Journal of Universal Computer Science, vol. 12, no. 9 (2006), 1215-1228
submitted: 31/12/05, accepted: 12/5/06, appeared: 28/9/06 © J.UCS

The Number of the Modulo n Roots of the Polynomial
X' —x" and the RSA

Janos Gonda
(E6tvds University Budapest, Hungary
andog@compalg.inf.elte.hu)

Abstract: RSA is one of the oldest and until now one of the most widely used public key cryp-
tographic systems, which is based on the modular raising to power. In this article it is pointed
out that most of the essential properties of the RSA can be read out from the number of the
modulo n roots of the polynomial mentioned in the title of this article. The results explain
almost all of the properties taken into account at the choice of the parameters of the RSA. By
the help of the polynomial it is pointed out how the modulus and the exponent must be chosen
so that the modular raising to power realizes a secure cryptosystem. The article investigates
also the role of the choice of the parameters related to the success of the cycling attack. The
article conveys a unified point of view for the examination of a lot of the number theoretic
problems arising with respect to the RSA.
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1 Introduction

In this article N denotes the nonnegative integers and N* the positive ones and
(a,b) denotes the greatest common divisor of the integers a and b.

1.1 Onthe RSA

RSA is the most frequently applied and best tried public key cryptographic algorithm,
which was examined by many experts very thoroughly, and which is practically un-
breakable without the trapdoor information — at least by the publicly known informa-
tion — if the parameters are chosen with the appropriate care. As it is well-known the
algorithm itself is the following [Rivest, Shamir, Adleman (78)]. Let Alice be a par-
ticipant of the cryptosystem. She chooses two different odd prime numbers, p and q,
and a positive integer e relatively prime to ¢(n), where n = pq and ¢ is the Eulerian

totient function and determines the solution d of the congruence ex=1 (mod ¢(n)).
Then M ={me N|m<n J=C is the set of the plaintexts and the ciphertexts, (e,n)

is the public and d is the private key of Alice, and ¢ =m® mod n is the ciphertext
corresponding to the plaintext me M. As Alice knows d, she regains easily the
original message m from ¢ as m=c® mod n. If somebody knows the factors of n
then this person is able to determine d and then similarly to Alice he can easily deci-
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pher the message, but by our present knowledge without knowing the factors of n it is
practically impossible to decrypt the encrypted message.

Theoretically, there are other possibilities for deciphering a message encrypted by
the RSA. One of these possibilities is the , the cycling attack [Simmons, Norris (77)].

Let ce M , then there is such a positive integer k that c® modn=c. As the mapping

m i ¢c=m® mod n is injective on M, ¢’ mod n=m with the previous k, and for
the decryption we applied only publicly known information.

1.2 The Number of the modulo n Roots of a Polynomial with Integer Coeffi-
cients

Let f be a polynomial over the ring of integers and let n be a positive integer greater

than 1. ue Z is a modulo n root of fif f(u)=0 (modn). If n=]]" pf is the

canonical form of n, that is, the p; -s are pairwise different prime numbers and the r, -
S are positive integers then

f(u)=0 (modn)e V(s=ieN*): f(u)=0 (modp{') (1)

and then — by the Chinese Remainder Theorem — the number of the modulo n roots of
f is equal to the product of the number of the modulo p;' roots of the polynomial.

Two modulo n roots of the polynomial are different if and only if they are incongruent
modulo n so the number of the modulo n roots of the polynomial is the number of the
pairwise incongruent modulo n roots of the polynomial.

1.3  The modulo n Primitive Root

Let n be an integer greater than 1. The modulo n order of ue Z is the least positive
integer t with the property that u* =1 (mod n ) , and u is a modulo n primitive root if
the modulo n order of u is equal to ¢(n) where ¢ is the Eulerian totient function. The

modulo n order of u exists if and only if u is relatively prime to n. By a very nice
theorem the necessary and sufficient condition for the existence of a modulo n primi-
tive root is that n is equal to either 2 or 4 or n is a power of an odd prime number with
a positive exponent or the double of such a prime power.

In the following parts of this article we investigate that m — m® mod n where n

and e are arbitrary positive integers and m is a nonnegative integer less than n on what
conditions realizes an encryption, and point out some considerations for the best
choice of the parameters.

In Subsection 2.1 we deal with the number of the modulo n roots of the polyno-

mial x’ —x" and we examine how these results are related to the choice of the pa-
rameters of the RSA.
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With the results achieved in Subsection 2.1, in Subsection 2.2 we investigate the
well-known attack on the RSA applying repeated raising to the power of the cipher-
text.

Not the results but the approach explaining the choice of the parameters is new in

this article. The article tries to give a unified frame for explaining and handling prob-
lems arising in connection with the RSA.

2 Results

2.1  The Number of the modulo n Roots of the Polynomial x* — x"

Lemma 1. Let n be an odd integer greater than 1, let n = H; p{ be the canonical
form of n, let u be a nonnegative and w a positive integer and let v be an integer
greater than u. If NL(,“) and Nv(“j denotes the number of the modulo n roots of the

polynomials x" and x" —x", respectively, then

NG =TT w o (o) @

Proof.
As X' —x" =x"(x** =x°) and (a",a"* —1)=1forany ae Z, s0

N = TN+ NG ) 3)

v-u,0

If u=0 then m" =1 for any nonnegative integer m. As r >0 so p" >1 and

p" | m°. From this follows that Népr) =0=p—~ = priH, if H—‘ =co and p— =0.
If u>0,then let m=kp' so that p doesn’t divide k. Then m" =k’p", and m“ can

be divided by p" if and only if ul >r thatis, if | > FW as | is an integer. In other
u

r

words m" is divisible by p" if and only if m is divisible by pH that is, if
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r r r

m= m’pH. If Ogm’pH <p" then 0<m’< pr_H and then the number of the

modulo p" roots of the polynomial x" is equal to p _H,that is,

N (0) _ pr{ﬂ (4)
for any nonnegative integer u.

Now let’s consider the polynomial x* —1. If misa modulo p" root of that poly-
nomial then m" =1 (mod p’ ) If p is an odd prime number and r is a positive integer
then there exist modulo p" primitive roots. Let « be one of them, then there is a
uniquely determined nonnegative integer k less than (p(pr) with the property that
& =m(mod p’). Then

a™ =(a")" =m" =1=¢2° (mod p"). (5)
As «risamodulo p" primitive root so (5) is equivalent to the congruence
kw =0 (mod ¢(p" ) (6)

and this congruence is true if and only if (p(pr)

o(p")
w,p\p’

kw, or, dividing by the greatest

common divisor of w and q)(p’ ) if and only if k. This means that k is a

multiple of (p(pr)r that is, k =1 (p(pr)r with an integer I. But (p(pr)> ke N
w,p\p W, @\p

andthen 0<1< (W,(p(pr)) S0

N = (wo(pr)) @

As a special case we get that if u =1 then

NG =TT+ (v-10(pf ) ®)
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From these results we get the following properties introducing t as the least com-
mon multiple of the (p(p{' )—s.

Proposition 1. Let n be an odd integer greater than 1, where n= H; p/i is the

canonical form of n, let u be a nonnegative integer and v an integer greater than u.
Then

1L o<NY <[, pi™:

a) N™=0ifandonlyif u=0

u
b) N(n lifand only if u=1, or r, =1 for every s>ie N, thatis, if n
is square free;
) NO® :1_[:=1 pit if and only if u > max{ri | s>ie N*};

2. 1<N" <o(n);

n

a) 1 ifand only if (v,¢(n))=1

b)

) —
0=
) _
0

") =(n) if and only if t|v, and N, =¢(n) (this is the Euler-
Fermat theorem);

Ny
Ny

3. ifu>1then 2° <N <n and
a) N!" =2°ifandonly if u=1 or nis square free, and (v—u,¢(n))=1;
)
u

(
b) NV(_n =n ifandonlyifuZmax{ri|szie N*}and t|v—u;

c) if v—u iseven then an >3%;

a) N =2°ifandonlyif v—1 and ¢(n) are coprimes;

v,1

b) if visoddthen N >3°;

v,1 =

C) N(n =n if and only if n is square free and t|v 1;

v,1
d) if nisa square free integer then m***™) = m (mod n) for every integer
m and nonnegative integer k;

5. if nis square free, k is a positive integer and e is a positive integer relatively
prime to kt then for an arbitrary positive integer j relatively prime to e and
positive integer d satisfying the congruence ed =1(mod jt) it is true for
any integer m that (me)d =m (mod n ); as a special case the previous
statement is true if (e,(n))=1 and ed =1(mod ¢(n));
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6. if nissquare free, n= I_Iis;lui where every u; is an integer greater than 1,

t'= H;(”i —1), e is a positive integer relatively prime to t” and d is such

a positive integer that ed =1(mod t’) then
a) (me)d =m (mod n ) for every integer m if and only if t divides ed —1;

b) 6.a) is true for any e possible if and only if t|t”.

Proof.
1. If u=0 then a" =1 for any integer a and nf1 as n>1. Conversely, if u>0

then for instance 0" =0 and n| 0, so there is at least one modulo n root of the poly-

nomial x".

Now let’s suppose u >0, that is, u>1 as u is an integer. His:l piiim =NM=1
. . r, . r, . .
if and only if r, —[—ﬂ =0, thatis, if r, :[_ﬂ for every index s>ie N*. As u=>1,
u u

SO r—ig r, and then P—ﬂ <r,, thatis, r, =[iw if and only if SP—W , and this rela-
u u u u

o r _ _
tion is equivalent to r, —1<—-. From the last inequality we get that (u—1)(r, -1)<1
u

and then u=1 or r, =1 for every i as both u and the r; -s are positive integers.

. - r . o r
As r; >0 and u is positive so — is a positive real number and then {—'w >1.
u u

T,
-

P M is a monotone increasing function of u and it reaches its maximum when

P—ﬂ =1 and this is true with the fixed r, ifand only if u>r,.
u

2. N (_”g =1 if and only if v is relatively prime to every go(pi") and this is true ex-

actly when v is relatively prime to the product of the (p(p{' )—s, that is, to go(n )
go(pir')>0, S0 (v,go(pi" ))s go(pi") and the equality is true if and only if

o(pr)

vides v. The special case is obvious as the least common multiple divides the product
of the members of the least common multiple.

v for every index, that is, if the least common multiple of the (p(p{' )-s di-

3. N is minimal if and only if every factor of the product is minimal. The factors

of the product are sums of two positive integers. These factors are minimal if all of
these positive integers have the least values possible. From the previous results we get
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that the least values are 1 so the minimal value of every factor of the product is equal
to 2. As the number of the factors is s so the minimal value of N is equal to 2°

v,u

and it is easy to read out from the previous section the conditions for this result. If

v—u is even then (v—u,(p(p{i ))2 2 as (p(p{i) is always even if p, is odd.
Similarly to the minimal value, the maximum of N (") is reached if and only if all

v,u

of the factors in the expression are maximal. As (p(pi“ ): p/ —pi™, so this maxi-

mum is p;* and then max(Nv(?u)): n . We get this value if and only if piliH =pit
and (v—u,(p(p{' )):qo(pi") for every index 1<i<s, that is, if and only if

u2max{ri|szie N*}and tjv-u.

4. These results are special cases of the previous results in 3. For now u=1 so
uz max{ri | s>ie N*} is the same condition as n is square free, and since t| o(n)

so t|(1+ke(n))-1.

5 If (e, kt) =1 then e and t are coprimes, too. Similarly, if both t and j are relatively
primes to e, then also their product, jt is relatively prime to e, and then there exists
such a positive integer d that ed =1(mod jt). Then tled -1 and N} =n asn is
square free. The special case is true, too, as t| ¢(n ).

6. 6.a) is asimple consequence of 4.

If t|t” then t|ed —1. Conversely, if 6.a) is true for any positive integer e rela-
tively prime to t* then let k be such a positive integer that (k,t)=1 and let
ed =1+kt’. It is easy to see that there is such a k that ed is a composite number.
Now t| ed —1=kt" and then t|t” as t and k are coprimes.

An encryption is decipherable only if the encrypting rule is injective (it is true in the
case of the homophonic enciphering with the appropriate meaning). From the previ-
ous results, we can read out the following consequences.

Corollary 1. Let 1<ne N*, n= H; p{ with parwise distinct odd prime factors,
l1<ee N*,and let f:m m® modn be a mapping of M ™ into itself. Then this
mapping has H:=1(1+(e—1,(p(pi“ ))) fixed points. f is injective if and only if n is
square free and e is relatively prime to (p(n ) and then the number of the fixed points
isequal to [T @+ (e-1p, -1)).
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Remark 1. As M " is a finite set so if f is injective then it is bijective, too.

Remark 2. If e=1 then m® mod n=m for every me M ™ and then the ciphertext
is equal to the plaintext which is not a real encryption.

Proof.
m is a fixed point of the mapping if and only if m = f(m)= m® mod n, that is, if and
only if m is a modulo n root of the polynomial x®—x and then the number of the
fixed points is equal to the number of the modulo n roots of the polynomial. This
numberis N, = H::1(1+ (e—l,qo(pi“ ))) by the equation (8).

Let e and @(n) be coprimes, then there exists such a positive integer d that
ed =1(mod ¢(n)), that is, ¢(n)|ed -1 and then t|ed —1. If n is square free then

the number of the modulo n roots of the polynomial x* —x is equal to n, that is,
m* mod n=m for every nonnegative integer less than n. This means that

h:m m® mod n is the identical mapping of M ) into itself and then h is a bijec-
tive mapping. But

h(m)=m* mod n=(m® mod n)" mod n=g(f(m))=(gf m) (9)

where both f and g are mappings of M ™) into itself and f :m > m® mod n. As h is
a bijective mapping, and then it is injective, so f is injective, too.

On the other hand, if n is not square free, then, because of e >1, the polynomial
x® has more than one modulo n root (see 1.b)), so f is not injective. Similarly, if e is
not relatively prime to ¢(n), then the polynomial x° —1 has more than one modulo n
root (see 2.a)), and f is not injective again.

Finally, if n is a square free integer, then (p(pﬁ ): @(p;)=p, —1 and in this case

[T 0+(e-1o(pf ))=TT @+ (e-1p, - 1).

Some further properties are true, too. As 5. shows if somebody knows d then this
person easily regains the plaintext from the ciphertext encrypted by the corresponding
e. It can be seen, too, that if n = pq with the odd and distinct p and g, and at least one
of them is not square free or the two numbers are not coprimes (the latter property is
easy to be checked but the first one is not) then surely there is such a plaintext m that

(me mod n)d mod n=m. Last but not least if n= pq is square free but at least one

of the two factors is a composed number but we think they are primes and we treat
them as prime numbers, and we calculate d so that ed =1(mod (p—-1)(q-1)) is
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fulfilled then by 6.a) we can decipher all of the ciphertexts error free if and only if
ed =1 (mod t) is fulfilled, too.

As fixed points are not desirable, the fewer fixed points a cryptosystem has the
better the system is. (p(n) is even for an odd n so e is odd if it is relatively prime to

@(n) and then the number of the fixed points is at least 3°. We can reduce the num-

ber of the fixed points if the number of the factors of n is the smallest possible, that is,
if n is the product of only two factors.

2.2 The Iterative Deciphering of the RSA and the Choice of the Parameters

Proposition 2. Let 1<ee N, 2<ne N, and for me M ® let c=m® mod n. Then
there exists such a ke N* that ¢¢ mod n=m for every me M ™) if and only if the

mapping f :m~ m® mod n is injective on M ™ and then k = 0, (e) is the smallest
such exponent.

Remark 3. Let m and n be two positive integers. Then o, (m) denotes the modulo n

multiplicative order of m, that is, o, (m)= min{ke N*{m* =1(mod n)}

Proof.
Let n= H; pi , where se N, let the p, -s be pairwise different prime numbers

and the r,-s positive integers, ue N, u1 eN, u,eN and u<ve N, u, <v, e N,

u, <v,eN.If u1<u2 and meM , then n‘ m™|m" , that is, meM() S0 con-

sequently M ( JeMmb

u, !

and then N() N If v, —u,|v, —u, additionally to

u, <u,,and me M | then

VLl’

nim* -m* =m" (m“’“l —l)

10
m (m“’“l —l)| m' (mVZ’“Z —1): m' —m" =

<NM f

n)
(n)

, and consequently M cM™ " as well as NV(

U VLI’

that is, me Mv(

that is, in

VLI’

now M\", M (2_)UZ and N, =N", then we get that M", =M "
that case by increasing the exponents we don’t get further modulo n roots of the poly-
nomial x" —x".

Now let ee N+ and ke N*. ¢ mod n=c is fulfilled fora ce M™ exactly in

that case if ce MV, and the number of the messages decipherable by this exponent

kly

of kis N, =1_[i5=1(1+(ek ~10(pr)). M) =M™ with a given e and k if and
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only if N, =n. This equation is equivalent to the conditions that n is square free

and p, —1|e* —1 for every s>ie N*. The latter condition can be fulfilled only if e

is relatively prime to all of the @(p,)= p, —1-s, that is, to ¢(n). For each condition

mentioned is fulfilled in an RSA system, so the ciphertexts encrypted by the rules of
the RSA can be decrypted by repeated exponentiations with an appropriate exponent,

too, as if the conditions are fulfilled then the mapping m+> m® mod n is injective,
and

(ceH mod n)e mod n=c® mod n=c=m® mod n (11)

with the previous k, and then m = ¢ modn.
Let e be relatively prime top(n). p, —1| e —1 is true exactly when oplfl(e)|k,

s0 N, =n with a given k is true if and only if o| k , where

o:lcm{opi_l(e)|32ie N*} (12)

and the minimal value of these k-s is precisely 0. The previously mentioned possibil-
ity for the decryption is applicable in the practice only if either o is not a big number,
or the greatest part of the messages can be decrypted by small exponents. Conse-
quently, in a secure system the value of o is such a big number that practically this
procedure of deciphering is impossible, and the proportion of the messages decipher-

able with exponents less than o is small. Of course the at least 3° fixed points can be
decrypted with k =1. If oplfl(e)< o for every i (which is true in every normal case),

then at least 3°™ p, messages are decipherable with the exponent of opl,l(e), S0 our

expectation can only be that apart from the fixed points no other ciphertexts can be
deciphered by an exponent less than the previously mentioned o, _, (e)-s.

Big value for o can be achieved if o, ; (e) is as great as possible for every i, and
(opl,l(e),opj,l(e)) is the smallest value possible for all of the indices i # j .

opi_l(e)|(p(pi -1), 50 ¢(p; 1) is the greatest value possible for o, ,(e). Such
an e exists if and only if the value of p, —1 is either 2, 4 or prl)"(l) (because p; -1
is even), where pi(l) is an odd prime number and ri(l) e N*, that is, in the case of an
RSA exactly when p, —1= 2pi(1)r‘m , as the small factors are easily discoverable. Thus

) H0_
let p, ~1=2p"" , then ¢(p, -1)= p®" * (p{ -1), and let e be a modulo p, —1
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primitive root, that is, let (e, p,—1)=1 and o, ,(e)=¢(p, -1). If (e, p;-1)=1

1)
) gl 2p® )
then also (e, po* ):1. Then e [ ] sl( mod 2p®" 1), S0

(1)
i )

) _ | 2p; I
2p®" | ( ]—L 2pY’° (13)

furthermore

(1)

(1)_;
o 2p" ) N
e [ J -1,2pY" | <2p®" (14)

r .
because o, ,(e)= (;;(2 p" ) and finally

-

?| 2p; ' ) r
e [ ]—1,2p§1) " l2pe” (15)

From the three relations we get that

(1)
o 2p" u) .
A ]—LZpF“ =2p!" (16)

and then in the case of ri(l) >1 not only the fixed points can be deciphered by an ex-
ponent less than o, (). For this reason let ¥ =1 for every s>ie N*, in other

words, let every prime factor of n be of the form p, =2p® +1 where p® is an odd
prime number. Then

(@—Lm—0={ (17)

p -1

e —1|e* —1 with an arbitrary positive integer k, thus Mépli) c Me(["l), and if Ne(fll) =2,
then Me(ﬁ) = Me(f’il), that is, with such a choice of the p,-s only the fixed points can

be decrypted with small exponents.
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The modulo p, —1 order of e is equal to o, if and only if e =1(mod p, —1)

OI

and e? $1(mod p; —1) for every prime divisor p of o,, and for the multiplicative

order is always fulfilled that oi|(p(pi ~1)=p(p®)= p®? -1. The number of the

_(1) -1
modulo p; —1 primitive roots is (p(pi(l) —1). (p(pi(l) —l)Sp'T,Since pi! ~Lis an

@ _
Pt

even number, and (p(pi(l) —1) if p -1 is not a power of 2. If p¥-1=2'

then pi(l) is a Fermat-prime, and this case is very unlikely (perhaps impossible). Then

_(1) -1 _(1) -1
o(p”-1) 2 PR

prime number, in other words, if p*) =2p® +1 with a prime number p?. Then on
the one hand, the proportion of the primitive roots is

-1

P21 and o(p? -1)= =p?isa

—1 ifandonly i

@
-1
! -1
plp-1)_pP-1_ "5 "' pP-3
pl p| pi 2p| (18)
P -1 3

_ 2 T _op-T 1
2p; 4p, 4

S0 it is easy to hunt a primitive root, and on the other hand, in the case of an arbitrary
positive integer k it is easy to check whether k is a primitive root as if p, =1} k® -1

and p, -1} k" -1 then 0,.4(k)=0(p, -1).
Finally, with the previous choice

0 =lcm{o, |s>ie N*}

~lem{2p? [s2ie N*}= 2[] p? (19)
i=1

and applying the previous result

0_ _ —(2511)
—=—___ _=211==2 20
. = H 2 (20)
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. 0 . e . .
so the smaller the value of s is, the greater — is. Since in an RSA system n is surely a
n

composed number, so the best choice is s =2, which is the best case with regard to
the number of the fixed points, too. Now N (?3(2) =3p, for i=1 and i =2 and these
el 1

values are relatively big numbers for both of the indices, if p, = p,, that is, if both of

the factors of n are approximately equal to Jn.

There is a modification of the iterative decryption. If ((cek —c)mod n,n)>1 and
(cek —c)mod n=0 then either ((cek —c)mod n,n)= p, or ((cek —c)mod n,n)= p,
and then n is factorized and the system is broken. But if both p, and p, are doubly
Sophie Germain primes then this happens only if k = 2p1(2) or k= 2p§2), that is, if

L
2

3 Conclusion

In the previous parts of the article we could see that there is a natural relationship
between the theoretically best choice of the parameters of an RSA system and the
number of the modulo n roots of a special polynomial of integer coefficients namely
of the polynomial x' —x" . Although there are other constrains on the choice of the
parameters, the greatest part of the constrains follows from the properties of this
polynomial. The analysis of the number of the modulo n roots of the polynomial
x" —x" shows that the mapping m— m® mod n of the set of the nonnegative inte-
gers less than n into itself is injective if and only if n is a squarefree integer and e is
relatively prime to ¢(n ). By the help of the analysis we pointed out that the cycling
attack on the RSA is successful only in a very few cases if n is a product of only two
factors of the same magnitude that are doubly Sophie Germain primes, and e is a
primitive root with respect to p—1 and gq-1 as moduli, where p and g are the two

different factors of n.

References
[Menezes, Oorshot, Vanstone (96)] Menezes, A., Oorshot, P. V., Vanstone, S.: “Handbook of
Applied Cryptography”; CRC Press, Inc. (1996)

[Niven, Zuckerman, Montgomery (91)] Niven, I., Zuckerman, H. S., Montgomery, H. L.: “An
Introduction to the Theory of Numbers”; John Wiley & Sons, Inc., New York (1991)



1228 Gonda J.: The Number of the Modulo n Roots ...

[Rivest, Shamir, Adleman (78)] Rivest, R. L., Shamir, A., Adleman, L.: “A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems”; Communications of the ACM 21, 2
(1978), 120-126

[Simmons, Norris (77)] Simmons, G. J., Norris, M. J.: “Preliminary comment on the M.L.T.
public-key cryptosystem”; Cryptologia, 1 (1977), 406-414



