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Abstract: The purpose of the present paper is to give an expansion of the results
of Michiharu Kudo and Anish Mathuria. We present the base-protocol and formulate
three properties of the protocol with modal logic tools. After that we expand the base-
protocol and prove four new properties. We prove that the third trusted partner can
not read the message of the sender until a predetermined time.
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1 Introduction - The problem of ’time-capsule’

Cryptographic systems have two main parts basically: the area of transforma-
tions of encryptions and decryptions and the area of cryptographic protocols.
Recently the planning and verifying of cryptographic protocols have developed
tools. More separate trends have grown up during the development of the pro-
cedures.

The question of time-release cryptography was suggested by Timothy C. May
in 1993 for first time [May 1995]. The aim of this protocol is to encrypt a message
that cannot be decrypted by anyone (not even by the sender), until a predeter-
mined time (time capsule). This protocol has many applications: closed sales
bids in an auction, encrypt documents for long time, long-dated transactions,
etc.

Ronald L. Rivest, Adi Shamir and David A. Wagner summarized two so-
lutions in 1996 [Rivest, Shamir and Wagner 1996] - which are still acceptable
nowadays. The first solution is based on computability. This is a mathematical
puzzle (time-clock puzzle) that cannot be solved for at least a certain amount
of time. The second one is based on involving a trusted agent - Trent (T ) - who
promise not to reveal certain information until a specific time.

Many people have been dealing with both recommended solutions since 1996.
Michiharu Kudo and Anish Mathuria published a cryptographic protocol in 1999,
which not only covered the second solution, but it was also analyzed by tools of
mathematical logic [Kudo and Mathuria 1999].

Hereafter call this protocol Kodo-Mathuria K-M-P1 protocol.
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The aim of the present paper is to give an expansion the results of Michiharu
Kudo and Anish Mathuria [Kudo and Mathuria 1999]. We prove the expansions
by tools of modal logic. The main aim is to prove that the third trusted partner
can not read the message of the sender until a predetermined time. The expan-
sions of the original protocol in this way expand the possible area of applications.

2 The Kudo-Mathuria K-M-P1 protocol

The K-M-P1 protocol encrypts a message that cannot be read by anyone (except
the sender) until a specific time.

There are three participants in the original protocol: A (Alice) the sender, B

(Bob) the receiver and T (Trent) the trusted agent. Let us assume T is capable
of knowing the correct time while neither A nor B can tell the correct time on
their own.

Let Mk denote the encryption of the message M under public key k and let
M−1

k denote the decryption or signature of the (secret-)message under secret key
k−1. The applied steps are the following (Protocol K-M-P1):

Step 1. A sends message to T asking him to generate time-key pair for some
time t8 in the future:

{”enc”, t8} .

Step 2. After receiving A’s message, T generates a time-pair: (tkt8 , tk
−1
t8 ). T

sends a signed message to A that contains the tkt8 part of the time key-pair,
which is needed for encryption:

{{”enc”, t8, tkt8}k−1
T } .

T keeps the decryption key tk−1
t8 in secret until the time t8.

Step 3. A verifies T ’s signature. If the signature is right then A sends message
to B containing the name of A. This message is a call for communication:

{A} .

Step 4. B responds to A with random number Nb:

{Nb} .

This number is against replay-attack.

Step 5. After it A generates random number Ra and creates the next message:

{{{Xa, Ra, A}tkt8 , A,B, t8, Nb, tkt8}k−1
A , {”enc”, t8, tkt8}k−1

T } .

Ra guarantees the uniqueness of ciphertext.
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Step 6. B verifies the signature of A and as a confirmation B sends back a
certain part of the message with his signature:

{{{{Xa, Ra, A}tkt8 , A,B, t8, Nb, tkt8}k−1
A }k−1

B } .

Step 7. B sends a message to T giving the time t8, when he wants to decrypt
the original time-confidential message from A:

{”dec”, t8} .

Step 8. T waits until given time of A and then sends the right decryption key
to B:

{{”dec”, t8, tk
−1
t8 }k−1

T } .

�

Using this protocol we reach that the receiver B cannot decrypt the message
Xa before the specific time. In addition the protocol certifies authenticity of A

to B.

3 Formal methods of protocols

Inappropriately designed cryptographic protocol may contain flaws, that can be
ideal starting points for attackers. Such flaws are hard to found. The academic
literature publishes numerous example that flaws were not discovered for a long
time. The researchers analysed these flaws with different methods and tools
vainly.

For example, Dening and Sacco found security hole in Needham-Schroeder
authenticated key distribution protocol in 1981 [Buttyán 1999]. This flaw allowed
an intruder to use an old compromised session key as a new one. Burrows,
Abadi and Needham found a similar security gap in the CCITT X.509 standard
[Burrows, Abadi and Needham 1989].

The researchers use empirical tests, simulated attacks and formal planning
and checking methods to eliminate errors of cryptographic protocols.

Formal methods have been used for a long time in planning and analysing
communication protocols. A similar research started in the early nineties in the
area of cryptographic protocols.

Formal methods can be used in the phase of specification, construction and
verification of the cryptographic protocols. The research concentrates on formal
verification of protocols. Using formal methods in the area of specification is an
emerging part of the research. The planned constitution of protocols is still an
undiscovered area.
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An overall analysis of this issue was prepared by Buttyán [Buttyán 1999].
Further thorough overview can be read in the works of Rubin and Honeyman
[Rubin and Honeyman 1993] as well as in the works of Meadows [Meadows 1995].

Meadows identified four main types of analysis of cryptographic protocols in
her article published in 1995 [Meadows 1995]:

Using general purpose verification tools. We construct models and ver-
ify them with specific languages and general checking tools.
Using expert systems. We develop professional systems which allow us to
replay the different scenarios of protocols.
Using general modal logic tools. We can use modal logic tools to resolve
the notion of ’know’ and ’believe/accept’. These terms are fundamental in the
theory of cryptographic protocols.
Using algebraic tools. We can use mathematical algebraic tools to analyze
cryptographic protocols.

In the following we are going to use modal logic tools to analyze protocol
K-M-P1 and its extensions. Our main starting tools are the Burrows-Abadi-
Needham logic (BAN logic) [Burrows, Abadi and Needham 1989]. We use the
Coffey-Shaida-logic [Coffey and Saidha 1997] which is the extension of the fun-
damental BAN-logic. We apply the supplemented theory of this logic (time-
dependent elements).

4 The proof of some properties of the protocol K-M-P1

We need to compose and formulate assertions when we prove the protocol prop-
erties. Then we verify or reject the assertions in the model.

Look the next assertions concerning protocol K-M-P1:

G1. Only A and T can decrypt the time-confidential message until a specific
time.

G2. B can decrypt the time-confidential message at a specific time. B uses the
key from T .

G3. B knows the origin of the time-confidential messages and the ways of the
messages in the protocol.

In general we must create the next formal steps when we construct the model
and verify the protocols.
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4.1 Notations

We need the next notations, operators and functions in the extended Coffey-
Saidha model [Kudo and Mathuria 1999]:

a, b, c, . . . - general individual variables

φ - an arbitrary statement

Σ,Ψ - represent arbitrary entities

i, j - range over entities (possible values from ENT )

ENT - the set of possible entities

K knowledge operator - KΣ,tφ means: Σ knows φ at time t

L knowledge predicate operator - LΣ,tx means: Σ knows and can repro-
duce object x at time t

B belief operator - BΣ,tφ means: Σ believes at time t that statement φ is
true

k public key - kΣ is the public key of entity Σ

k−1 private key - k−1
Σ is the private key of entity Σ

e() encryption function - e(x, kΣ) means: encryption of x using key kΣ (the
output is generally a message)

d() decryption function - d(x, k−1
Σ ) means: decryption of x using key k−1

Σ and
this function still means: signing of x (the output is generally a message)

S emission operator - S(Σ, t, x) means: Σ sends message x at time t

R reception operator - R(Σ, t, x) means: Σ receives message x at time t

C ’contains’ operator - C(x, y) means: object x contains the object y (y may
be cleartext or ciphertext in x)

σ ’obtain’ operator - σi,t(x, y) means: i can obtain y from x at time t

Standard logical quantors - ∧ conjunction; ∨ disjunction; ¬ complementa-
tion; → implication; ∃ existential quantification; ∀ universal quantification
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4.2 Axioms

We fix the next axioms in the model:

A1(a). KΣ,tp ∧ KΣ,t(p → q) → KΣ,tq

A1(b). BΣ,tp ∧ BΣ,t(p → q) → BΣ,tq

A2(a). KΣ,tp → p

A3(a). Li,tx → ∀t′ ≥ t Li,t′x

A3(b). Ki,tx → ∀t′ ≥ t Ki,t′x

A3(c). Bi,tx → ∀t′ ≥ t Bi,t′x

A4(a). Li,ty ∧ C(y, x) → ∃j ∈ ENT Lj,tx

A4(b). C(x, x)

A4(c). C(x, y) ∧ C(y, z) → C(x, z)

A4(d). C(e(x, kΣ), x) ∧ C(d(x, k−1
Σ ), x)

A5(a). S(Σ, t, x) → LΣ,tx ∧ ∃i ∈ ENT (i 	= Σ) ∃t′ > t R(i, t′, x)

A6(a). R(Σ, t, x) → LΣ,tx ∧ ∃i ∈ ENT (i 	= Σ) ∃t′ > t S(i, t′, x)

A6(b). R(j, t, x) ∧ C(x, y) ∧ σj,t(x, y) → ∃i ∈ ENT ∃t′ < t ∃z(S(i, t′, z) ∧
C(z, y) ∧ Li,t′y ∧ σj,t(x, z) ∧ σj,t(z, y))

A7(a). Li,tx ∧ Li,tkΣ → Li,t(e(x, kΣ))

A7(b). Li,tx ∧ Li,tk
−1
Σ → Li,t(e(x, k−1

Σ ))

A8(a). ¬Li,tkΣ ∧ ∀t′ < t¬Li,t′(e(x, kΣ)) ∧ ¬(∃y(R(i, t, y) ∧ C(y, e(x, kΣ)) ∧
σi,t(y, e(x, kΣ)))) → ¬Li,t(e(x, kΣ))

A8(b). ¬Li,tk
−1
Σ ∧ ∀t′ < t¬Li,t′(d(x, k−1

Σ )) ∧ ¬(∃y(R(i, t, y) ∧ C(y, d(x, k−1
Σ )) ∧

σi,t(y, d(x, k−1
Σ )))) → ¬Li,t(d(x, k−1

Σ ))

A9(a). Li,tk
−1
i ∧ ∀j ∈ ENT\{i}¬Lj,tk

−1
i

A10(a). Li,t(d(x, k−1
Σ )) → LΣ,tx

A11(a). Li,ty ∧ σi,t(y, x) → Li,tx

R1(a). from 
 p and 
 p → q infer 
 q (Modus ponens)

R2(a). from 
 p infer KΣ,tp
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R2(b). from 
 p infer BΣ,tp

K1(a). KΣ,t(p ∧ q) → KΣ,tp ∧ KΣ,tq

K2(a). KΣ,tp ∧ KΣ,tq → KΣ,t(p ∧ q)

TA1(a). ∀t < τ LT,ttk
−1
τ ∧ ∀i ∈ ENT (i 	= T ) ¬Li,ttk

−1
τ

TA2(a). Li,tx ∧ Li,ttkτ → Li,t(e(x, tkτ ))

TA2(b). Li,tx ∧ Li,ttk
−1
τ → Li,t(d(x, tk−1

τ ))

TA3(a). ¬Li,ttkτ ∧ ∀t′ < t ¬Li,t′(e(x, tkτ )) ∧ ¬(∃y(R(i, t, y) ∧ C(y, e(x, tkτ ))
∧ σi,t(y, e(x, tkτ )))) → ¬Li,t(e(x, tkτ ))

TA3(b). ¬Li,ttk
−1
τ ∧∀t′ < t ¬Li,t′(d(x, tk−1

τ ))∧¬(∃y(R(i, t, y)∧C(y, d(x, tk−1
τ ))

∧ σi,t(y, d(x, tk−1
τ )))) → ¬Li,t(d(x, tk−1

τ ))

TA4(a). Li,t(e(x, tkτ )) → LT,ttkτ

TA5(a). ∀i ∈ ENT\{T} ∀t < τ Li,ty ∧ y = e(y′, tkτ ) ∧ C(y′, x) → ¬σi,t(y, x)

4.3 Protocol assumptions and general parameters

We use the next assumptions to accord the axioms and the assertions of protocol:

F1. ∀t < t8∀yS(A, t, y)∧C(y, d(x, tk−1
t8 )) → y = e(y′, tkt8)∧C(y′, d(x, tk−1

t8 ))

F2. ∀t < t8¬∃y(S(T, t, y) ∧ C(y, d(x, tk−1
t8 )))

F3. tg < t8 (tg denote the time when T generates the private key tk−1
t8 )

F4. ∀t < tg ∀i ∈ ENT (i 	= A) ¬Li,td(x, tk−1
t8 )

F5. ∀t < tg ∀i ∈ ENT ¬Li,ttkt8

F6. KB,t0(LB,t0kA)

F7. KB,t0(∀t < t0∀i ∈ ENT ¬Li,tNb)

4.4 Aims of protocol and assertions

We formalize the protocol goals (G1., G2., G3.) in the logic as follows (t8 is the
specific time in the future (Step 1.) and t9 > t8; t6 is the time of Step 6.):

Theorem 1 - G1. ∀t < t8 ∀i ∈ ENT (i 	= T,A) ¬Li,t(d(x, tk−1
t8 )) .

Theorem 2 - G2. LB,t9(d(x, tk−1
t8 )) .

1379Takacs P.: The Additional Examination ...



Theorem 3 - G3. KB,t6 (∃t t0 < t < t6 S(A, t, d({U,Nb}, k−1
A ))), where U =

e({Xa, Ra, A}, tkt8), A,B, t8, tkt8 .

We find the proofs of this theorems in [Kudo and Mathuria 1999].
Turn to further examinations of the protocol and describe the expansion of

the protocol.

5 Further examination of the K-M-P1 protocol

Interception is one of the attacking ways of cryptographic protocols. The inter-
ceptor E possess the same information at the end of the protocol as B. Therefore
E gets hold of the message from A. The interception of the steps 5. and 8. are
enough. This is not a mistake from the point of view of the protocol since the
base-task does not specify this kind of secrecy.

However, we can ask the following question: Can we extend the protocol in
a way that the interceptor does not get a message from A?

We can set up two protective points: either we protect the key or we protect
the message.

We modify the original K-M-P1 protocol in the first case as follows (K-M-P2
protocol): Let us protect the decryption key: instead of

{{”dec”, t8, tk
−1
t8 }k−1

T }

use the next protocol step

{{”dec”, t8, {tk−1
t8 }kB}k−1

T } .

Namely, we protect the decryption key tk−1
t8 with the public key of B.

We modify the original K-M-P1 protocol in the second case as follows (K-M-
P3 protocol): Let us protect the message. Modify step 5. and 6. in the K-M-P1
protocol: instead of

{{{Xa, Ra, A}tkt8 , A,B, t8, Nb, tkt8}k−1
A , {”enc”, t8, tkt8}k−1

T }

in step 5. use the next protocol step

{{{{Xa, Ra, A}tkt8}kB , A,B, t8, Nb, tkt8}k−1
A , {”enc”, t8, tkt8}k−1

T } .

This is similar to a box with two locks: we use the time-lock tkt8 and the lock
kB of B.1

1 We have several solving points in this case. We can apply encryption for the packet
of message Xa too: {Xa}kB which leads to the same result. We get the same result
if we use different order of keys.
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This modification has an effect on step 6. too, since B repeats the part of
the message of A: instead of

{{{{Xa, Ra, A}tkt8 , A,B, t8, Nb, tkt8}k−1
A }k−1

B }
use the next protocol step

{{{{{Xa, Ra, A}tkt8}kB , A,B, t8, Nb, tkt8}k−1
A }k−1

B } .

We must expand the Coffey-Shaida logic [Coffey and Saidha 1997] with addi-
tional pieces to examination the K-M-P2 and K-M-P3 protocols. We did not use
attacker E in the axioms and conditions. E can execute passive attack against
cryptosystem. E can eavesdrop every message of participants. We can amplify
the assumptions with the following condition:

∀t ∀i ∈ ENT LE,t(S(i, t, x)) . (F8.)

After that we can evolve propositions which describe the properties of new
protocols. This propositions are the next:

Theorem 4 - G4. LE,t9(d(x, tk−1
t8 )). Attacker E - who eavesdrops messages -

has the same information as B at time t9 after the milestone t8. Namely, E is
able to decrypt the time-confidential messages, too.

Proof G4. The proof is like theorem G2 in the original Kudo-Mathuria article.
According to conditions E captures steps 5. and 8. of K-M-P1 protocol.
Consequently the next statements are true

KE,t6(R(B, t6, d({e({Xa, Ra, A}, tkt8), A,B, t8, Nb, tkt8}, k−1
A ))) , (1)

KE,t9(R(B, t9, d({”dec”, t8, tk
−1
t8 }, k−

T 1))) . (2)

We can extract the appropriate parts since the message contains the signa-
ture and the message itself, too:

KE,t6(R(B, t6, e({Xa, Ra, A}, tkt8))) , (3)

KE,t9(R(B, t9, tk
−1
t8 )) . (4)

With the aid of the results (3), (4) and axiom A2(a) it is possible to write:

R(B, t6, e({Xa, Ra, A}, tkt8)) , (5)

R(B, t9, tk
−1
t8 ) (6)

and with the (5), (6), (F8.) and axiom A6(a) it is possible:

LE,t6(e({Xa, Ra, A}, tkt8)) , (7)

LE,t9(tk
−1
t8 ) . (8)
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By the help of the (7) and axiom A3(a) it can be formulated in the next way

LE,t9(e({Xa, Ra, A}, tkt8)) (9)

with (8), (9) and axiom TA2(b)

LE,t9(d(e({Xa, Ra, A}, tkt8), tk
−1
t8 )) .

In other words this means we get the following result
(denote x = e({Xa, Ra, A}, tkt8)):

LE,t9(d(x, tk−1
t8 ))

which is as required. �

T is an absolute reliable partner - as rules of protocols. Let us forget this
condition - for a while and for the sake of the examination - and suppose that
T knows the messages of A and B:

∀t ∀i ∈ ENT LT,t(S(i, t, x)) . (F9.)

At this point T is able to decrypt the time-confidential messages. Moreover T

is capable of decrypting the messages (at time t6) before B. It can be stated as
follows:

Theorem 5 - G5. LT,t6(d(x, tk−1
t8 )).

Proof G5. As a starting point for our proof we use the identity of the theorem
G2 in the [Kudo and Mathuria 1999] article. We use the key generating role
of T , too. In the first step we describe the next relations:

KT,t6(R(B, t6, d({e({Xa, Ra, A}, tkt8), A,B, t8, Nb, tkt8}, k−1
A ))) , (1)

LT,t6(tk
−1
t8 ) . (2)

The proof is carried out analogously to the proof of the theorem G4. Let us
convert (1) to the next form

LT,t6(e({Xa, Ra, A}tkt8)) . (3)

With the aid of the axiom TA2(b), we have

LT,t6(d(e({Xa, Ra, A}, tkt8), tk
−1
t8 )) . (4)

Let us denote x = e({Xa, Ra, A}tkt8) and then we obtain:

LT,t6(d(x, tk−1
t8 ))

which is as required. �

1382 Takacs P.: The Additional Examination ...



Theorem 6 - G6 - The case of the protocol K-M-P2. Eavesdropper E

cannot decrypt the encrypted message when we use the protocol K-M-P2 - not
even if E knows every message of the partners.

¬LE,t9(d(x, tk−1
t8 )).

Proof G6. The proof is the same that of theorem G4.:

KE,t6(R(B, t6, d({e({Xa, Ra, A}, tkt8), A,B, t8, Nb, tkt8}, k−1
A ))) , (1)

KE,t9(R(B, t9, d({”dec”, t8, e(tk−1
t8 , kB)}, k−

T 1))) . (2)

Like steps of G4.:

LE,t6(e({Xa, Ra, A}, tkt8)) , (3)

LE,t9(e(tk
−1
t8 , kB)) (4)

we have:

LE,t9(d(e({Xa, Ra, A}, tkt8), e(tk
−1
t8 , kB))) . (5)

This relation shows we reach the decryption key tk−1
t8 only with the secret

key k−1
B of partner B. We can produce the form LE,t9(d(x, tk−1

t8 )) only with
key k−1

B . �
Theorem 7 - G7 - The case of the protocol K-M-P3. The absolute relia-
ble partner T cannot decrypt the encrypted message if we use the protocol K-M-
P3 - not even T knows every message of the partners.

¬LT,t6(d(x, tk−1
t8 )).

Proof G7. The proof is like that of theorems before.

KT,t6(R(B, t6, d({e(e(y, kB), tkt8), A,B, t8, Nb, tkt8}, k−1
A ))) ,

where y = {Xa, Ra, A} , (1)

LT,t6(tk
−1
t8 ) (2)

whereof follow

LT,t6(d(e(e(y, kB), tkt8), tk
−1
t8 )), where y = {Xa, Ra, A} . (3)

On the other hand this relation shows us the breaking-off of the description,
too if we do not know the secret key k−1

B . We cannot hold the statement

LT,t6(d(x, tk−1
t8 )), where x = e({Xa, Ra, A}, tkt8) .

The opposite of the statement is true. �
The role of T is generating the key and proving it in the adequate time in

the protocol K-M-P3. A and B are well assured that neither eavesdropper E

nor absolute reliable partner T knows the contents of the messages. This fact is
advantageous for T because this procedure protects T from charge of eavesdrop.
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6 Conclusions

We presented the Kudo-Mathuria protocol (K-M-P1) in the first part of the
paper. We examined three properties of the protocol with logic tools. After that
we expanded the K-M-P1 protocol (K-M-P2, K-M-P3). We have proved four
new properties of the expanded protocol.

We have developed and enhanced the original Kudo-Mathuria protocol. In
this meaning we have expanded the fields of application of the protocol.
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