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Abstract: Ad hoc wireless networks have enormous commercial and military potential because
of their self-organizing capacity and mobility support. However, some specificities of these net-
works such as radio interferences and limited resources make more complex the quality of service
(QoS) support. Indeed, on the one hand, the bandwidth offered to users is strongly affected by
radio interferences. On the other hand, flooding information in such a network must be optimized
in order to save resources. Therefore, we propose in this paper, a solution taking into account
radio interferences in mobile ad hoc network routing and optimizing flooding. This solution is
based on a modified version of the OLSR routing protocol that considers bandwidth requests
and radio interferences in the route selection process while providing a very efficient flooding.
A comparative performance evaluation based on NS simulations shows that despite the overhead
due to QoS management, this solution outperforms classical OLSR in terms of QoS perceived
by the users (e.g. bandwidth amount granted to a flow and delivery rate). The efficiency of the
optimized flooding is equal to that provided by the native version of OLSR.
Key Words: Interference, quality of service, optimized flooding, QoS routing, OLSR, multi-
point relay (MPR), local available bandwidth, admission control, ad hoc network.
Category: C.2.0, C.2.1, C.2.2

1 Introduction

Mobile ad hoc networks (MANETs) are made up of mobile devices that use wire-
less transmission for communication. They can be set up anywhere and at any time
because they require neither infrastructure nor central administration. As in a wired
network, application flows in a MANET have different characteristics (e.g. type and
volume of information exchanged, lifetime of the interaction, packet interarrival time,
with or without burst) and also different Quality of Service (QoS) requirements (e.g.
delay, throughput, high priority processing). Hence, a uniform packet processing is not
adequate and a QoS support taking into account various QoS requirements is needed.

In a MANET, QoS management is harder than in a wired network for the following
reasons:

– Radio interferences
In a MANET, QoS offered to users is strongly affected by radio interferences.

Definition 1. The transmission of a node is said to interfere with the transmission
of other nodes if at the receivers, the carrier to interference ratio is lower than a
threshold value.
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Most QoS routing protocols consider the bandwidth as a quality of service param-
eter. To select a route providing the requested bandwidth, they need to know the
bandwidth available at each node.

Definition 2. The bandwidth available at a node, denoted LAB, is equal to the per-
centage of time the medium is neither busy nor in back-off state, times the medium
capacity.

More precisely, assuming that the MAC layer uses the IEEE 802.11b protocol, the
LAB of a node is then equal to (C802.11b − bandwidth consumed), where C802.11b

is the capacity of the 802.11b wireless channel. The bandwidth consumed at a node
takes into account all transmissions in the neighborhood and interference zone of
that node, including all the delays resulting from those transmissions, for exam-
ple, NAV settings, DIFS delays before resuming the back-off counter. Indeed, such
transmissions make the channel busy and prevent this node from receiving and
sending other packets.

We will show the impact of the interference on the bandwidth consumed by a flow.
Figure 1 illustrates the bandwidth consumed at the MAC level by a CBR flow of
1Mbps generated by node 0 and visiting successively nodes 1 to 5 to finally reach its
destination node 6. We can notice that the bandwidth consumed by a flow depends
on the node considered. For instance, in Figure 1, the bandwidth consumed at the
source node, node 0, is 5 Mbps, whereas it is 8Mbps on node 3 and 3.5Mbps on
the destination node, node 6. The results illustrated in Figures 1 and 2 have been
obtained by simulation under NS-2. The packet size is 1500 bytes. The MAC layer
uses the 802.11b protocol without RTS/CTS. The transmission range is set to 250m
and the carrier sense range is 550m.
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Figure 1: Bandwidth consumed at the MAC level by a CBR flow at 1Mbps.
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– Limited resources
MANETs are characterized by low capacity time-varying resources. The bandwidth
of already accepted flows may significantly decrease as a new flow is introduced.
Let us consider the following example, illustrated in Figure 2. Initially, the network
accepts the flow f1, a CBR flow at 1500Kbps (useful bandwidth requested by the
flow at the application level). At time t = 100s, a new flow f2 is introduced, also a
CBR flow at 1500Kbps. It degrades the QoS received by f 1. The useful bandwidth
obtained by f1 and measured at the application level on the destination node falls
below 800Kbps, which is unacceptable for this flow.
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Figure 2: Useful bandwidth measured at the destination of each flow.

Therefore, the interference problem must be taken into account by QoS routing
protocols and admission control: in other words, QoS routing and admission control
must be interference-aware in a limited-resource environment.

– Efficient admission control
The admission control is in charge of deciding whether a new flow can be accepted
or not, depending on the available resources and the QoS requested. In ad hoc net-
works, the limited bandwidth capacity makes it difficult to guarantee the bandwidth
in the presence of many flows. Therefore, it is necessary to have a good estimation
of the bandwidth required by a flow. The more exact this estimation is, the more ef-
ficient the admission control would be. QoS routing protocols use either bandwidth
reservation [Chaudet and Guerin-Lassous 2002, Lee et al. 2000] or bandwidth pro-
visioning to provide an end-to-end quality of service.

– High dynamicity of MANETs
The high dynamicity of MANETs makes the problem more complex. This dynam-
icity is due to radio transmission variation and node mobility.

– No off-the-shelf MANET MAC protocol manages QoS
First, we can notice that the IEEE 802.11b medium access protocol is not deter-
ministic, making it impossible to provide hard QoS guarantees. Secondly, the IEEE
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802.11e medium access protocol dealing with QoS does not guarantee that each
time the medium is idle, the medium access is granted to the packet with the high-
est priority.

For all these reasons, the goal is not to provide hard QoS guarantees, but
rather to optimize the network resource utilization while satisfying application re-
quirements. Consequently, applications must adapt to time-varying low-capacity
resources provided by the network.

As MANETs are not generally one-hop, routing is needed. The OLSR routing pro-
tocol, [Adjih et al. 2003], is an optimization of a pure link state algorithm. It maintains
one route per destination: this route is the shortest one in terms of hop. Unfortunately,
OLSR does not take into account the amount of bandwidth requested by a flow. In this
paper, we propose an interference-aware QoS routing protocol based on OLSR. The per-
formance evaluation done shows that this solution maximizes the bandwidth granted to
a flow, maximizes the number of acceptable flows and increases route stability.

Furthermore, in a mobile ad hoc network, disseminating information (e.g. service
announcement, gateway advertisement, network topology in a proactive routing pro-
tocol) or information request (e.g. route request in a reactive routing protocol) is fre-
quently needed. In order to avoid resources wastage, optimized flooding is required. A
solution based on multipoint relays (MPR) is more adaptive than one based on a prede-
fined connected dominating set and leads to less retransmissions. The selection of these
MPRs is an important performance factor, as will be illustrated by NS2 simulation re-
sults. As a consequence, a solution based on OLSR routing providing QoS support and
optimized flooding is needed. This is the purpose of this paper.

The rest of this paper is organized as follows. Section 2 is a brief state of the art.
It presents the native OLSR routing protocol. Variants for MPR selection are discussed
with the performances of the associated MPR flooding. The interference effect on rout-
ing complexity is pointed out. Different solutions supporting QoS are described. In Sec-
tion 3, we propose our solution enhancing OLSR with an interference-aware QoS sup-
port while keeping the excellent performances of MPR flooding. This solution is based
on the following building blocks: QoS routing based on OLSR, QoS signaling based on
local available bandwith and admission control aware of interferences. In Section 4, we
compare the performances of flooding obtained by this solution with regard to native
OLSR and other solutions like QOLSR and the CRC proposal. Section 5 presents the
control message overhead of our solution compared with native OLSR. In Section 6
we conduct a performance evaluation in order to quantify the improvements brought
by this solution with regard to native OLSR and a solution where MPRs are selected
according to their local available bandwidth. We report simulation results obtained by
QoS flows in static configurations. Simulation results obtained with mobility are given
in Section 7. Finally, we conclude in Section 8.
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2 State of the art

2.1 The OLSR routing protocol

OLSR (Optimized Link State Routing), [Adjih et al. 2003], is an optimization of a pure
link state routing protocol. It is based on the concept of multipoint relays (MPRs). First,
using multipoint relays reduces the size of the control messages: rather than declar-
ing all its links to all nodes in the network, a node declares only the set of links with
its neighbors that have selected it as “multipoint relay”. The use of MPRs also mini-
mizes flooding of control traffic. Indeed only multipoint relays forward control mes-
sages. This technique significantly reduces the number of retransmissions of broadcast
control messages [Qayum et al.2000]. The two main OLSR functionalities, Neighbor
Discovery and Topology Dissemination, are now detailed.

2.1.1 Neighbor Discovery

To detect its neighbors with which it has a direct link, each node periodically broadcasts
Hello messages, containing the list of neighbors known to the node and their link status
(symmetric, asymmetric, multipoint relay or lost). The Hello messages are received by
all one-hop neighbors, but are not forwarded. They are broadcast once per refreshing
period, called“Hello interval”. Thus, Hello messages enable each node to discover its
one-hop neighbors, as well as its two-hop neighbors. In OLSR, only symmetric links
are used to build routes. On the basis of this information, each node independently se-
lects its own set of multipoint relays among its one-hop neighbors in such a way that
the multipoint relays cover (in terms of radio range) all two-hop neighbors.

• Native MPR selection

The native MPR selection algorithm proceeds in three steps:

1. A node Ni first selects as MPRs all its neighbors that are the only neighbors of a
two-hop node.

2. It then selects as MPR a neighbor that has the largest count of uncovered two-hop
nodes. This step is repeated until all two-hop nodes are covered.

3. Finally, any MPR node N j such that the MPR set excluding N j covers all two-hop
nodes is discarded.

The multipoint relay set is computed whenever a change in the one-hop or two-hop
neighborhood is detected. In addition, each node M maintains its “MPR selector set”.
This set contains the nodes that have selected M as a multipoint relay.

• Link hysteresis

Link hysteresis has been introduced to enhance neighbor discovery by detecting and
avoiding the use of bad quality links (e.g. unstable links). Link hysteresis monitors the
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quality of any link. A link is established if its quality is strictly higher than a high thresh-
old. Similarly, an established link is dropped if its quality falls below a low threshold. If
the link layer does not provide information on the quality of links, the quality of a link
can be computed by an exponentially smoothed sliding average, depending on the loss
of OLSR packets on this link.

2.1.2 Topology Dissemination

Each node of the network maintains topological information about the network obtained
by means of TC (Topology Control) messages. Each node M selected as a multipoint re-
lay broadcasts a TC message at least every “TC interval”. The TC message originated
from node M declares the set of nodes having selected M as MPR. The TC messages are
flooded to all nodes in the network and take advantage of MPRs to reduce the number
of retransmissions. To optimize flooding, the OLSR forwarding rule is used:

• OLSR Forwarding Rule: Any node Ni forwards a broadcast message only if it is
received for the first time from a node having selected Ni as MPR.

Thus, a node is reachable either directly or via its MPRs. The neighbor information
and the topology information are refreshed periodically, and they enable each node to
compute the routes to all known destinations. These routes are computed with Dijkstra’s
shortest path algorithm. Hence, they are optimal as concerns the number of hops. The
routing table is computed whenever there is a change in neighborhood or topology
information.

2.2 Variants of MPR selection and MPR-flooding performances

As noticed in [Ge et al 2003] and [Badis et al. 2004], OLSR may fail to provide a route
providing the requested bandwidth, even if such a route exists. This can be explained as
follows:

– The MPR selection does not consider the local available bandwith. Hence the mul-
tipoint relays selected by OLSR may fail to provide the requested bandwidth, al-
though another selection would.

– As nodes at a distance strictly higher than two hops can reach node Ni only by
means of its MPRs, they are unable to find a route providing the requested band-
width if the MPRs of Ni do not.

In [Ge et al 2003], two algorithms are proposed. The first and simplest one selects
the best bandwidth neighbors as MPRs until all the two-hop neighbors are covered. The
second one is the shortest widest path for two hops. A node Ni selects its MPRs such
that all its two-hop neighbors have the optimal bandwidth path to reach it through the
MPRs. It is shown that both algorithms find the optimal path and the second algorithm
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provides a smaller number of MPRs as well as a smaller number of retransmissions for
any flooded message.

In [Mans and Shrestha 2004], a node Ni selects first as MPRs all its neighbors that
are the only neighbors of a two-hop node from N i. It selects then as MPR a neighbor of
Ni that has the largest uncovered two-hop nodes over available bandwidth ratio. Finally,
any MPR node Nj such that the MPR set excluding N j covers all two-hop nodes is
discarded. This algorithm tends to decrease the number of MPRs, but it does not ensure
that each two-hop node has a path to Ni with maximum available bandwidth. Flooding
performances are similar to those of the native version of OLSR.

In order to get the shortest path providing the requested bandwidth, we choose the
second algorithm in [Ge et al 2003] for MPR selection in the interference-aware QoS
OLSR presented in Section 3. This algorithm can lead to a number of MPRs higher
than the native algorithm. As a consequence, the number of retransmissions caused by
a message flooding is higher as shown in Section 4.

2.3 QoS support in a MANET

INSIGNIA, [Lee et al. 2000], is an adaptation of the IntServ Model to the mobile ad
hoc networks. It aims at providing QoS in ad hoc networks in a stateful and distributed
manner. QoS guarantee is done by per-flow information in each node that is set up
by the signaling/reservation protocol. We notice that this bandwidth reservation does
not take interferences into account: only nodes on the path reserve bandwidth for the
flow, moreover they exactly reserve the amount requested. The destination statistically
measures QoS parameters (e.g. packet loss, delay, bandwidth capacity) and periodically
sends QoS reports to the source. Based on those reports, the source node can adapt real-
time flows to avoid congestion.

SWAN, [Ahn et al. 2002], Service differentiation in stateless Wireless Ad hoc Net-
work, is an adaptation of the DiffServ Model to the mobile ad hoc networks. It aims
at providing QoS in ad hoc networks in a stateless and distributed manner. Nodes do
not need to keep per-flow information in order to process packets. QoS guarantee is
provided according to the class of the flow once it has been accepted. Moreover, to
maintain acceptable transmission delays for real-time traffic, nodes keep the amount of
bandwidth used by real-time traffic below a threshold value. We can notice that SWAN
admission control does not take into account interferences: only nodes on the path check
that their local available bandwidth is higher than the bandwidth requested by the flow.

FQMM, [Xiao et al. 2000], Flexible Qos Model for MANET, has been introduced
to offer a better QoS guarantee to a restricted number of flows whereas a class guarantee
is offered to the other flows. FQMM constitutes a hybrid approach combining per-flow
granularity of IntServ for high priority classes and per-class granularity of DiffServ for
low priority classes. The authors of FQMM argue that as the number of flows having a
per-flow guarantee is small, there is no scalability problem. Notice that, to the best of

62 Nguyen D.-Q., Minet P.: Quality of Service Routing in a MANET with OLSR



our knowledge, the mechanisms used in FQMM have not been adapted to the specifici-
ties of MANETS.

QOLSR [Badis and Al Agha 2005] and work presented in [Ge et al 2003] enhance
OLSR with QoS support. Both propose a solution providing a path such that the band-
width available at each node on the path is higher than or equal to the requested band-
width. Furthermore, QOLSR considers delay as a second criterion for path selection.
However, both solutions do not take into account interferences caused by the flow on
its own path.

BRuIT [Chaudet and Guerin-Lassous 2002] is the first protocol to take interferences
into account in bandwidth reservation in a mobile ad hoc network. BRuIT makes a band-
width reservation equal to the bandwidth requested not only along the path of that flow
but also at all nodes within h hops from the path, h being the radius of the interference
area. This model should be extended when a node belongs to the interference area of
several nodes along the path.

In [Allard et al. 2004], it is shown that finding a path from a source to a destination
meeting a bandwidth constraint is made NP-complete by the interferences. Two heuris-
tics H1 and H2 are proposed to select paths considering the available bandwidth only
on the nodes of the path (H1) or also on the nodes at a distance less than or equal to
two hops from a node on the path, assuming that interferences are limited to two hops
(H2). They show that these heuristics accept more flows than Dijkstra algorithm, where
the weight of an edge is equal to the local available bandwidth. Moreover, the second
heuristic H2 outperforms the first one, because of its more accurate view of interfer-
ences. In our solution, the admission control of a flow takes into account interferences
up to two hops.

3 Interference-aware QoS OLSR

3.1 General presentation

In this paper, we propose to enhance the OLSR protocol in order to support QoS routing
while taking interferences into account. The main contributions of our solution can be
summarized as follows:

– QoS signaling, based on local available bandwidth, does not generate any additional
message with regard to OLSR and uses the optimized flooding of OLSR.

– QoS routing keeps the advantages of OLSR: it is based on a partial topology knowl-
edge and has a complexity similar to this of Dijkstra algorithm. QoS routing takes
interferences into account to select the shortest path meeting the requested QoS. It
provides stable routes and adapts to traffic and topology changes.

– the admission control is interference-aware. The QoS received by any accepted
QoS flow is protected from degradation caused by any other flow.
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In the state of the art, we can identify five building blocks, also called QoS compo-
nents, in order to support QoS management in a MANET. These five building blocks
are illustrated in Figure 3.

Figure 3: QoS architecture

We now briefly define each of them:

– Cross-layer QoS model: like the authors of [Nikaein and Bonnet 2004], we use a
cross-layer QoS model to support adaptivity and optimization across multiple lay-
ers of protocol. To provide a simple solution, we define three QoS classes:
• Class 1 concerns all flows related to network control such as OLSR flows. This
class will be served with the highest priority. Consequently, packets of this class
will enjoy low delays.
• Class 2 is suitable for flows having throughput constraints, like video, for in-
stance.
• Class 3 is the default category. It corresponds to a best effort service.

In the following, we focus more particularly on two types of flows:
• QoS flows having QoS requirements expressed in terms of bandwidth,
• Best Effort flows, denoted BE flows.

We assume that the bandwidth B f requested by a flow f is expressed at the MAC
level. The reader interested can refer to [Nguyen and Minet 2005a] for a model
translating a bandwidth request expressed at the application level into a bandwidth
request expressed at the MAC 802.11b level. In this paper, we also assume that
interferences are limited to two hops.

– Admission control is in charge of deciding whether a new QoS flow can be ac-
cepted or not. The decision depends on the QoS requested by this flow, the avail-
able resources and the QoS requested by already accepted flows. Different policies
can be applied such as FIFO, Fair sharing, Price-based sharing. In the performance
evaluation reported in Sections 6 and 7, we use a FIFO policy: the flows are served
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according to their arrival order. If there is not enough resources to accept the new
QoS flow, this flow is rejected. As previously said in Section 1, QoS routing and
admission control must be interference-aware.

In order to protect QoS flows from interferences created by BE flows, a leaky bucket
is introduced to shape the BE packets sent or forwarded by this node. This will be
developed in Section 3.5.

– QoS routing is in charge of finding a route between the source and the destina-
tion of a QoS flow such that its QoS requirements are met. It generally uses QoS
signaling to select the route meeting the flow QoS requirements. Once the route
has been found, it is fixed until the network topology or the traffic activity changes
(e.g. a broken link is detected, some bandwidth demanding traffic is halted). For
this purpose, we use source routing which provides more stable routes as shown in
Section 3.4.

As QoS routing is invoked upon any topology change, a simple algorithm must be
chosen: its complexity must be similar to Dijkstra’s one. The shortest routes (mini-
mum hop count) tend to minimize the network resources used for the transmission
of a packet from its source to its destination. Therefore, the hop count metrics must
be taken into account. As some flows have bandwidth requirements, the bandwidth
metrics must also be considered. Radio interferences should be taken into account.
Consequently, QoS routing must select the shortest route (minimum hop count)
providing the requested bandwidth. If several routes exist, the route with the widest
available bandwidth is chosen. Such an algorithm is called the widest shortest path
algorithm.

Moreover, as OLSR is the routing algorithm chosen and resources are limited in
MANETs, the QoS routing interference-aware algorithm should keep the optimi-
sations present in OLSR. The optimization of this link state routing for MANET
relies on the concept of multipoint relays. Interference-aware QoS routing must
find the shortest path meeting the bandwidth requested using the partial topology
knowledge provided by OLSR, in which the MPRs selection has been changed to
take into account the bandwidth metrics. We will wee in Section 6.1 how this solu-
tion adapts to traffic and topology changes.

– QoS signaling is in charge of locally estimating and monitoring the QoS (e.g., Lo-
cal Available Bandwidth), and disseminating it to the concerned nodes. QoS param-
eters related to bandwidth are measured locally and disseminated in the MANET
using MPR-flooding (i.e., broadcast optimized by MPRs). We will wee in Sec-
tion 3.2 how our solution reconciles QoS support with optimized flooding.

– QoS MAC is required to get an efficient QoS management. Otherwise, the QoS im-
provement might be less. However, as there is no deterministic QoS MAC protocol
available for MANETs, our solution uses the IEEE 802.11b MAC protocol.
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3.2 QoS signaling

To select the route meeting the bandwidth required, the routing protocol must know
the bandwidth locally available at each node. QoS signaling is introduced for this pur-
pose. QoS parameter values are disseminated in the network by means of MPRs. The
selection of MPRs is modified to consider the bandwidth locally available at each node.
The main drawback of this solution lies in the overhead generated: each flooded mes-
sage leads to a number of retransmissions higher than that obtained with native OLSR.
In this paper, we show how to reconcile the optimized performances of MPR flooding
with QoS support. For this purpose, we distinguish two types of MPRs:

– Those, called MPRFs, are selected according to the native version of OLSR and are
used to optimize flooding.

– The others, called MPRBs, are selected considering the local available bandwidth
and are used to build the routes.

3.2.1 Measure of the Local Available Bandwidth

The Local Available Bandwidth (LAB) of a node is measured locally at the MAC level.
This measure can be deduced from the QoS parameters values given by the MAC driver
if they are available. The LAB can also be deduced from the load submitted by nodes
up to two hops from the node considered.

3.2.2 Dissemination of the local available bandwidth

The local available bandwidth is disseminated locally by means of Hello and globally
by means of TC messages. More precisely:

– Any node broadcasts its LAB as well as the LAB of its one-hop neighbors in its
Hello message. Consequently any node knows the LAB of each node in its one-hop
neighborhood and two-hop neighborhood.

– Any MPRB node broadcasts in its TC message:
• the LAB of each node having selected it as MPRB;
• the minimum LAB in its interference area (i.e. the minimum LAB of nodes at a
distance less than or equal to two hops).
Notice that according to OLSR rule, only MPRF nodes of the sender retransmit the
received message and only if they receive it for the first time.

3.3 MPR selection

Two MPR selections are done by each node:
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– First each node selects its MPRFs. It is done as specified in the OLSR RFC.
This algorithm is called whenener there is a change in the one-hop or two-hop
neighborhood.

– Then each node selects its MPRBs. Knowing the LAB of its neighbors and two-
hop neighbors, any node Ni selects its MPRBs in order to reach each two-hop neigh-
bor by a path of maximum bandwidth. If for a two-hop neighbor, there are several
one-hop neighbors reaching it, the one with the highest LAB is selected. This algo-
rithm is called whenever there is a change in the one-hop or two-hop neighborhood
as well as when the LAB of a node chosen as MPRB has significantly decreased or
when the LAB of a node not chosen as MPRB has significantly increased.

Figure 4.a illustrates the selection of MPRF done by node A. Node A selects node C
as its unique MPRF to reach its two-hop neighbors D, E and F . Assuming that the local
available bandwidth is equal to 5Mbps on node B and 1Mbps on node C, then node A
selects as its MPRBs:

- node B to reach nodes D and E,
- and node C to reach node F as illustrated in Figure 4.b.

(a) MPRFs of A (b) MPRBs of A

Figure 4: Selection of MPRs by node A.

– The Hello message sent by a node N includes both its MPRFs and its MPRBs.

– MPRFs forward a broadcast message if received for the first time from a
MPRF selector.

– Only MPRBs generate TC messages. However, in order to allow several paths to
coexist from a same source to a same destination, a node Ni previously declared as
MPRB of a node Nj will still advertise the link (Ni,Nj) in its TC as long as this link
is symmetric and is used by a QoS flow.

3.4 QoS routing

QoS routing is achieved by means of the widest shortest path algorithm. The routing
algorithm differs according to the class of the flow: QoS flow or BE flow.
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3.4.1 QoS routing of BE flows

QoS routing of BE flows is unconstrained; it aims at providing the widest shortest path
between any two nodes (i.e. the path with the minimum hop number and in case of
equality, the path with the largest available bandwidth). It is the default algorithm used
to compute the routing table.

The one-hop neighbors and two-hop neighbors are put in the routing table. The first
ones can be accessed directly. The second ones are accessed via their MPRBs. If for a
two-hop neighbor, there are several MPRBs, the one with the largest LAB is selected
to reach this neighbor. All nodes that have as MPRB a two-hop node are then put in
the routing table. If for such a node, there are several MPRBs, the one with the largest
LAB is selected to reach this node. This process is repeated until all nodes are inserted
in the routing table. This algorithm is called whenever there is a change in the one-hop
neighborhood, two-hop neighborhood or topology table.

BE flows are routed hop by hop. When a BE packet is received by a node that is not
its destination, it is forwarded hop by hop according to the local routing table.

3.4.2 QoS routing of QoS flows

QoS routing of QoS flows is constrained by a bandwidth request. It is used to compute
a route offering the requested bandwidth to reach the destination.

All nodes whose local available bandwidth is smaller than the requested bandwidth
and all nodes in the interference area of such transmitter nodes are temporarily removed
from the one-hop and two-hop neighborhood and the topology tables. The widest short-
est path algorithm is then applied with these updated tables. This algorithm is called by
the admission control for a QoS flow, which is periodically invoked in order to keep the
shortest path providing the requested bandwidth to reach the destination.

The path obtained by this algorithm is then included by the source in each packet
of the QoS flow and source routing is then applied. When a QoS packet is received by
a node that is not its destination, it is forwarded by the IP layer according to the source
routing option in its IP header. We will see in section 6.3 that source routing provides
more stable routes than hop by hop routing.

3.5 Admission control

In order to avoid message exchanges, the admission control of a QoS flow is performed
locally by the source. It is done periodically in order to optimize resource utilization. A
periodic computation of the route followed by a QoS flow allows the use of the shortest
route providing the requested bandwidth to reach the destination and consequently al-
lows to spare bandwidth, as we will see with the scenario described in Section 6.1. The
admission control calls the QoS routing for the involved QoS flow.

BE flows are shaped by a leaky bucket. The purpose of this leaky bucket is to limit
those flows so that their resource utilization does not affect the resources granted to
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QoS flows. We use a leaky bucket at each node to adjust the output rate of the BE traf-
fic forwarded or generated by this node. The output rate of a BE traffic at a node N
must not exceed M2LAB, the minimum LAB value of nodes in its interference area,
(see Section 3.2.2). This amount of bandwidth available at N must be shared by all
nodes in its interference area. Moreover, when a collision occurs, the MAC layer re-
transmits the colliding packet until it is correctly received. This leads to the chicken-
and-egg problem: when the amount of bandwidth available at a node decreases, there
are potentially more collisions. And when a collision occurs, there are less available
bandwidth because the bandwidth consumed is multiplied by the number of retransmis-
sions. Therefore, we use the following formula to adjust the output rate of the leaky
bucket, denoted r, at node N:

r =
M2LAB

n
e−(1−M2LAB

C ),

where C is the medium capacity (i.e. 11Mbps with 802.11b) and n is the number of
nodes in the interference area of node N that forward the same BE traffic. In this paper,
we consider that each BE flow at a node N is forwarded by at least three nodes in the
interference area of N: one node before N, node N and one node after N. Thus, we use
n = 3. We will see in Section 6.2 the benefits brought by the leaky bucket.

4 Flooding optimization with MPRFs and MPRBs

We now compare the performance, in terms of flooding optimization, of:

– the native OLSR protocol, where flooding is performed by the MPRFs;

– the OLSR protocol modified such that MPRs are chosen according to their LAB
and are also in charge of the flooding. This approach is illustrated by the CRC
solution [Ge et al 2003] and QOLSR [Badis and Al Agha 2005];

– the interference-aware QoS OLSR protocol described in Section 3, where we dis-
tinguish MPRs in charge of the flooding from those used to build routes.

This comparison validates our design choice: i.e., to distinguish MPRs used for flooding
from those used for building routes.

4.1 Models and simulation parameters

The simulations are performed with NS-2. The models and parameters given in this
subsection are used throughout this paper. According to the default value of NS-2, the
reception range of a node is 250m and the carrier-sense range is 550m. We use the IEEE
802.11b MAC protocol without RTS/CTS. The nominal bandwidth is 11Mbps. OLSR
parameters are set as recommended in [Adjih et al. 2003]: the Hello period is 2s and
the TC period is 5s.
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4.2 Simulation results

We consider two network configurations: one with 200 nodes and another with 400
nodes. In both configurations, the network density varies from 10 to 30 neighbors per
node.

Definition 3. The network density can be defined as the average number of one-hop
neighbors per node. It is equal to the total number of nodes in the MANET times πR 2

divided by the network area, where R is the radio transmission range.

More precisely, the number of nodes in a configuration is kept constant, whereas the
size of the square varies in order to get the desired density. No user flow is introduced.

Figures 5 and 6 show that our solution generates a number of MPRs lightly smaller
than QOLSR and the CRC solution. This number is in any case higher than the number
of MPRs generated by classical OLSR. The increase in the number of MPRs generated
by any solution supporting QoS is needed in order to be able to provide the shortest
path with the widest available bandwidth. The small benefit brought by our solution
compared to QOLSR and the CRC solution can be explained by the fact that flooding
is optimized, leading to less TC retransmissions (as we will see in the next paragraph)
and hence a smaller probability of Hello loss.

Figure 5: Number of MPRs with 200 nodes.
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Figure 6: Number of MPRs with 400 nodes.

We now study the flooding of a TC message in the network and focus on the number
of retransmissions of this message. Indeed this number of retransmissions is undergone
by any message flooded in the network such as gateway advertisement and service
announcement. Figures 7 and 8 show that the retransmission number of a TC is higher
with any solution using MPRB for flooding, like QOLSR and the CRC solution, than
with our solution and classical OLSR. Moreover, our solution generates the same
number of TC retransmission per TC generated as classical OLSR. Consequently,
our solution offers the same optimization degree with regard to flooding as classical
OLSR.

Figure 7: Number of retransmissions per TC with 200 nodes.
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Figure 8: Number of retransmissions per TC with 400 nodes.

In conclusion, we observe that our solution generates the same number of MPRs as
the CRC one [Ge et al 2003] and QOLSR [Badis and Al Agha 2005]. This is needed
to select the shortest route offering the requested bandwidth. Moreover, the number of
MPRBs can reach:

– 160% of the number of MPRFs for a network of 200 nodes with a density of 30
neighbors per node.

– 143% of the number of MPRFs for a network of 400 nodes with a density of 20
neighbors per node.

Moreover, our solution generates the same number of retransmissions per message
broadcast in the MANET as native OLSR.

5 Control message overhead

In this section, we evaluate the overhead induced by the QoS support in terms of control
messages. Notice that this QoS support does not require any additional control message.

The Hello message contains the QoS parameter (the LAB) of each neighbor, in ad-
dition to its link status. Regarding TC messages, we now compare their size in native
OLSR and in our solution. This size is the same for QOLSR, the CRC solution and our
solution, as these three solutions use the same algorithm to select the MPRBs. As the
size of a TC message originated from a node N is equal to a constant plus a size propor-
tional to the number of MPRB selectors of N, we compare the average number of MPRB
selectors per MPRB in our solution with the average number of MPR selectors per MPR
in native OLSR. Figure 9 depicts these average numbers for different network densities
in a network of 10,000 nodes. It follows that the average number of MPR selector
per MPR in native OLSR is in the order of O(M1/3), where M is the average number
of neighbors per node, as proved in [Jacquet et al. 2001]. In [Nguyen et Minet 2006],
we show that the average number of MPRB selector per MPRB is in the order of
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O(M1/3log(M)), as shown in Figure 9. In our solution, the TC message includes for
each MPRB selector declared in the TC message, its QoS parameter (the LAB), as done
with the Hello messages.
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Figure 9: Number of MPR selectors per MPR.

6 Performance evaluation in static configurations

In this section, we report performance evaluation of our solution in static configura-
tions. Mobility is studied in Section 7. The purpose of this performance evaluation is
to validate the choices we made during the design of our solution and to evaluate the
benefits brought by this QoS support.

6.1 Adaptation of QoS routes to traffic and topology changes

We first consider a network of 300 nodes and a network density of 14. In the first sce-
nario, characteristics of users flows are defined in Table 1, as well as the loss rate ob-
tained by each of them. In this scenario, BE flows are introduced to saturate the network
and not to be compared with QoS flows. Comparisons will be done in the next scenarios.
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type flow rate src dest start end loss rate
(kbps) (s) (s)

QoS f1 128 54 215 60 195 0.2%
f2 128 287 277 75 195 0.3%
f3 128 252 210 90 195 0.2%

BE f4 800 28 118 40 100 70%
f5 800 281 29 45 100 77%

Table 1: 3 QoS flows and 2 BE flows.

This scenario shows that:

– QoS flows avoid congested areas in the network (see Figure 11). This is a conse-
quence of:
• the selection of MPR based on their local available bandwidth;

• the interference-aware admission control.

– QoS flows use the shortest route providing the requested bandwidth to reach their
destination (see Figure 12). This is made possible by a periodic admission control
which in turn calls the QoS routing. As soon as the Best Effort flows halt, QoS
flows change their routes for a shorter one.

– QoS flows obtain a very good QoS in terms of delivery rate (see Table 1) and
throughput measured at their destination (see Figure 10).
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Figure 10: Throughput measured at the destination of each QoS flow.
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The second scenario is the same as the previous one, except that Best Effort flows
are shaped by a leaky bucket. Packets having no token are rejected. Here, we notice in
Figure 13 that QoS flows do not wait until the end of Best Effort flows to choose shorter
routes. The loss rate is smaller for QoS flows than in the previous scenario as shown in
Table 2. The throughput measured at the destination of each QoS flow is more stable
(see Figure 14).
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type flow rate src dest start end loss rate
(kbps) (s) (s)

QoS f1 128 54 215 60 195 0.9%
f2 128 287 277 75 195 0.8%
f3 128 252 210 90 195 0.1%

BE f4 800 28 118 40 100 67%
f5 800 281 29 45 100 70%

Table 2: 3 QoS flows and 2 BE flows.

6.2 Protection of QoS flows against Best Effort flows

We now focus on a network of 200 nodes and a density of 10. In the third scenario, eight
BE flows are considered as defined in Table 3. Each pair (source, destination) is shared
by two flows. The loss rate and the throughput measured at the destination of each flow
is given in Table 3 and Figure 15, respectively. They are clearly unacceptable.

type flow rate src dest start end loss rate
(kbps) (s) (s)

BE f1 300 179 119 39 195 88%
f2 300 57 196 69 195 35%
f3 300 20 120 84 195 87%
f4 300 42 51 99 195 90%
f5 300 179 119 40 195 88%
f6 300 57 196 70 195 33%
f7 300 20 120 85 195 86%
f8 300 42 51 100 195 91%

Table 3: 8 BE flows.
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Figure 15: Throughput measured at the destination of each BE flow.
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In this fourth scenario, four flows are QoS flows and the other four are BE. The BE
flows are not ruled by a leaky bucket. We observe in Table 4 that the admission control
rejects two QoS flows because of the lack of bandwidth resources: flows f 3 and f4. The
delivery rate obtained by QoS flows is lightly higher than that obtained by BE flows.
These simulation results justify the choice that both admission control and QoS routing
should be interference-aware. We will see in the next scenario how the leaky bucket
shaping the BE flows can improve this rate. The throughput obtained by each flow is
depicted in Figure 16.

type flow rate src dest start end loss rate
(kbps) (s) (s)

QoS f1 300 179 119 39 195 41%
f2 300 57 196 69 195 38%
f3 300 20 120 – – CAC failed
f4 300 42 51 – – CAC failed

BE f5 300 179 119 40 195 41%
f6 300 57 196 70 195 53%
f7 300 20 120 85 195 35%
f8 300 42 51 100 195 59%

Table 4: 4 QoS flows and 4 BE flows.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  50  100  150  200

th
ro

ug
hp

ut
 (

K
bp

s)

time (s)

f1
f2

(a) QoS Flows

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  50  100  150  200

th
ro

ug
hp

ut
 (

K
bp

s)

time (s)

f5
f6
f7
f8

(b) BE Flows

Figure 16: Throughput measured at the destination of each flow.

The fifth scenario is identical to the previous one except that a leaky bucket is in-
troduced to shape BE flows. The loss rate is given by Table 5. We notice a dramatic
decrease of loss rate (divided by 10) for QoS flows. In the same way, the throughput
obtained by each flow, depicted in Figure 17, is more stable than in the previous sce-
nario. This shows the benefit brought by the leaky bucket introduction.

78 Nguyen D.-Q., Minet P.: Quality of Service Routing in a MANET with OLSR



type flow rate src dest start end loss rate
(kbps) (s) (s)

QoS f1 300 179 119 39 195 0.4%
f2 300 57 196 69 195 4.8%
f3 300 20 120 84 195 0.4%
f4 300 42 51 99 195 4.3%

BE f5 300 179 119 40 195 76%
f6 300 57 196 70 195 86%
f7 300 20 120 85 195 93%
f8 300 42 51 100 195 91%

Table 5: 4 QoS flows and 4 BE flows.
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Figure 17: Throughput measured at the destination of each BE and QoS flow.

The results obtained in these three scenarios show that QoS flows are favored with
regard to BE flows. Indeed, they have a much higher delivery rate and a throughput
close to that requested. All simulation results reported in this section justify the design
choices we made.

6.3 More stable routes for QoS flows

We consider a network of 200 nodes and a density of 10. In the sixth scenario, we have
4 QoS flows and 4 BE flows with leaky bucket and source routing is used for QoS flows
as said in Section 3. The loss rate is given in Table 6. The throughput obtained by each
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flow is depicted in Figure 18. These values are very good for QoS flows.

type flow rate src dest start end loss rate
(kbps) (s) (s)

QoS f1 300 179 119 39 195 0.1%
f2 300 57 196 69 195 0.0%
f3 300 20 120 84 195 0.1%
f4 300 42 51 99 195 2.8%

BE f5 300 179 119 40 195 70%
f6 300 57 196 70 195 85%
f7 300 20 120 85 195 85%
f8 300 42 51 100 195 91%

Table 6: 4 QoS flows and 4 BE flows.
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Figure 18: Throughput measured at the destination of each BE and QoS flow.
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The seventh scenario is identical to the previous one, except that source routing is
not used for QoS flows. The loss rate is given in Table 7. The throughput obtained by
each flow is depicted in Figure 19. In this scenario, QoS flows obtain results worse than
in the previous scenario.

type flow rate src dest start end loss rate
(kbps) (s) (s)

QoS f1 300 179 119 39 195 33%
f2 300 57 196 69 195 4.3%
f3 300 20 120 84 195 38%
f4 300 42 51 99 195 24%

BE f5 300 179 119 40 195 73%
f6 300 57 196 70 195 62%
f7 300 20 120 85 195 78%
f8 300 42 51 100 195 79%

Table 7: 4 QoS flows and 4 BE flows.
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Figure 19: Throughput measured at the destination of each BE and QoS flow.

No route change is observed for QoS flows in the sixth scenario where source rout-
ing is used whereas in the seventh scenario, QoS flows are rerouted several times. This
experiment shows the interest of source routing against hop-by-hop routing.
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6.4 Conclusion

We observe that with this solution:

– Routes avoid the congested areas. Thanks to the knowledge of the bandwidth avail-
able at each node and the interference-aware admission control, QoS flows do not
choose highly loaded links.

– Routes are more stable. This is due to the fact that a new route is chosen only if
either it is shorter than the current one or a link is broken.

– The throughput obtained on the destination is more stable and close to this re-
quested. This can be explained by the interference-aware admission control. More-
over, the leaky bucket protects QoS flows against Best Effort flows.

– The delivery rate is largely increased. This can be explained by the interference-
aware admission control and QoS routing. Furthermore, as flooding is optimized,
the resource utilization is lower than with other solutions such as [Ge et al 2003]
or [Badis and Al Agha 2005]. Consequently, the loss rate of Hellos and TCs is
lower.

We can conclude that this solution highly improves the QoS perceived by the user.

7 Performance evaluation with mobility

In this section, we study the behavior of our solution in the presence of mobility. In
all the simulations reported, the mobility model chosen is the random waypoint. Each
node randomly selects a destination and moves at a speed chosen between 0 and a max-
imum speed (3m/s, 5m/s, 10m/s or 20m/s). Once the node reaches that destination, it
repeats the move for another random destination. There is no pause time between two
moves. All simulations last 300s. We first study in Subsection 7.1 the QoS obtained by
both QoS and BE flows when the velocity increases: 3m/s, 5m/s and then 10m/s. In
Subsection 7.2, we focus on high mobility with a velocity of 20m/s.

7.1 Impact of the velocity on the delivery rate

In this series of simulations on mobility, we consider a network of 100 nodes and a den-
sity of 20. The OLSR protocol configuration is as recommended in [Adjih et al. 2003].
We consider six CBR flows at 128 kbps. Three are BE flows and three are QoS flows.
Each QoS flow has the same pair (source, destination) as a BE flow. We evaluate the de-
livery rate of each flow at its destination for different velocities: 3m/s, 5m/s and 10m/s.
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Figure 20 shows that for the three velocities, QoS flows receive a higher delivery
rate than BE flows, and their throughput is more stable. However, QoS support does
not prevent a decrease in the delivery rate when the velocity increases. This is due to
the fact that when velocity increases in this mobility model, all links break very often.
The main reason for losing a packet is then a broken link. QoS support does not help to
recover more quickly from broken links.
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Figure 20: Delivery rates versus velocities.

The throughput obtained at the destination is more stable for the QoS flows as illus-
trated by Figure 21.
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Figure 21: Throughput measured at destination of each QoS and BE flows, velocity 10m/s.
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7.2 High mobility

We consider a network of 50 nodes and a density of 10. In this scenario, the velocity is
20m/s. Notice that for this velocity, OLSR configuration parameters are made shorter:
1s for the Hello period and 2.5s for the TC period. Three QoS flows and three BE flows
are considered. The three QoS flows have the same characteristics as the three BE flows,
one by one: same source and destination, same start and stop time. All flows are CBR
at 128 Kbps. Figure 22 depicts the delivery rate obtained by QoS flows and BE flows,
whereas Figure 23 depicts their respective throughput.
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Figure 22: Delivery rates at 20m/s.
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Figure 23: Throughput measured at destination of each QoS and BE flows, velocity 20m/s.
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This last scenario shows that the three QoS flows receive a better QoS than BE flows:

– their delivery rate is higher than BE flows.

– the throughput measured at the destination is more stable: throughput decreases
are less frequent and recover more quickly. However, several throughput decreases
exist due to the high mobility.

8 Conclusion

As in a wired network, QoS support in a MANET is required by more and more appli-
cations. We assume here that an application expresses the QoS it requires in terms of
bandwidth. As radio interferences strongly affect the bandwidth offered to users, they
must be taken into account in the bandwidth management. As QoS support implies to
select MPRs according to their local available bandwidth, it leads to a number of MPRs
per node higher than that obtained with the native version of OLSR. Consequently, the
efficiency of flooding is reduced. In this paper, we have shown how to reconcile an
interference-aware QoS support with an efficient flooding. Our solution distinguishes
two types of multipoint relays: those in charge of MPR flooding that are selected as
specified in the classical OLSR version and the others that are used to select routes,
considering bandwidth demand and interferences. Simulation results have shown that
with the proposed solution, routes are more stable and accepted flows receive the band-
width they have requested. Moreover, the overhead due to this QoS support, is kept low
and flooding achieves the excellent performances as in the native version of OLSR.

This solution also achieves good performances in case of mobility. For high mobil-
ity, the benefit brought by this solution still exists but is less important. In all the other
cases, the QoS perceived by the users is largely improved.
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