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Abstract: In this paper we study connectivity and hamiltonicity properties of the
topological grid graphs, which are a natural type of planar graphs associated with
finite subgraphs of the usual square lattice graph of the plane. The main results are as
follows. The shortness coefficient of the family of all topological grid graphs is at most
16/17. Every 3-connected topological grid graph is hamiltonian.
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1 Introduction

A grid graph, as defined in [Menke 1991] or [Menke et al. 1997], is a graph having
as vertex set and edge set all lattice points and edges lying inside or on some
(finite) cycle Γ of the infinite square lattice graph in the plane.

A topological grid graph is a graph of minimal degree 3, without loops and
multiple edges, homeomorphic to some grid graph. For an example, see Fig. 1.
The family T of all topological grid graphs appears in connection with the study
of grid graphs. The outer cycle ∂G of a graph G ∈ T is the image through the
above homeomorphism of the cycle Γ defining the corresponding grid graph.

Every graph in T has a natural representation with lattice points as vertices
and with line segments of length 1 or

√
2 as edges.

We shall use the notion of a shortness coefficient of a family G of graphs,
which is the greatest lower bound of all numbers a such that, for some se-
quence of distinct graphs Gn ∈ G, and for some number b, h(Gn) ≤ a|Gn| + b

for all n, where h(Gn) means the length of the largest cycle in Gn (compare
[Grünbaum and Walther 1973]).
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Figure 1: A topological grid graph
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Figure 2: Shortness coefficient 4/5

Some properties of the longest cycles of grid graphs have been given in
[Menke 1991] and [Menke et al. 1997]. The grid graphs may well fail to be hamil-
tonian. In fact, the shortness coefficient of the family of all grid graphs is at most
4/5, as the sequence of graphs described in Fig. 2 shows. We conjectured that it
is exactly 4/5. This still open conjecture was recently proved for the subfamily
of all convex grid graphs by D. Blankenagel [Blankenagel 1992].

The graphs in Fig. 2 fail to be cyclically 3-connected. This seems to be
important to get the shortness coefficient 4/5, but not to make it smaller than
1. Indeed, the graphs depicted in Fig. 3 are cyclically 3-connected and form a
family with shortness coefficient 5/6.

The topological grid graphs behave somewhat differently. While they may
fail in a similar way to be hamiltonian and their shortness coefficient is less
than 1, it will be proven here that in their case cyclic 3-connectedness suffices
to insure hamiltonicity. So, for topological grid graphs connectedness properties
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Figure 3: Shortness coefficient 5/6

play a greater role in guaranteeing increased hamiltonicity. Therefore we first
establish a result about their connectedness.

2 Connectedness

We consider in this section an arbitrary topological grid graph G. Let Δ denote
the bounded component of IR2 \ set(∂G).

Remark. Let (v1, v), (v, v2) ∈ E(∂G). It follows directly from the definition
that the angle between these two edges (towards Δ) lies between π/2 and 3π/2.
Moreover, this angle equals π/2 only if (v1, v), (v, v2) have length

√
2, and it

equals 3π/2 only if (v1, v), (v, v2) have length 1.

Lemma 1. Suppose two consecutive edges (v1, v), (v, v2) of length
√

2 in
E(∂G) are perpendicular. Then the common neighbour of v, v1, v2 in the lattice
graph (i.e., the midpoint of the line segment v1v2) belongs to V (G − ∂G).

Proof. Let v′ be the common neighbour of v, v1, v2. It follows directly from
the fact that G is homeomorphic to a grid graph that the interior int vv′ of vv′

cannot lie in the unbounded component of the complement of set(∂G). Thus, int
vv′ ⊂ Δ.
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If v′ /∈ V (G − ∂G) then v′ ∈ V (∂G) and either a point of degree 2 in G

is produced or two edges of length
√

2 parallel to the previous ones meet at v′

and belong to ∂G, which contradicts, however, the preceding Remark. Hence
v′ ∈ V (G − ∂G).

Lemma 2.
G − ∂G �= ∅.

Proof. Suppose this is not true. Choose then a graph G ∈ T with G −
∂G = ∅ and with set(∂G) of minimal (Euclidean) length. The points of setG of
largest ordinate determine a family of paths in ∂G. If P is one of them then,
by Lemma 1, P has more than one vertex. Obviously, the angles of set(∂G) at
the endpoints of setP towards Δ measure 3π/4 each and the points v1, ..., vk

of the lattice, at distance 1 from those of P and right below them, must lie
on ∂G. If one of the edges (vi, vi+1) (1 ≤ i < k) is not in E(∂G) then the
removal of vi, vi+1 disconnects G. In this case the removal of the component
not containing P results in a topological grid graph G′ with G′ − ∂G′ = ∅,
having a smaller length of set(∂G′), and a contradiction is obtained. So all edges
(v1, v2), (v2, v3),...,(vk−1, vk) belong to ∂G. The angles of set(∂G) at v1 and vk

towards Δ measure 5π/4 or 3π/2. Consider the points w1, w2, ..., wk at distance
1 from v1, v2, ..., vk and lying below them. We delete the point wj (j = 1 or k)
if (vj , wj) ∈ E(G). The remaining points form a set W. If W ∩ V (G) �= ∅ then
W ∩ V (G) determines a family of paths and we pick up again one of them. We
repeat the same procedure as many times as possible. We finally arrive at two
paths Q1, Q2 ⊂ ∂G of equal lengths, with Q2 below Q1 at distance 1, such that
the angles of set(∂G) at the endpoints of Q1 towards Δ measure 3π/4 and those
at the endpoints of Q2 towards Δ measure 5π/4 or 3π/2, and such that no point
below Q2 at distance 1 from some vertex of Q2 belongs to V (G) except perhaps
those under the endpoints of Q2 in case those vertical edges belong to G. Let
ai, bi ∈ V (∂G) \ V ((Qi) be neighbours of the endpoints of Qi (a2 under a1 or
under an endpoint of Q2, b2 under b1 or under the other endpoint of Q2). We
replace now the path Q′

i between ai and bi satisfying Qi ⊂ Q′
i ⊂ ∂G with the

rectilinear path from ai to bi (i = 1, 2). Thus we get another graph G′ ∈ T with
G′ − ∂G′ = ∅ and smaller length of ∂G′. This contradiction achieves the proof.

Lemma 3. If G − ∂G is connected then each vertex of ∂G has a neighbour
in G − ∂G.

Proof. By Lemma 2, G − ∂G �= ∅. Suppose G − ∂G is connected but some
point v ∈ V (∂G) has no neighbour in G − ∂G. By Lemma 1, v has a neighbour
in ∂G at distance 1 or both neighbours are at distance

√
2 from v and collinear

with v.
Two edges (u, v), (v, w) belong to ∂G. Besides u and w there exists another
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neighbour v′ of v in G. Then v′ ∈ V (∂G). We may suppose without loss of
generality that v′ lies below v and V (G − ∂G) lies in the component of Δ − vv′

containing points of the plane close to the line segment vv′, on its left side.
Suppose v is chosen such that the path from v to v′ on ∂G, which together

with (v, v′) surrounds G − ∂G, has maximal length.
There are four cases to treat, depicted in Fig. 4 a), b), c), d), according to

the position of the edge (v, w). For each case there may be several subcases
according to the position of the edge (v′, w′) ∈ E(∂G).
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Figure 4: Four cases

In each subcase we are able to find another pair of points instead of v, v′,
connected by a longer path in ∂G which, together with the edge between its
endpoints, surrounds G − ∂G. In situation a) the pair becomes w, v′. In situa-
tion b) the new pair is w, w′ or w, w′′ according to whether the edge (v′, w′) is
horizontal or vertical. In situation c) the pair will be w, w′ for the first or w, w′′

for the second and third possibility. In situation d) the pair becomes v, w′ in the
first case, w′′, w′ in the second and third case, and w′′, v′ in the last case.

This is a contradiction and the proof is finished.

Lemma 4. If G−∂G is connected then, for any two points x, y ∈ V (G−∂G),
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there is a path from x to y in G − ∂G, three paths from x to ∂G and three paths
from y to ∂G, all seven paiwise disjoint (except for the points x, y as endpoints)
and lying (except possibly for one vertex) in G − ∂G, or there is a path from x
to y in G− ∂G, another one from x to y, two paths from x to ∂G and two paths
from y to ∂G, all six pairwise disjoint (except for the points x, y as endpoints)
and lying (except possibly for one vertex) in G − ∂G.

Proof. Consider a shortest path P joining x and y in G − ∂G. Now go away
from x rectilinearly in the four possible directions. In precisely three directions
we meet ∂G before meeting P − x (or meet only ∂G), otherwise P would not
have minimal length. Let x1, x2, x3 be those points on ∂G, and let y1, y2, y3 be
analogously defined, starting from y.

At most once it may happen that a line segment xxi meets a line segment
yyj. Indeed, if this happened twice, then P would lie in the rectangle determined
by the four line segments; but then P − x would necessarily meet one of the two
involved line segments xxi, a contradiction.

Thus, if some xxk meets some yyl at z, then P, the path Q having set
Q = xz∪zy, the two rectilinear paths from x to xi (i �= k) and the two rectilinear
paths from y to yj (j �= l) satisfy the conditions of the lemma.

If no xxi meets any yyj , then P, the three rectilinear paths from x to x1, x2, x3

and the three rectilinear paths from y to y1, y2, y3 are the paths we look for.

Theorem 1. For a topological grid graph G the following assertions are
equivalent.

(i) G is 3-connected,
(ii) G is cyclically 3-connected,
(iii) G − ∂G is connected.
Proof. (i) implies (ii) by definition.
We show now that (ii) implies (iii). Suppose G − ∂G has at least two com-

ponents G1, G2. Every point of the lattice at distance 1 from V (Gi) belongs to
V (∂G) (i = 1, 2). However, not every edge of length 1 or

√
2 joining two such

points belongs to E(∂G), otherwise ∂G would contain smaller cycles. The re-
moval of the endpoints of such an edge decomposes G in two components, each
of which has several cycles, and this contradicts the cyclic 3-connectedness of G.

Finally, let us prove that (i) follows from (iii). Let x, y ∈ V (G). We shall find
three internally disjoint paths from x to y. First, suppose x, y ∈ V (G − ∂G).
By Lemma 4, there is a path P from x to y in G − ∂G, two paths P ′

i from x

to xi ∈ V (∂G) and two paths P ′′
j from y to yj ∈ V (∂G) (i, j = 1, 2), all five

pairwise disjoint (except for the points x and y as endpoints). There are two
disjoint paths Q1, Q2 in ∂G from some xi to some yj , say from x1 to y1 and
from x2 to y2. Then P , P ′

1 ∪ Q1 ∪ P ′′
1 and P ′

2 ∪ Q2 ∪ P ′′
2 are pairwise internally

disjoint.
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Now, let x ∈ V (G − ∂G), y ∈ ∂G. By Lemma 3, y has a neighbour y′ ∈
V (G− ∂G). By Lemma 4 there is a path P ′ from x to y′ in G− ∂G and another
two paths P1, P2 from x to x1, x2 ∈ ∂G respectively, all three pairwise disjoint
(except for the point x as an endpoint). Let P be P ′ plus the vertex y and
the edge (y, y′). Let Q1, Q2 ⊂ ∂G be internally disjoint paths from y to x1, x2

respectively. Then P, P1 ∪ Q1, P2 ∪ Q2 are internally disjoint and join x to y.

Finally, if x, y ∈ ∂G, consider the two paths P1, P2 from x to y on ∂G. By
Lemma 3, x has a neighbour x′ ∈ V (G − ∂G) and y has a neighbour y′ ∈
V (G− ∂G). Since G− ∂G is connected there is a (maybe degenerate) path from
x′ to y′ in G − ∂G, which can obviously be extended to a path from x to y

internally disjoint from both P1 and P2.
Hence G is 3-connected.

3 Hamiltonian properties

As we already mentioned, the family T of all topological grid graphs, like that
of all grid graphs, has shortness coefficient less than 1.

Theorem 2. The shortness coefficient of T is at most 16/17.

Proof. It suffices to present a sequence of graphs in T with shortness coeffi-
cient 16/17. Such a sequence is illustrated in Fig. 5.
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Figure 5: Shortness coefficient 16/17

The graphs used in the preceding proof are not cyclically 3-connected. Unlike
the grid graphs, all cyclically 3-connected topological grid graphs are hamilto-
nian. By Theorem 1 this is equivalent to saying that all 3-connected graphs in T
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are hamiltonian. To show this we make use of the following result, first observed
by D. Nelson.

Lemma 5. The deletion of any vertex from a 4-connected planar graph results
in a hamiltonian graph.

This is Theorem 1.7.7 in [Voss 1991] and follows from Tutte’s well-known
result from [Tutte 1956].

Theorem 3. Every 3-connected topological grid graph is hamiltonian.
Proof. Let G be a 3-connected topological grid graph. By Theorem 1, G−∂G

is connected. Let v be a new vertex outside of ∂G, i.e., in the complement of the
closure of Δ. Adding to G the vertex v and all edges joining v with the vertices
of ∂G yields a graph G∗. This graph is obviously planar and we show that it is
4-connected.

Let x, y be two arbitrary points in G∗. There are 5 essentially different cases
to treat.

Case 1. x, y ∈ V (G − ∂G). We apply Lemma 4 and find
(i) a path P from x to y in G − ∂G, three paths P ′

i from x to xi ∈ V (∂G)
and three paths P ′′

j from y to yj ∈ V (∂G) (i, j = 1, 2, 3), or
(ii) two paths P1, P2 from x to y with P1 ⊂ G − ∂G and P2 ∩ ∂G consisting

of one vertex at most, two paths P ′
i from x to xi ∈ V (∂G) and two paths P ′′

j

from y to yj ∈ V (∂G) (i, j = 1, 2).
All these paths enjoy the properties required in Lemma 4.
In the situation (i), because of the planarity of G, we may suppose without

loss of generality that x1, x2, x3, y3, y2, y1 lie in this order on ∂G. Let Q1, Q3

be the disjoint paths joining x1 to y1 and x3 to y3. Let R be the path with
vertices x2, v, y2. Then x and y are joint by the four internally disjoint paths P,

P ′
1 ∪ Q1 ∪ P ′′

1 , P ′
2 ∪ R ∪ P ′′

2 , P ′
3 ∪ Q3 ∪ P ′′

3 .

In the situation (ii), we may suppose that x1, x2, y2, y1 are in this order on
∂G. Then let Qi ⊂ ∂G be paths from xi to yi (i = 1, 2) so that Q1 ∩ Q2 = ∅.
At most one of them, say Q2, contains P2 ∩ ∂G. Let R be the path with vertices
x2, v, y2. Then the paths P1, P2, P ′

1∪Q1∪P ′′
1 , P ′

2∪R∪P ′′
2 verify our requirements.

Case 2. x ∈ V (G − ∂G), y ∈ V (∂G). By Lemma 3, there exists a neighbour
y′ ∈ V (G − ∂G) of y. Let P be a shortest path from x to y′ in G − ∂G. Then
there are three rectilinear paths Pi from x to xi ∈ V (∂G) (i = 1, 2) having with
P only the endpoint x in common. We may suppose that x1, x2, x3, y lie in this
order on ∂G. Let Qi ⊂ ∂G be paths from xi to y (i = 1, 3) so that Q1 and Q3

have only the endpoint y in common. Let R be the path with vertices x2, v, y.

Let P ′ be the path whose points are those of P and y. Then x and y can be
joined by the following four internally disjoint paths: P ′, P1∪Q1, P2∪R, P3∪Q3.

Case 3. x ∈ V (G − ∂G), y = v. Let Pi be the four rectilinear paths from x
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to ∂G (i = 1, ..., 4). Their endpoints different from x are neighbours of v, so the
paths Pi can be extended to four internally disjoint paths from x to v.

Case 4. x, y ∈ V (∂G). By Lemma 3, x and y have neighbours in G − ∂G.
Since G−∂G is connected, there is a path P joining x to y whose interior points
lie in G − ∂G. Moreover x and y are the endpoints of two paths Q1, Q2 in ∂G.
Let R be the path of vertices x, v, y. Then P, Q1, Q2, R are the four paths we
are looking for.

Case 5. x ∈ V (∂G), y = v. By Lemma 3, x has a neighbour x′ in G − ∂G.
The rectilinear path P starting at x and going through x′ meets again ∂G at
x′′, say, where it ends. Obviously x′′ is not a neighbour of x. Let x1, x2 be
the neighbours of x on ∂G. Then the paths with vertex sets {x, v}, {x, x1, v},
{x, x2, v}, V (P ) ∪ {v} satisfy our conditions.

Hence G∗ is 4-connected and, by Lemma 5, the graph G∗ − v = G is hamil-
tonian. This achieves the proof of Theorem 3.

The condition of 3-connectedness is equivalent by Theorem 1 to the connect-
edness of G − ∂G. Theorem 3 can be strengthened in the following way.

Theorem 4. If G is a topological grid graph and G − ∂G has at most two
components, then G is hamiltonian.

Proof. We first remark that the choice of the pair of adjacent vertices u1, u2 ∈
∂G at the end of the preceding proof was arbitrary.

Now, let G1, G2 be the components of G − ∂G (if there is just one compo-
nent, we use Theorem 3). Obviously, the vertices of the infinite square lattice
at distance 1 from V (Gi) determine a cycle Ci (i = 1, 2). Then ∂G ∩ Ci is a
path Pi with the endpoints vi, v

′
i at Euclidean distance 1 or

√
2 from each other

(i = 1, 2).
If v1, v

′
1, v2, v

′
2 are all distinct, then they determine four paths on ∂G, namely

P1, P2 and other two paths, P, P ′, with endpoints v1, v2 and v′1, v′2, say. If, for
example, v′1 = v′2, then, with the above notation, P ′ reduces to a single point.
Finally, if {v1, v

′
1} = {v2, v

′
2} then both P, P ′ reduce to single points.

In the first case (v1, v
′
1, v2, v

′
2 distinct), let C be the cycle determined by

P, P ′ and the edges (v1, v
′
1), (v2, v

′
2). In the second case (three of the points

v1, v
′
1, v2, v

′
2 are distinct), let C be the cycle determined by P and the edges

(v1, v
′
1), (v2, v

′
2).

In the first two cases, Ci and C have the common edge (vi, v
′
i) (i = 1, 2). In

the third case, C1 and C2 have the common edge (v1, v
′
1).

By Theorem 3 together with our remark at the beginning of this proof, the
graph spanned by Gi∪Ci has a hamiltonian cycle Hi containing the edge (vi, v

′
i).

Then, in the first two cases, H1 ∪ C ∪ H2 minus the edges (v1, v
′
1), (v2, v

′
2) is a

hamiltonian cycle in G. In the third case, H1 ∪ H2 minus the edge (v1, v
′
1) is a

hamiltonian cycle in G.
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This construction of a hamiltonian cycle can be viewed as an illustration of
the characterization of hamiltonian graphs given in [Zamfirescu 1974].

The smallest example of a nonhamiltonian graph in T we were able to pro-
duce is a member G1 of the family shown in Fig. 5 and G1 − ∂G1 has 5 compo-
nents. This remark and Theorem 4 lead to the following.

Open problem. Does there exist a nonhamiltonian graph G ∈ T such that
G − ∂G has 4 or even 3 components?
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