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Abstract: RSA is one of the oldest and until now one of the most widely used public key cryp-
tographic systems, which is based on the modular raising to power. In this article it is pointed 
out that most of the essential properties of the RSA can be read out from the number of the 
modulo n roots of the polynomial mentioned in the title of this article. The results explain 
almost all of the properties taken into account at the choice of the parameters of the RSA. By 
the help of the polynomial it is pointed out how the modulus and the exponent must be chosen 
so that the modular raising to power realizes a secure cryptosystem. The article investigates 
also the role of the choice of the parameters related to the success of the cycling attack. The 
article conveys a unified point of view for the examination of a lot of the number theoretic 
problems arising with respect to the RSA. 
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1 Introduction  

In this article N  denotes the nonnegative integers and +N  the positive ones and 
( )ba,  denotes the greatest common divisor of the integers a and b. 

1.1 On the RSA 

RSA is the most frequently applied and best tried public key cryptographic algorithm, 
which was examined by many experts very thoroughly, and which is practically un-
breakable without the trapdoor information – at least by the publicly known informa-
tion – if the parameters are chosen with the appropriate care. As it is well-known the 
algorithm itself is the following [Rivest, Shamir, Adleman (78)]. Let Alice be a par-
ticipant of the cryptosystem. She chooses two different odd prime numbers, p and q, 
and a positive integer e relatively prime to ( )nϕ , where qpn =  and ϕ is the Eulerian 
totient function and determines the solution d of the congruence ( )( )nex ϕmod1≡ . 
Then { } CnmmM =<∈= N  is the set of the plaintexts and the ciphertexts, ( )ne,  

is the public and d is the private key of Alice, and nmc e mod=  is the ciphertext 
corresponding to the plaintext Mm ∈ . As Alice knows d, she regains easily the 
original message m from c as ncm d mod= . If somebody knows the factors of n 
then this person is able to determine d and then similarly to Alice he can easily deci-
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pher the message, but by our present knowledge without knowing the factors of n it is 
practically impossible to decrypt the encrypted message. 

 
Theoretically, there are other possibilities for deciphering a message encrypted by 

the RSA. One of these possibilities is the , the cycling attack [Simmons, Norris (77)]. 
Let Mc ∈ , then there is such a positive integer k that cnc

ke =mod . As the mapping 

nmcm e mod=a  is injective on M, mnc
ke =

−

mod
1

 with the previous k, and for 
the decryption we applied only publicly known information. 

1.2 The Number of the modulo n Roots of a Polynomial with Integer Coeffi-
cients  

Let f be a polynomial over the ring of integers and let n be a positive integer greater 
than 1. Z∈u  is a modulo n root of f if ( ) ( )nuf mod0≡ . If ∏ =

= s

i
r
i

ipn
1

 is the 

canonical form of n, that is, the ip -s are pairwise different prime numbers and the ir -
s are positive integers then 

 
 ( ) ( ) ( ) ( ) ( )ir

ipufisnuf mod0:mod0 ≡∈≥∀⇔≡ +N  (1) 
 

and then – by the Chinese Remainder Theorem – the number of the modulo n roots of 
f is equal to the product of the number of the modulo ir

ip  roots of the polynomial. 
Two modulo n roots of the polynomial are different if and only if they are incongruent 
modulo n so the number of the modulo n roots of the polynomial is the number of the 
pairwise incongruent modulo n roots of the polynomial. 

1.3 The modulo n Primitive Root 

Let n be an integer greater than 1. The modulo n order of Z∈u  is the least positive 
integer t with the property that ( )nut mod1≡ , and u is a modulo n primitive root if 
the modulo n order of u is equal to ( )nϕ  where ϕ is the Eulerian totient function. The 
modulo n order of u exists if and only if u is relatively prime to n. By a very nice 
theorem the necessary and sufficient condition for the existence of a modulo n primi-
tive root is that n is equal to either 2 or 4 or n is a power of an odd prime number with 
a positive exponent or the double of such a prime power. 
 

In the following parts of this article we investigate that nmm e moda  where n 
and e are arbitrary positive integers and m is a nonnegative integer less than n on what 
conditions realizes an encryption, and point out some considerations for the best 
choice of the parameters. 

In Subsection 2.1 we deal with the number of the modulo n roots of the polyno-
mial uv xx −  and we examine how these results are related to the choice of the pa-
rameters of the RSA. 
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With the results achieved in Subsection 2.1, in Subsection 2.2 we investigate the 
well-known attack on the RSA applying repeated raising to the power of the cipher-
text. 

 
Not the results but the approach explaining the choice of the parameters is new in 

this article. The article tries to give a unified frame for explaining and handling prob-
lems arising in connection with the RSA. 

2 Results 

2.1 The Number of the modulo n Roots of the Polynomial uv xx −  

Lemma 1. Let n be an odd integer greater than 1, let ∏ =
= s

i
r
i

ipn
1

 be the canonical 
form of n, let u be a nonnegative and w a positive integer and let v be an integer 
greater than u. If ( )n

uN  and ( )n
uvN ,  denotes the number of the modulo n roots of the 

polynomials ux  and uv xx − , respectively, then 
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Proof. 
As ( )0xxxxx uvuuv −=− −  and ( ) 11, =−−uvu aa  for any Z∈a , so 
 

 ( ) ( ) ( )( ).
1

0,, ∏
=

−+=
s

i

p
uv

p
u

n
uv

ir
i

ir
i NNN  (3) 

 
If 0=u  then 1=um  for any nonnegative integer m. As 0>r  so 1>rp  and 

0| mpr / . From this follows that ( ) ⎥
⎥

⎤
⎢
⎢

⎡−
∞− === 0

0 0
r

r
p ppN

r

, if ∞=⎥⎥
⎤

⎢⎢
⎡
0
r  and 0=−∞p . 

If 0>u , then let lkpm =  so that p doesn’t divide k. Then ulu pkm ′= , and um  can 

be divided by rp  if and only if rul ≥  that is, if ⎥⎥
⎤

⎢⎢
⎡≥
u
rl  as l is an integer. In other 

words um  is divisible by rp  if and only if m is divisible by 
⎥
⎥

⎤
⎢
⎢

⎡
u
r

p  that is, if 
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⎥
⎥

⎤
⎢
⎢

⎡

′= u
r

pmm . If ru
r

ppm <′≤
⎥
⎥

⎤
⎢
⎢

⎡

0  then 
⎥
⎥

⎤
⎢
⎢

⎡−
<′≤ u

r
r

pm0  and then the number of the 

modulo rp  roots of the polynomial ux  is equal to 
⎥
⎥

⎤
⎢
⎢

⎡−
u
r

r
p , that is, 

 

 ( ) ⎥
⎥

⎤
⎢
⎢

⎡−
= u

r
r

p
u pN

r

 (4) 
 

for any nonnegative integer u. 
 

Now let’s consider the polynomial 1−wx . If m is a modulo rp  root of that poly-

nomial then ( )rw pm mod1≡ . If p is an odd prime number and r is a positive integer 

then there exist modulo rp  primitive roots. Let α be one of them, then there is a 

uniquely determined nonnegative integer k less than ( )rpϕ  with the property that 

( )rk pm mod≡α . Then 
 

 ( ) ( ).mod1 0 rwwkkw pm ααα =≡==  (5) 
 

As α is a modulo rp  primitive root so (5) is equivalent to the congruence 
 
 ( )( )rpkw ϕmod0≡  (6) 

 
and this congruence is true if and only if ( ) kwp rϕ , or, dividing by the greatest 

common divisor of w and ( )rpϕ , if and only if ( )
( )( ) k
pw

p
r

r

ϕ
ϕ
,

. This means that k is a 

multiple of 
( )

( )( )r

r

pw
p

ϕ
ϕ
,

 that is, 
( )

( )( )r

r

pw
plk

ϕ
ϕ
,

=  with an integer l. But ( ) N∈> kp rϕ  

and then ( )( )rpwl ϕ,0 <≤  so 
 
 ( ) ( )( ).,0,

rp
w pwN

r

ϕ=  (7) 
 

 
As a special case we get that if 1=u  then 
 

 ( ) ( )( )( ).,11
1

1, ∏
=

−+=
s

i

r
i

n
v

ipvN ϕ  (8) 
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From these results we get the following properties introducing t as the least com-
mon multiple of the ( )ir

ipϕ -s.  
 
Proposition 1. Let n be an odd integer greater than 1, where ∏ =

= s

i
r
i

ipn
1

 is the 
canonical form of n, let u be a nonnegative integer and v an integer greater than u. 
Then 
 

1. ( ) ∏ =
−≤≤ s

i
r
i

n
u

ipN
1

10 ; 

a) ( ) 0=n
uN  if and only if 0=u ; 

b) ( ) 1=n
uN  if and only if 1=u , or 1=ir  for every +∈≥ Nis , that is, if n 

is square free; 
c) ( ) ∏ =

−= s

i
r
i

n
u

ipN
1

1  if and only if { }+∈≥≥ Nisru imax ; 

 
2. ( ) ( )nN n

v ϕ≤≤ 0,1 ; 

a) ( ) 10, =n
vN  if and only if ( )( ) 1, =nv ϕ ; 

b) ( ) ( )nN n
v ϕ=0,  if and only if vt , and ( )

( ) ( )nN n
n ϕϕ =0,  (this is the Euler-

Fermat theorem); 
 

3. if 1≥u  then ( ) nN n
uv

s ≤≤ ,2  and 

a) ( ) sn
uvN 2, =  if and only if 1=u  or n is square free, and ( )( ) 1, =− nuv ϕ ; 

b) ( ) nN n
uv =,  if and only if { }+∈≥≥ Nisru imax  and uvt − ; 

c) if uv −  is even then ( ) sn
uvN 3, ≥ ; 

 
4.  

a) ( ) sn
vN 21, =  if and only if 1−v  and ( )nϕ  are coprimes; 

b) if  v is odd then ( ) sn
vN 31, ≥ ; 

c) ( ) nN n
v =1,  if and only if n is square free and  1−vt ; 

d) if n is a square free integer then ( ) ( )nmm nk mod1 ≡+ ϕ  for every integer 
m and nonnegative integer k; 

 
5. if n is square free, k is a positive integer and e is a positive integer relatively 

prime to kt  then for an arbitrary positive integer j relatively prime to e and 
positive integer d satisfying the congruence ( )jted mod1≡  it is true for 

any integer m that ( ) ( )nmm de mod≡ ; as a special case the previous 
statement is true if ( )( ) 1, =ne ϕ  and ( )( )ned ϕmod1≡ ; 
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6. if n is square free, ∏ ′

=
= s

i iun
1

 where every iu  is an integer greater than 1, 

( )∏ ′

=
−=′ s

i iut
1

1 , e is a positive integer relatively prime to t′  and d is such 

a positive integer that ( )ted ′≡ mod1  then 

a) ( ) ( )nmm de mod≡  for every integer m  if and only if t divides 1−ed ; 
b) 6.a) is true for any e possible if and only if tt ′ . 

 
Proof. 
1. If 0=u  then 1=ua  for any integer a and 1|/n  as 1>n . Conversely, if 0>u  

then for instance 00 =u  and 0n , so there is at least one modulo n root of the poly-

nomial ux . 

Now let’s suppose 0>u , that is, 1≥u  as u is an integer. ( ) 1
1

==∏ =

⎥
⎥

⎤
⎢
⎢

⎡−
n

u
s

i
u
r

r

i Np
i

i

 

if and only if 0=⎥
⎥

⎤
⎢
⎢

⎡−
u
r

r i
i , that is, if ⎥

⎥

⎤
⎢
⎢

⎡=
u
r

r i
i  for every index +∈≥ Nis . As 1≥u , 

so i
i r

u
r

≤  and then i
i r

u
r

≤⎥
⎥

⎤
⎢
⎢

⎡ , that is, ⎥
⎥

⎤
⎢
⎢

⎡=
u
r

r i
i  if and only if ⎥

⎥

⎤
⎢
⎢

⎡≤
u
r

r i
i , and this rela-

tion is equivalent to 
u
r

r i
i <−1 . From the last inequality we get that ( )( ) 111 <−− iru  

and then 1=u  or 1=ir  for every i as both u and the ir -s are positive integers. 

As 0>ir  and u is positive so 
u
ri  is a positive real number and then 1≥⎥

⎥

⎤
⎢
⎢

⎡
u
ri . 

⎥
⎥

⎤
⎢
⎢

⎡−
u
r

r

i

i
i

p  is a monotone increasing function of u and it reaches its maximum when 

1=⎥
⎥

⎤
⎢
⎢

⎡
u
ri  and this is true with the fixed ir  if and only if iru ≥ . 

 
2. ( ) 10, =n

vN  if and only if v is relatively prime to every ( )ir
ipϕ  and this is true ex-

actly when v is relatively prime to the product of the ( )ir
ipϕ -s, that is, to ( )nϕ . 

( ) 0>ir
ipϕ , so ( )( ) ( )ii r

i
r
i ppv ϕϕ ≤,  and the equality is true if and only if 

( ) vp ir
iϕ  for every index, that is, if the least common multiple of the ( )ir

ipϕ -s di-

vides v. The special case is obvious as the least common multiple divides the product 
of the members of the least common multiple. 

 
3. ( )n

uvN ,  is minimal if and only if every factor of the product is minimal. The factors 
of the product are sums of two positive integers. These factors are minimal if all of 
these positive integers have the least values possible. From the previous results we get 
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that the least values are 1 so the minimal value of every factor of the product is equal 
to 2. As the number of the factors is s so the minimal value of ( )n

uvN ,  is equal to s2  
and it is easy to read out from the previous section the conditions for this result. If 

uv −  is even then ( )( ) 2, ≥− ir
ipuv ϕ  as ( )ir

ipϕ  is always even if ip  is odd. 

Similarly to the minimal value, the maximum of ( )n
uvN ,  is reached if and only if all 

of the factors in the expression are maximal. As ( ) 1−−= iii r
i

r
i

r
i pppϕ , so this maxi-

mum is ir
ip  and then ( )( ) nN n

uv =,max . We get this value if and only if 1−⎥
⎥

⎤
⎢
⎢

⎡−
= i

i
i r

i
u
r

r

i pp  

and ( )( ) ( )ii r
i

r
i ppuv ϕϕ =− ,  for every index si ≤≤1 , that is, if and only if 

{ }+∈≥≥ Nisru imax  and uvt − . 

 
4. These results are special cases of the previous results in 3. For now 1=u  so 

{ }+∈≥≥ Nisru imax  is the same condition as n is square free, and since ( )nt ϕ  

so ( )( ) 11 −+ nkt ϕ . 
 
5. If ( ) 1, =kte  then e and t are coprimes, too. Similarly, if both t and j are relatively 
primes to e, then also their product, jt  is relatively prime to e, and then there exists 

such a positive integer d that ( )jted mod1≡ . Then 1−edt  and ( ) nN n
v =1,  as n is 

square free. The special case is true, too, as ( )nt ϕ . 
 
6. 6.a) is a simple consequence of 4. 

If tt ′  then 1−edt . Conversely, if 6.a) is true for any positive integer e rela-
tively prime to t ′  then let k be such a positive integer that ( ) 1, =tk  and let 

tked ′+= 1 . It is easy to see that there is such a k that ed  is a composite number. 
Now tkedt ′=−1  and then tt ′  as t and k are coprimes. 

 
 
An encryption is decipherable only if the encrypting rule is injective (it is true in the 
case of the homophonic enciphering with the appropriate meaning). From the previ-
ous results, we can read out the following consequences. 
 
Corollary 1. Let +∈< Nn1 , ∏ =

= s

i
r
i

ipn
1

 with parwise distinct odd prime factors, 
+∈< Ne1 , and let nmmf e mod: a  be a mapping of ( )nM  into itself. Then this 

mapping has ( )( )( )∏ =
−+s

i
r
i

ipe
1

,11 ϕ  fixed points. f is injective if and only if n is 

square free and e is relatively prime to ( )nϕ  and then the number of the fixed points 

is equal to ( )( )∏ =
−−+s

i ipe
1

1,11 . 
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Remark 1. As ( )nM  is a finite set so if f is injective then it is bijective, too. 
 
Remark 2. If 1=e  then mnme =mod  for every ( )nMm ∈  and then the ciphertext 
is equal to the plaintext which is not a real encryption. 
 
Proof.  
m is a fixed point of the mapping if and only if ( ) nmmfm e mod== , that is, if and 

only if m is a modulo n root of the polynomial xx e −  and then the number of the 
fixed points is equal to the number of the modulo n roots of the polynomial. This 
number is ( )( )( )∏ =

−+= s

i
r
ie

ipeN
11, ,11 ϕ  by the equation (8). 

Let e and ( )nϕ  be coprimes, then there exists such a positive integer d that 
( )( )ned ϕmod1≡ , that is, ( ) 1−ednϕ  and then 1−edt . If n is square free then 

the number of the modulo n roots of the polynomial xx ed −  is equal to n, that is, 
mnmed =mod  for every nonnegative integer less than n. This means that 

nmmh ed mod: a  is the identical mapping of ( )nM  into itself and then h is a bijec-
tive mapping. But 

 

 ( ) ( ) ( )( ) ( )( )mgfmfgnnmnmmh deed ==== modmodmod  (9) 
 
where both f and g are mappings of ( )nM  into itself and nmmf e mod: a . As h is 
a bijective mapping, and then it is injective, so f is injective, too. 

On the other hand, if n is not square free, then, because of 1>e , the polynomial 
ex  has more than one modulo n root (see 1.b)), so f is not injective. Similarly, if e is 

not relatively prime to ( )nϕ , then the polynomial 1−ex  has more than one modulo n 
root (see 2.a)), and f is not injective again. 

Finally, if n is a square free integer, then ( ) ( ) 1−== ii
r
i ppp i ϕϕ  and in this case 

( )( )( ) ( )( )∏∏ ==
−−+=−+ s

i i
s

i
r
i pepe i

11
1,11,11 ϕ . 

 
 
Some further properties are true, too. As 5. shows if somebody knows d then this 

person easily regains the plaintext from the ciphertext encrypted by the corresponding 
e. It can be seen, too, that if qpn =  with the odd and distinct p and q, and at least one 
of them is not square free or the two numbers are not coprimes (the latter property is 
easy to be checked but the first one is not) then surely there is such a plaintext m that 

( ) mnnm de ≠modmod . Last but not least if qpn =  is square free but at least one 
of the two factors is a composed number but we think they are primes and we treat 
them as prime numbers, and we calculate d so that ( )( )( )11mod1 −−≡ qped  is 
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fulfilled then by 6.a) we can decipher all of the ciphertexts error free if and only if 
( )ted mod1≡  is fulfilled, too. 

 
As fixed points are not desirable, the fewer fixed points a cryptosystem has the 

better the system is. ( )nϕ  is even for an odd n so e is odd if it is relatively prime to 

( )nϕ  and then the number of the fixed points is at least s3 . We can reduce the num-
ber of the fixed points if the number of the factors of n is the smallest possible, that is, 
if n is the product of only two factors. 

2.2 The Iterative Deciphering of the RSA and the Choice of the Parameters 

Proposition 2. Let N∈< e1 , N∈< n2 , and for ( )nMm ∈  let nmc e mod= . Then 

there exists such a +∈ Nk  that mnc
ke =

−

mod
1

 for every ( )nMm ∈  if and only if the 

mapping nmmf e mod: a  is injective on ( )nM , and then ( )eok t=  is the smallest 
such exponent. 
 
Remark 3. Let m and n be two positive integers. Then ( )mon  denotes the modulo n 

multiplicative order of m, that is, ( ) ( ){ }nmkmo k
n mod1min ≡∈= +N . 

 
Proof.  
Let ∏ =

= s

i
r
i

ipn
1

, where +∈ Ns , let the ip -s be pairwise different prime numbers 

and the ir -s positive integers, N∈u , N∈1u , N∈2u  and N∈< vu , N∈< 11 vu , 

N∈< 22 vu . If 21 uu ≤  and ( )n
uMm

1
∈ , then 21 uu mmn , that is, ( )n

uMm
2

∈ , so con-

sequently ( ) ( )n
u

n
u MM

21
⊆ , and then ( ) ( )n

u
n

u NN
21

≤ . If 2211 uvuv −−  additionally to 

21 uu ≤ , and ( )n
uvMm

11,∈ , then 
 

 
( )

( ) ( ) 22222111

11111

11

1
uvuvuuvu

uvuuv

mmmmmm

mmmmn

−=−−

−=−
−−

−

 (10) 

 
that is, ( )n

uvMm
22 ,∈ , and consequently ( ) ( )n

uv
n

uv MM
2211 ,, ⊆ , as well as ( ) ( )n

uv
n

uv NN
2211 ,, ≤ . If 

now ( ) ( )n
uv

n
uv MM

2211 ,, ⊆  and ( ) ( )n
uv

n
uv NN

2211 ,, = , then we get that ( ) ( )n
uv

n
uv MM

2211 ,, = , that is, in 
that case by increasing the exponents we don’t get further modulo n roots of the poly-
nomial uv xx − . 

Now let +∈ Ne  and +∈ Nk . cnc
ke =mod  is fulfilled for a ( )nMc ∈  exactly in 

that case if ( )n
ekMc

1,
∈ , and the number of the messages decipherable by this exponent 

of k is ( )( )( )∏ =
−+= s

i
r
i

k
e

i
k peN

11, ,11 ϕ . ( ) ( )nn
e

MM k =
1,

 with a given e and k if and 
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only if nN ke =1, . This equation is equivalent to the conditions that n is square free 

and 11 −− k
i ep  for every +∈≥ Nis . The latter condition can be fulfilled only if e 

is relatively prime to all of the ( ) 1−= ii ppϕ -s, that is, to ( )nϕ . For each condition 
mentioned is fulfilled in an RSA system, so the ciphertexts encrypted by the rules of 
the RSA can be decrypted by repeated exponentiations with an appropriate exponent, 
too, as if the conditions are fulfilled then the mapping nmm e moda  is injective, 
and 

 

 ( ) nmcncnnc eeee kk

modmodmodmod
1

===
−

 (11) 
 
with the previous k, and then ncm

ke mod
1−

= . 

Let e be relatively prime to ( )nϕ . 11 −− k
i ep  is true exactly when ( ) keo

ip 1− , 

so nN ke =1,  with a given k is true if and only if ko , where 

 
 ( ){ }+

− ∈≥= Niseolcmo
ip 1  (12) 

 
and the minimal value of these k-s is precisely o. The previously mentioned possibil-
ity for the decryption is applicable in the practice only if either o is not a big number, 
or the greatest part of the messages can be decrypted by small exponents. Conse-
quently, in a secure system the value of o is such a big number that practically this 
procedure of deciphering is impossible, and the proportion of the messages decipher-
able with exponents less than o is small. Of course the at least s3  fixed points can be 
decrypted with 1=k . If ( ) oeo

ip <−1  for every i (which is true in every normal case), 

then at least i
s p13 −  messages are decipherable with the exponent of ( )eo

ip 1− , so our 
expectation can only be that apart from the fixed points no other ciphertexts can be 
deciphered by an exponent less than the previously mentioned ( )eo

ip 1− -s. 

Big value for o can be achieved if ( )eo
ip 1−  is as great as possible for every i, and 

( ) ( )( )eoeo
ji pp 11 , −−  is the smallest value possible for all of the indices ji ≠ . 

( ) ( )11 −− ip peo
i

ϕ , so ( )1−ipϕ  is the greatest value possible for ( )eo
ip 1− . Such 

an e exists if and only if the value of 1−ip  is either 2, 4 or ( ) ( )1
12 ir

ip  (because 1−ip  

is even), where ( )1
ip  is an odd prime number and ( ) +∈ N1

ir , that is, in the case of an 

RSA exactly when ( ) ( )1
121 ir

ii pp =− , as the small factors are easily discoverable. Thus 

let ( ) ( )1
121 ir

ii pp =− , then ( ) ( ) ( ) ( )( )11 111
1

−=−
−

i
r

ii ppp iϕ , and let e be a modulo 1−ip  
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primitive root, that is, let ( ) 11, =−ipe  and ( ) ( )11 −=− ip peo
i

ϕ . If ( ) 11, =−ipe  

then also ( ) ( )

1,
11

1

=⎟
⎠
⎞⎜

⎝
⎛ −ir

ipe . Then 
( )

( )

( ) ( )

⎟
⎠
⎞⎜

⎝
⎛≡

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

11
2 1

11
1

2mod1 i

ir
i r

i

p

pe
ϕ

, so 

 

 ( ) ( ) ( ) ( )

( ) ( )

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
1

11
1

1
1

211 2,12 i

ir
i

i r
i

pr
i pep

ϕ
 (13) 

 
furthermore 
 

 
( ) ( )

( ) ( ) ( ) ( )11
11

1

11
2

22,1 ii

ir
i r

i
r

i

p

ppe <
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −ϕ
 (14) 

 

because ( ) ( ) ( )

⎟
⎠
⎞⎜

⎝
⎛=−

1
1

1 2 i

i

r
ip peo ϕ , and finally 

 

 
( ) ( )

( ) ( ) ( ) ( )

.22,1
11

11
1

11
2

ii

ir
i r

i
r

i

p

ppe
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −ϕ
 (15) 

 
From the three relations we get that 
 

 
( ) ( )

( ) ( ) ( ) ( ) 111
2 11

11
1

22,1
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

−

ii

ir
i r

i
r

i

p

ppe
ϕ

 (16) 

 
and then in the case of ( ) 11 >ir  not only the fixed points can be deciphered by an ex-

ponent less than ( )eo
ip 1− . For this reason let ( ) 11 =ir  for every +∈≥ Nis , in other 

words, let every prime factor of n be of the form ( ) 12 1 += ii pp  where ( )1
ip  is an odd 

prime number. Then 
 

 ( )
⎩
⎨
⎧

−
=−−

1
2

1,1
i

i
k

p
pe . (17) 

 
11 −− kee  with an arbitrary positive integer k, thus ( ) ( )i

k
i p

e
p

e MM
1,1, ⊆ , and if ( ) 2

1,
=i

k
p

e
N , 

then ( ) ( )i
k

i p
e

p
e MM

1,1, = , that is, with such a choice of the ip -s only the fixed points can 

be decrypted with small exponents. 
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The modulo 1−ip  order of e is equal to io  if and only if ( )1mod1 −≡ i
o pe i  

and ( )1mod1 −≡/ i
p
o

pe
i

 for every prime divisor p of io , and for the multiplicative 

order is always fulfilled that ( ) ( )( ) ( ) 11 11 −==− iiii pppo ϕϕ . The number of the 

modulo 1−ip  primitive roots is ( )( )11 −ipϕ . ( )( )
( )

2
1

1
1

1 −
≤− i

i
p

pϕ , since ( ) 11 −ip  is an 

even number, and ( )( )
( )

2
1

1
1

1 −
<− i

i
p

pϕ  if ( ) 11 −ip  is not a power of 2. If ( ) l
ip 211 =−  

then ( )1
ip  is a Fermat-prime, and this case is very unlikely (perhaps impossible). Then 

( )( )
( )

1
2

1
1

1
1 −

−
≤− i

i
p

pϕ  and ( )( )
( )

1
2

1
1

1
1 −

−
=− i

i
p

pϕ  if and only if 
( )

( )2
1

2
1

i
i p

p
=

−
 is a 

prime number, in other words, if ( ) ( ) 12 21 += ii pp  with a prime number ( )2
ip . Then on 

the one hand, the proportion of the primitive roots is 
 

 

( )( ) ( )
( )

( )

4
1

4
7

2

3
2

1
2

31
2

1
11 1

1

21

≈−=
−−

=

−=
−−

=−=−

i

i

i

i

i

i

i

i

i

i

i

i

p
p

p

p
p

p
p

p

p
p

p
pϕ

 (18) 

 
so it is easy to hunt a primitive root, and on the other hand, in the case of an arbitrary 
positive integer k it is easy to check whether k is a primitive root as if 1|1 2 −/− kpi  

and 
( )

1|1
2

−/− ip
i kp  then ( ) ( )11 −=− ip pko

i
ϕ . 

Finally, with the previous choice 
 

 
{ }

( ){ } ( )∏
=

+

+

=∈≥=

∈≥=
s

i
ii

i

pisplcm

isolcmo

1

22 22 N

N
 (19) 

 
and applying the previous result 
 

 

( )

( )12

1

1

1

2

2
4
12

2
−−

=

=

= =≈= ∏
∏

∏
s

s

i
s

i
i

s

i
i

p

p

n
o  (20) 
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so the smaller the value of s is, the greater 
n
o  is. Since in an RSA system n is surely a 

composed number, so the best choice is 2=s , which is the best case with regard to 
the number of the fixed points, too. Now ( )

( )
i

n

e
pN

p
3

1,
2

12
=  for 1=i  and 2=i  and these 

values are relatively big numbers for both of the indices, if 21 pp ≈ , that is, if both of 

the factors of n are approximately equal to n . 
 

 
There is a modification of the iterative decryption. If ( )( ) 1,mod >− nncc

ke  and 

( ) 0mod ≠− ncc
ke  then either ( )( ) 1,mod pnncc

ke =−  or ( )( ) 2,mod pnncc
ke =−  

and then n is factorized and the system is broken. But if both 1p  and 2p  are doubly 

Sophie Germain primes then this happens only if ( )2
12 pk =  or ( )2

22 pk = , that is, if 

2
nk ≈ . 

3 Conclusion  

In the previous parts of the article we could see that there is a natural relationship 
between the theoretically best choice of the parameters of an RSA system and the 
number of the modulo n roots of a special polynomial of integer coefficients namely 
of the polynomial uv xx − . Although there are other constrains on the choice of the 
parameters, the greatest part of the constrains follows from the properties of this 
polynomial. The analysis of the number of the modulo n roots of the polynomial 

uv xx −  shows that the mapping nmm e moda  of the set of the nonnegative inte-
gers less than n into itself is injective if and only if n is a squarefree integer and e is 
relatively prime to ( )nϕ . By the help of the analysis we pointed out that the cycling 
attack on the RSA is successful only in a very few cases if n is a product of only two 
factors of the same magnitude that are doubly Sophie Germain primes, and e is a 
primitive root with respect to 1−p  and 1−q  as moduli, where p and q are the two 
different factors of n.  
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