an ∧-pair, then

d(x, x ∧ y) + d(x ∧ y, y) = d(x, y)

and

d(x, y) = 2 · d(x ∧ y, 1) − d(x, 1) − d(y, 1)

= d(x, 0) + d(y, 0) − 2 · d(x ∧ y, 0).

4. If (d, η) is a ∨-pair, then

d(x, x ∨ y) + d(x ∨ y, y) = d(x, y)

and

d(x, y) = 2 · d(x ∨ y, 0) − d(x, 0) − d(y, 0)

= d(x, 1) + d(y, 1) − 2 · d(x ∨ y, 1).
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Proof. The properties mentioned in the theorem are direct consequences of the
definition of ∧-pairs. �


The purpose of the next two theorems is to show that defining properties of
a metric can be expressed in terms of properties of the function η.

Theorem 3. Let (d, η) be a ∧-pair or a ∨-pair on the lattice L = (L,∨,∧, 0, 1).
We have d(x, y) ≥ 0 for x, y ∈ L if and only if η is an anti-monotonic func-
tion. Furthermore, d(x, y) = 0 implies x = y if and only if η is a strictly anti-
monotonic function.

Proof. Suppose that d(x, y) ≥ 0 for every x, y ∈ L. By the first part of Theo-
rem 2, x ≤ y implies η(x) ≥ η(y).

Conversely, suppose that η is anti-monotonic. If (d, η) is a ∧-pair, then η(x∧
y) ≥ η(x), η(y), so d(x, y) ≥ 0. If d is a ∨-pair the same conclusion can be
reached, by observing that η(x), η(y) ≥ η(x ∨ y).

Suppose that d(x, y) = 0, where (d, η) is a ∧-pair, where η is an anti-
monotonic function. Then, 2η(x∧y)−η(x)−η(y) = 0, so η(x) = η(y) = η(x∧y)
because η(x) ≤ η(x∧ y) and η(y) ≤ η(x∧ y). Suppose that x �= y. Then, at least
one of the strict inequalities x ∧ y < x or x ∧ y < y holds. Since this yields a
contradiction it follows that x = y.

The argument for ∨-pairs is similar. �


Example 1. Let S be a finite set and let (PART(S),≤) be the partition lattice
having αS as its least element and ωS as its largest element. For β ∈ R and
β > 1 define the mapping ηβ : PART(S) −→ R as:

ηβ(π) =
1

1 − 21−β

(
1 −

m∑
i=1

( |Bi|
|S|
)β
)

,

where π is the partition π = {B1, . . . , Bm}. Observe that ηβ(ωS) = 0 and
ηβ(π) > 0 for π ∈ PART(S) − {ωS}.

The function ηβ is strictly anti-monotonic. To prove this property it suffices to
consider two partitions π, π′ such that π ≺ π′. Without loss of generality we can
assume that π = {B1, . . . , Bn−2, Bn−1, Bn} and π′ = {B1, . . . , Bn−2, Bn−1∪Bn}.

Note that for x, y > 0 and β > 1 we have xβ + yβ < (x + y)β . Therefore,

( |Bn−1|
|S|

)β

+
( |Bn|

|S|
)β

<

( |Bn−1 ∪ Bn|
|S|

)β

,

which implies ηβ(π) < ηβ(π′), that is, the strict anti-monotonicity property. By
Theorem 3, the function dβ of the ∧-pair (d, ηβ) given by dβ(π, σ) = 2ηβ(π ∧
σ)− ηβ(π)− ηβ(σ) for π, σ ∈ PART(S) is non-negative and dβ(π, σ) = 0 implies
π = σ.
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Example 2. Define the function η1 : PART(S) −→ R by

η1(π) = −
m∑

i=1

|Bi|
|S| log

|Bi|
|S| ,

where π = {B1, . . . , Bm} and the logarithm is in base 2.
This is the Shannon entropy of the probability distribution(

|B1|
|S| . . . |Bm|

|S|
)

defined by the partition π ∈ PART(S). It is easy to verify that limβ→1 ηβ(π) =
η1(π), which implies that η1 is anti-monotonic. An elementary argument can
be used to verify that η1 is, in fact, strictly anti-monotonic, so the function
d1 : PART(S)2 −→ R given by

d1(π, σ) =
m∑

i=1

|Bi|
|S| log

|Bi|
|S| +

n∑
j=1

|Cj |
|S| log

|Cj |
|S| −

m∑
i=1

n∑
j=1

|Bi ∩ Cj |
|S| log

|Bi ∩ Cj |
|S| ,

where π = {B1, . . . , Bm} and σ = {C1, . . . , Cn} is non-negative and d1(π, σ) = 0
implies π = σ.

Theorem 4. The function d of an ∧-pair (d, η) satisfies the triangular axiom,
d(x, y) ≤ d(x, z) + d(z, y) if and only if

η(z) + η(x ∧ y) ≤ η(x ∧ z) + η(y ∧ z) (3)

for x, y, z ∈ L.
If (d, η) is a ∨-pair, then d satisfies the triangular inequality if and only if

η(z) + η(x ∨ y) ≥ η(x ∨ z) + η(y ∨ z) (4)

for x, y, z ∈ L.

Proof. Let d be a function that satisfies the triangular inequality. This implies

2η(x ∧ y) − η(x) − η(y) ≤ 2η(x ∧ z) − η(x) − η(z) + 2η(y ∧ z) − η(y) − η(z),

which is easily seen to be equivalent to the Inequality (3). The reverse implication
is as straightforward as the direct implication.

A similar straightforward argument can be made for ∨-pairs. �

Theorem 5. Let (d, η) be an ∧-pair on a lattice L = (L,∨,∧, 0, 1), where d is a
non-negative function. Then, d satisfies the triangular inequality if and only if η

is an anti-monotonic and sub-modular, that is, η(x∨ y)+ η(x∧ y) ≤ η(x)+ η(y)
for every x, y ∈ L.

If (d, η) be a ∨-pair on L, where d is a non-negative function. The function
d satisfies the triangular inequality if and only if η is an anti-monotonic and
supra-modular, that is, η(x ∨ y) + η(x ∧ y) ≥ η(x) + η(y) for every x, y ∈ L.
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Proof. Suppose that d is a non-negative function of a ∧-pair (d, η) that satisfies
the triangular inequality. Then, by Theorems 3 and 4, η is an anti-monotonic
function, and η(z) + η(x ∧ y) ≤ η(x ∧ z) + η(y ∧ z) for every x, y, z ∈ L. By
replacing z by x ∨ y and using the absorption properties of L we obtain the
sub-modular inequality η(x ∨ y) + η(x ∧ y) ≤ η(x) + η(y).

If d is a non-negative function of a ∨-pair (d, η) that satisfies the triangular
inequality, then η is an anti-monotonic function and η(z) + η(x ∨ y) ≥ η(x ∨
z)+ η(y∨ z) for x, y, z ∈ L. Substituting x∧ y for z and applying the absorption
properties we have the supra-modular inequality η(x∨y)+η(x∧y) ≥ η(x)+η(y).

Conversely, suppose that η is an anti-monotonic, sub-modular function of a
∧-pair (d, η). The anti-monotonicity of η implies the non-negativity of d. We
need to show that the sub-modular inequality implies Inequality (3).

Observe that in every lattice L = (L,∨,∧, 0, 1) we have the sub-distributive
inequality

(x ∨ y) ∧ z ≥ (x ∧ z) ∨ (y ∧ z), (5)

for every x, y, z ∈ L. By substituting x∧z for x and y∧z for y in the sub-modular
inequality we obtain:

η((x ∧ z) ∨ (y ∧ z)) + η(x ∧ y ∧ z) ≤ η(x ∧ z) + η(y ∧ z).

In view of Inequality (5) and of the anti-monotonicity of η we can write

η((x ∨ y) ∧ z) ≤ η((x ∧ z) ∨ (y ∧ z)),

and, since z ≥ (x ∨ y) ∧ z we have

η(z) ≤ η((x ∧ z) ∨ (y ∧ z)).

Since η(x ∧ y) ≤ η(x ∧ y ∧ z), we obtain the Inequality (3).
Let now η be an anti-monotonic, supra-modular function of a ∨-pair (d, η).
By replacing x ∨ z for x and y ∨ z for y in the supra-modular inequality we

have:
η(x ∨ y ∨ z) + η((x ∨ z) ∧ (y ∨ z)) ≥ η(x ∨ z) + η(y ∨ z)

for every x, y, z ∈ L. Starting from the inequality

(x ∧ y) ∨ z ≤ (x ∨ z) ∧ (y ∨ z), (6)

that holds in every lattice we obtain

η(x ∨ y ∨ z) + η((x ∧ y) ∨ z) ≥ η(x ∨ z) + η(y ∨ z)

for every x, y, z ∈ L. Finally, since z ≤ (x ∧ y) ∨ z and x ∨ y ∨ z ≥ x ∨ y we get
the Inequality 4. �


We retrieve a well-known property of modular lattices (cf. [Birkhoff 1973]):
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Corollary 6. If there exists a double pair (d, η) on a lattice L = (L,∨,∧, 0, 1)
such that d is a metric, then L is a metric lattice and d(x, y) = η(x∧y)−η(x∨y)
for x, y ∈ L.

Proof. Since (d, η) is a double pair and d is a metric the strictly anti-monotonic
function η satisfies both the sub-modular and the supra-modular inequalities and
therefore we have η(x∧ y) + η(x∨ y) = η(x) + η(y), so η is a modular valuation
on L. This implies

d(x, y) = η(x ∧ y) − 2η(x ∨ y),

for x, y ∈ L. �


3 Conditional Function of a Pair

Starting from an ∧-pair (d, η), define the conditional function κ : L2 −→ R of
the pair (d, η) by κ(x, y) = η(x ∧ y) − η(y) for x, y ∈ L. It is immediate that
d(x, y) = κ(x, y) + κ(y, x) and that x ≥ y implies κ(x, y) = 0 for x, y ∈ L. If the
pair (d, η) is regular, then η(x) = κ(x, 1).

The conditional function of a pair (d, η) formalizes the notion of conditional
entropy corresponding to the entropy η.

Example 3. The conditional function of the ∧-pair (dβ , ηβ) introduced in Exam-
ple 1 is given by

κβ(π, σ) = ηβ(π ∧ σ) − ηβ(σ)

=
1

1 − 21−β
·
⎛
⎝ n∑

j=1

( |Cj |
|S|
)β

−
m∑

i=1

n∑
j=1

( |Bi ∪ Cj |
|S|

)β
⎞
⎠ ,

where π = {B1, . . . , Bm} and σ = {C1, . . . , Cn} are two partitions of PART(S).
This function can be written alternatively as

κβ(π, σ) =
1

1 − 21−β
·

n∑
j=1

( |Cj |
|S|
)β
(

1 −
m∑

i=1

( |Bi ∪ Cj |
|Cj |

)β
)

=
1

1 − 21−β
·

n∑
j=1

( |Cj |
|S|
)β

ηβ(πCj ),

where πCj is the trace of π on the block Cj of σ.

Theorem 7. Let (d, η) be an ∧-pair on L. The non-negative function d satis-
fies the triangular inequality if and only if the conditional function κ is anti-
monotonic in its first argument and monotonic in its second argument.
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Proof. Suppose that d satisfies the triangular inequality. The anti-monotonicity
of κ in its first argument follows from the first part of Theorem 2. Let y, y1 ∈ L

be such that y ≤ y1. It is clear that (x ∧ y1) ∨ y ≤ y1, so

η(y1) ≤ η((x ∧ y1) ∨ y). (7)

By Theorem 5 we have the sub-modular inequality η(x∨y)+η(x∧y) ≤ η(x)+η(y)
for every x, y ∈ L. Taking into account Inequality 7 and replacing x by x∧ y1 in
the sub-modular inequality yields

η(x ∧ y) + η(y1) ≤ η(x ∧ y) + η((x ∧ y1) ∨ y)

= η((x ∧ y1) ∧ y) + η((x ∧ y1) ∨ y)

≤ η(x ∧ y1) + η(y)

(by the sub-modular inequality).

The last equality implies κ(x, y) ≤ κ(x, y1), that is, the monotonicity of κ in its
second argument.

Conversely, suppose that κ is anti-monotonic in its first argument and mono-
tonic in its second argument. Since κ(1) = 0 it follows that κ(x, y) = η(x∧ y)−
η(y) ≥ 0. Similarly, η(x ∧ y) − η(x) ≥ 0, so d(x, y) ≥ 0.

If y ≤ y1, we have η(x ∧ y) − η(y) ≤ η(x ∧ y1) − η(y1). Choosing y1 = x ∨ y

we obtain the sub-modular inequality for η, which shows that d satisfies the
triangular inequality by Theorem 5. �


In a similar manner one can define the conditional function of a ∨-pair by
κ(x, y) = η(x) − η(x ∨ y). This time, we can prove the following statement:

Theorem 8. Let (d, η) be an ∨-pair on L. The non-negative function d satisfies
the triangular inequality if and only if the conditional function κ is monotonic
in its first argument and anti-monotonic in its second argument.

Proof. The proof is analogous to the argument of Theorem 7. �


4 ∧-Pairs on Partition Lattices

For partition lattices of finite sets the ∧-pairs play a special role because they
allow us to formalize the notion of entropy for a partition of a finite set and
to introduce simultaneously a notion of metric on the partition lattice that has
many applications in data mining and in other areas.

Lemma9. Let S be a finite set, π ∈ PART(S) and let C, D be two disjoint
subsets of S. For β ≥ 1 we have:( |C ∪ D|

|S|
)β

ηβ(πC∪D) ≥
( |C|
|S|
)β

ηβ(πC) +
( |D|
|S|
)β

ηβ(πD),

where ηβ : PART(S) −→ R is the function introduced in Example 1.
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Proof. Suppose that π = {B1, . . . , Bm} is a partition of S. Define the numbers

wi =
|Bi ∩ (C ∪ D)|

|C ∪ D|
for 1 ≤ i ≤ m. It is clear that

∑m
i=1 wi = 1. Let

ai =
|Bi ∩ C|

|Bi ∩ (C ∪ D)| ,

for 1 ≤ i ≤. It is immediate that 1 − ai = |Bi∩D|
|Bi∩(C∪D)| .

Applying Lemma 12 to the numbers w1, . . . , wm and a1, . . . , am we obtain:

1 −
(

n∑
i=1

|Bi ∩ C|
|C ∪ D|

)β

−
(

n∑
i=1

|Bi ∩ D|
|C ∪ D|

)β

≥
n∑

i=1

( |Bi ∩ (C ∪ D)|
|C ∪ D|

)β
(

1 −
( |Bi ∩ C|
|Bi ∩ (C ∪ D)|

)β

−
( |Bi ∩ D|
|Bi ∩ (C ∪ D)|

)β
)

.

Since
n∑

i=1

|Bi ∩ C|
|C ∪ D| =

|C|
|C ∪ D| and

n∑
i=1

|Bi ∩ D|
|C ∪ D| =

|D|
|C ∪ D| ,

the last inequality can be written:

1 −
( |C|
|C ∪ D|

)β

−
( |D|
|C ∪ D|

)β

≥
n∑

i=1

( |Bi ∩ (C ∪ D)|
|C ∪ D|

)β

−
n∑

i=1

( |Bi ∩ C|
|C ∪ D|

)β

−
n∑

i=1

( |Bi ∩ D|
|C ∪ D|

)β

,

which is equivalent to

1 −
n∑

i=1

( |Bi ∩ (C ∪ D)|
|C ∪ D|

)β

≥
( |C|
|C ∪ D|

)β
(

1 −
n∑

i=1

( |Bi ∩ C|
|C|

)β
)

+
( |D|
|C ∪ D|

)β
(

1 −
n∑

i=1

( |Bi ∩ D|
|D|

)β
)

,

which yields the inequality of the lemma. �

The next result shows that κβ(π, σ), the conditional function of the ∧-pair

(dβ , ηβ) is anti-monotonic with respect to its first argument and is monotonic
with respect to its second argument.

Theorem 10. Let π, σ, σ′ ∈ PART(S), where S is a finite set. If σ ≤ σ′, then
κβ(σ, π) ≥ κβ(σ′, π) and κβ(π, σ) ≤ κβ(π, σ′).
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Proof. Since σ ≤ σ′ we have π∧σ ≤ π∧σ′, so ηβ(π∧σ) ≥ ηβ(π∧σ′). Therefore,
κβ(σ, π) ≥ κβ(σ′, π).

For the monotonicity of κβ in its second argument it suffices to prove the
monotonicity for partitions σ, σ′ such that σ ≺ σ′. Without restricting the gen-
erality we may assume that σ = {C1, . . . , Cn−2, Cn−1, Cn} and
σ′ = {C1, . . . , Cn−2, Cn−1 ∪ Cn}. Thus, we can write:

κβ(π, σ′)

=
n−2∑
j=1

( |Cj |
|S|

)β

ηβ(πCj ) +
( |Cn−1 ∪ Cn|

|S|
)β

κβ(πCn−1∪Cn)

≥
( |Cj |

|S|
)β

ηβ(πCj ) +
( |Cn−1|

|S|
)β

ηβ(πCn−1) +
( |Cn|

|S|
)β

ηβ(πCn)

(by Lemma 9)

= κβ(π, σ).

�


Corollary 11. Let (d, ηβ) be the ∧-pair on the lattice (PART(S),≤), where ηβ

is the function introduced in Example 1. Then dβ is a metric on the lattice of
partitions (PART(S),≤).

Proof. This statement follows from Theorems 3, 7, and 10. �

The function ηβ is actually the entropy Hβ that we axiomatized in the paper

[Simovici and Jaroszewicz 2002] and dβ is its associated distance.

5 Function Pairs on Graded Lattices

A graded poset (cf. [Birkhoff 1973]) is a triple (P,≤, g), where (P,≤) is a par-
tially ordered set, and g : P −→ Z is a function defined on P such that for
x, y ∈ L we have

(i) x < y implies g(x) < g(y) (strict monotonicity);

(ii) if y covers x, then g(y) = g(x) + 1.

If (P,≤) is a lattice, then we refer to (P,≤, g) as a graded lattice.
In a graded poset all maximal chains between the same elements have the

same finite length (the Jordan-Dedekind condition).
Let (P,≤) be a poset that has the least element 0. The supremum of the

lengths of all chains that join 0 to an element x is the height of x denoted by
height(x). If (P,≤) has the largest element 1, then the height of (P,≤) is defined
as height(1). A poset (P,≤) satisfies the Jordan-Dedekind condition if and only
if it is graded by the function height.
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It is known that a graded lattice of finite height is upper semimodular if height

satisfies the sub-modular inequality and is lower semimodular if height satisfies
the supra-modular inequality (cf. Theorem II.15, p. 40 of [Birkhoff 1973]).

The function η : P −→ R defined by η(x) = height(P ) − height(x) satisfies
the supra-modular inequality and the associated function d in the ∧-pair (d, η)
satisfies the triangular inequality and, therefore, it is a pseudometric on the
lattice L given by d(x, y) = h(x) + h(y) − 2h(x ∧ y) for x, y ∈ L.

6 Conclusions

We present an lattice-theoretical framework for the study of entropy and entropy-
like functions and the metrics and conditional entropies that can be associated
to these entropies. This approach clarifies the dependencies that exist between
properties of these concepts and opens the possibility of extending this study to
broader classes of lattices, Boolean algebras, and partially ordered sets.
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A A Technical Result

Lemma12. Let β ≥ 1. If w1, . . . , wn are n positive numbers such that∑n
k=1 wk = 1, and a1, . . . , an ∈ [0, 1], then

1 −
(

n∑
i=1

wiai

)β

−
(

n∑
i=1

wi(1 − ai)

)β

≥
n∑

i=1

wβ
i

(
1 − aβ

i − (1 − ai)β
)

.

Proof. Let φ : [0, 1] −→ R be the function given by: φ(x) = xβ + (1 − x)β for
x ∈ [0, 1]. It is easy to see that φ(0) = φ(1) = 1 and that φ has a minimum for
x = 1/2, φ(1/2) = 1/21−β. Thus, we have:

xβ + (1 − x)β ≤ 1 (8)

for x ∈ [0, 1].
Inequality (8) implies

wi(1 − aβ
i − (1 − ai)β) ≥ wβ

i (1 − aβ
i − (1 − ai)β),

because wi ∈ [0, 1] and β ≥ 1.
By applying Jensen’s inequality for the convex function f(x) = xβ we obtain

the inequalities: (
n∑

i=1

wiai

)β

≤
n∑

i=1

wia
β
i ,

(
n∑

i=1

wi(1 − ai)

)β

≤
n∑

i=1

wi(1 − ai)β .

Thus, we can write

1 −
(

n∑
i=1

wiai

)β

−
(

n∑
i=1

wi(1 − ai)

)β

=
n∑

i=1

wi −
(

n∑
i=1

wiai

)β

−
(

n∑
i=1

wi(1 − ai)

)β

≥
n∑

i=1

wi −
n∑

i=1

wia
β
i −

n∑
i=1

wi(1 − ai)β

=
n∑

i=1

wi

(
1 − aβ

i − (1 − ai)β
)

≥
n∑

i=1

wβ
i

(
1 − aβ

i − (1 − ai)β
)

,

which is the desired inequality. �
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