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Abstract: As we know the Cauchy distribution plays an important role in Probability Theory
and Statistics. In this paper, we investigate the estimation of the location and the scale
parameter. Both the one-dimensional problem and the multidimensional problem are studied
for large sample. In the one-dimensional case, we give two algorithms for the estimation. The
first one is an iterative method for which we prove the convergence and we show that the rate
of convergence is geometric. The second algorithm provides an exact solution to the problem.
In the multidimensional case, we give an algorithm analogous to the one-dimensional case.
Computer experiments show that the rate of convergence is similar to the one-dimensional
iterative algorithm.
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1 Introduction

Let £,& and &, be real random variables with density functions f(x), f,(x) and

f,(X) respectively. Denote by F(x),F(x) and F,(X) their corresponding

distribution functions. The three expected values given below define respectively the
entropy, inaccuracy and discrimination information [Mathai].

H(&) = Iog—)dF(x) &)
TEle) =] IogmdF (%) @)
D(&&) = j Iog—dF F ©)

where R=(-e0,0) and log means the natural logarithm. The above definitions can be
extended to m-dimensional case. We point out that the discrimination information is
nonnegative and can assume zero in the only case when the two density functions
coincide almost everywhere. It defines some kind of directed distance measure
between two distributions. It can easily be seen that
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D(§1||§2) =T (§1||§2) -H (951) 4

It follows from (4) that the minimum of T (&|£,) at fixed & is T (£]&) = H(&).

Random variables fl,fz used in formulas (2) and (3) are called accordingly

posterior and prior variables. In the parameter estimation the supposed Cauchy
distribution is treated as prior and the empirical distribution computed from the
sample is used as posterior distribution. For the parameter estimation, we | accept the
prior Cauchy distribution which is the closest to the posterior distribution in the sense
of discrimination information. To this end, we minimize the discrimination
information between the empirical distribution of the sample and the prior Cauchy
distribution with respect to the parameters. More precisely: If the density function of

the random variable é"p is 1:5p (X) where the parameter p takes its values in a set P,
and 7, is a random variable with distribution function F, (X) that is an empirical
distribution function given by the realizations of cfp (sample of size n) then we accept

that P value as an estimation of p for which

D(7,

holds. As the entropy of 77, does not depend on p (namely log n) this is equivalent to
the minimization of T:

T(,

Sp) = minT (77,]S,) )

The inaccuracy in this case is

T |6, = jlog dF, (x) = Z log

. () f, (a.) @

Here a denotes the i" element of the sample. Formula (7) corresponds to the
appropriate formula of the maximum likelihood method multiplied by -1/n.
Therefore, the location of the minimum of (7) is assumed at the same place as the
maximum in the maximum likelihood method of the parameter estimation. Our
estimation has the properties of the maximum likelihood estimation [Rao], [Zakhs].
We need large samples in order to apply the Law of large numbers.



1334 Nagy F.: Parameter Estimation of the Cauchy Distribution ...

2 The One-dimensional Case

We remind that a random variable f possesses the Cauchy distribution with location
(-eo<c<o0) and scale (s>0) parameters if its density function is:

fgy(x)zﬁl' : 1 for xe R

2
NED ®

S

We denote this as & ~ C(c,S) . The inaccuracy (7) (briefly T(c,s)) is in this case:

n a2
T(c,s)= %Iog ﬁ-s{1+(ais Cj } 9)
=1

Let us introduce the following notations, where parameters ¢ and s are unknown and
fixed. Values ¢ and s play the role of the estimations of the parameters ¢ and s
obtained in the k™ step of the iteration.

u, =(a—c)/s,i=12,...,n u,=(a—-c)/s,i=12,...,n

L o iy 1
n&'1+u?’ o ng1+ul

elzlzn: Ui 6, R o (10)
ni:11+uf’ “ nS1l+up

eZZEH ui22' ezkzinikz
n4z1+u; Nz 1l+u;

Lemma 1: The inaccuracy between two Cauchy distributions. IF & ~ C(c,, ;) and
&, ~ C(c,,s,) then

T(&) =log™ (62 ): (=] (1

2

Especially, if &, =&, =& ~ C(c,s) then H ()= log(47s).

Proof: First we introduce an integral that is be used in the proof.
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_[ log(a? — 2abx + x?)
R

Loyl dx=7z-log£l+a2+2a\/1—b21 aeR, /<1 (12

The proof of it is in the appendix of the paper. The inaccuracy is:

2
1 1 X—C
T(Cfl”é:z):jﬂ_.s ’ 2|Og 7S, 1+( 5 ZJ
R 1 1+(X—Cl 2
Sy

(13)

1
1+y

Substituting y=(x-c;)/s; and applying .[R dy = we can transform (13) into

2

1
T = Iog(7z52)+;(27zlog s, +2rlogs, )+
1¢ 1 s2 (c
= log| =% +-~2
+7r-£1+ y? g[ z "

(14)
-G )2 +2 G —

2

C
2y+y? |dy
Sl Sl Sl

This integral can be computed using (12) by making the substitutions

2 2
A 5_2+(C1_C2)’ hb=_Ga=C (15)
s s as,
1

By a simple rearrangement we obtain formula (11), which ends the proof.

Lemma 2: The characterization of the location of the minimum. At the place of the
minimum of T(c,s) given by (9) there holds:

e e 1
C=C+s -2, szzsz-—zzsz-(——j (16)
eO

Proof: We can write the inaccuracy between the posterior and the prior distributions

as follows:
1 a-cY
T(c,s)=) —logqzs|1+|— a7
iz N S




1336 Nagy F.: Parameter Estimation of the Cauchy Distribution ...

By the standard way, we compute the partial derivatives with respect to ¢ and s and
we equate them to zero. Rearranging the terms after some steps, we arrive at our pair
of formulas to be proved. This ends the proof.

By Lemma 2, we give the next pair of iterative formulas as the solution for the system
of equations (16):
€ 1
Cy=C +S —, S, =S-.—-1, fork=012,... (18)
Ok Cok
Here -oo<cy<eoand s,>0 are arbitrary real numbers.
Theorem 1: Theorem of the convergence. The sequences of pairs of real numbers
defined in (18) converge to the theoretical fixed values of the parameters ¢ and s in
case of large sample. Moreover, the rate of convergence is geometric.
Proof: The large sample is needed for the possibility of the substitution of ey and ey

with their expected values according to the Law of large numbers. Let us use
notations E(eq)=Vox and E(e)=vix Where E means the expected value. Let there be

&~C(c,s) and & ~C(c,,S,). Let us first introduce the following random

variable fk,pZ%-fk +(1—%J-Ck ~C(C,,S,/p). Then we can write the

inaccuracy as follows

2
T, :T(cchfk'p) = Iogs£+log p+log (s+%} +(c-¢) (19)
k

dT
oo
dp

s -(s+s,)
V. =
“ (s+s. )V +(c—-c ) (20)

N |~

We can easily check that Vv, = and finally we obtain the

p=1
expression for this expected value:

In the same way we define another random variable &, , =&, +(p-1)-c,

~ C(pc,,S,) - Computing again the inaccuracy we get:



Nagy F.: Parameter Estimation of the Cauchy Distribution ... 1337

T
'Q:T@Mm)=MQ;+md@+%f+@—qu] (21)
k
s, dT, . .
Now we can check that V;, =———-———  from which we obtain:
2c, dp|
S, -|C—C
y =S e=c) (22)

(s+s ) +(c—-c)

Making the substitutions in the iterative formulas (18) via the Law of large numbers
we obtain that:

G =C +8, =g ts5 %
kel = Yk kT T Y% k* ,
Vok S+,
2 (23)
> _e2 [ 1 4| (c-c)
Su=S | ——1|=5 S+
Vo S+S§,
From this pair of formulas we can see that if 5,>0 then s,>0. In addition, we can see
2
C—C
that if s<s then sy.1>S,, because S,il - Slf =S -(S— Sk)+ Sk —( k) >0.
S+,

Finally, we can see that if sc>s then s.,>s because SEH—S2 :S-(Sk —S)+

S .
+—X '(C —C, )2 > 0. Consequently we can observe thats, ,, = mln{so, S} and
S+5S,

so S,,;,>0. We are now in the position to prove the convergence. Let

1 1
q=maxy—, .Itis clear that — < ¢ <1. The next inequalities hold:
2 S+5s, 2
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c—C,
S+S,

|C_Ck+l|: C—C =S¢~

S 2
=|s’—ss, +—*—(c—cC
e

Sy 2
=|S\S—S, )+ c—C
-8 ema)

S 2 2 S, 2
= - c—cC
S+5, (s Sk)Jrs+sk( )

Sk
S+5,

< ‘sz—sf‘+ c—c " <

S+5,

< q‘s2 —sk2‘+|c—ck|2 < q‘s2 —s§‘+q2k|c—co|2 <

<qlofs? =52+ g Pe—c,f Jra*fe—c,f <. <

k+l|a2 2 2( K k+1 2k
<g“s —so‘+|c—co| (q +0" +...+q ):
1_ k+1 5
:q"+lsz—s§‘+qk—lq c—c¢o| ——=—0
-q

This ends the proof.

(24)

(25)

Theorem 2: The uniqueness of the location of the minimum. In case of large sample,

the location of the minimum is unique.
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Proof: It can easily be shown that (7) is an unbiased estimation of the inaccuracy. For
large samples (9) gives the inaccuracy between a Cauchy distributed random variable
with parameters (c,s) and the sample distribution, which we suppose to be in the limit
a Cauchy distribution with parameters (c',s’). The place of the minimum of the
inaccuracy between them is unique because of the properties of (4). It is an interesting
fact, that the contour curves of the inaccuracy in this case are embedded circles in the
upper semiplane of the coordinates (c’,s’) with centre (c’,(1+2r)s’) and radius
25’ (r(r+1))”2 where r comes from e'=4zs"(1+r) for the contour level t.

A similar problem was studied in [Gabrielsen] and [Copas].

Theorem 3: Exact solution. In the case of the large sample for any ¢, and s,>0 there
hold:

v v
C=C +S 5 s=sk-(¢—1j (26)

2! 2 2
VOk + Vlk VOk + Vlk

Proof: From formulas (20) and (22) we can simply express ¢ and s as the solution of a
system of equations with two unknowns. This ends the proof.

Making use of Theorem 3 the value of the inaccuracy to be minimized can be written
as:

T:Iogﬁ.[(s+sk)2+(c—ck)2]zlog 78, an
Sk ng +Vlk

The given algorithms are related to the infinitely large samples. Their application to
the finite case is heuristic. However, computer experiments give convergence even in
the case of very small sample sizes. (If the sample size is two and the elements are
different then the minimum of the accuracy is not unique, it takes place at a
semicircle. The iterative algorithm practically finds this semicircle. The point where
the method stops depends on the starting point.)

3 The Multidimensional Case

Let us now deal with the m-dimensional case. The density function of the Cauchy
distribution is given by:

1ﬂ(m+1j 1
f.(x) = 2 ) . for xe R",  (28)

m+1 m+1

77 AJdets fLr(x—c)s?(x—c)|?
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where c is the m-dimensional location parameter vector, S is an mxm positive definite
symmetric real matrix that plays the role of the scale parameter, and the * denotes the
transposed vector or matrix. We use the following notations corresponding to the one-
dimensional ones in (10):

S:T'T* Sk:Tk'Tk*
U:T_l(a_C), u :Tk_l'(a'_ck); izll"'ln

:—Z _1 3

1+u u
Nz 1+u|ku|k (29)
61_1 S 1$
n&1+uy,’ - 1+ U.kU.k

:E 3 UiUi* _ - ulkulk

2 ngl+uly, =1+ U U,

Here T is the matrix from the Cholesky decomposition of the matrix S. Observation
(sample element) u; is a vector, gy is a scalar, e; is a vector and e, is a matrix.

Lemma 3: The characterization of the location of the minimum for multidimensional
case. At the location of the minimum of T(c,S) formulas given below hold:

C=C+T-i, S=T-2.T" (30)
e0 eO

Now we can get a pair of iterative formulas for the solution of this system of
equations in the next form:

Co =Co+T -2 8, =T, -20.T" fork=012,... (31)

0k eOk

In this iteration the starting vector ¢, can be chosen arbitrarily from R™, the starting
matrix Sp can be any real symmetric positive definite matrix of size mxm. Especially
we may start for example from the zero vector and the unit matrix.

The proof of (30) is based on the usual differentiation of the inaccuracy with respect
to the parameters ¢ and S, but it contains some technical details. We omit it.
Unfortunately, | have not succeeded in getting a formula analogous to (11).
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4 A computer test

The algorithms described in (18), (26) are easily programmable for the computers.
We demonstrate a one-dimensional case. A sample of size 1000 was generated from
the Cauchy distribution using random number generator in the software environment
MATLAB 6.1. The location and scale parameters were 5 and 3 respectively. We
performed 20 iterative steps starting from the initial point 100, 200. The results of the
iterations are in Table 1. The formula (26) was rewritten in an iterative form analogue
to the formula (18).

Formula (18) Formula (26)
K Cy Sk Ty Ck Sk Ty
0 | 100.000000 | 200.000000 | 6.668564 | 100.000000 | 200.000000 | 6.668564
1 6.289809 97.805534 | 5.787873 4.783113 3.215649 | 3.684150
2 4.831633 17.841248 | 4.353839 4.975382 3.143052 | 3.683094
3 4.791041 7.561761 | 3.869480 4.976653 3.140030 | 3.683094
4 4.869049 4.890789 | 3.731749 4.976705 3.140012 | 3.683094
5 4.916448 3.923892 | 3.695515 4.976706 3.140011 | 3.683094
6 4.942617 3.511557 | 3.686236 4.976706 3.140011 | 3.683094
7 4.957335 3.321027 | 3.683886 4.976706 3.140011 | 3.683094
8 4.965734 3.229410 | 3.683293 4.976706 3.140011 | 3.683094
9 4.970536 3.184466 | 3.683144 4.976706 3.140011 | 3.683094
10 4.973266 3.162195 | 3.683107 4.976706 3.140011 | 3.683094
11 4.974804 3.151103 | 3.683097 4.976706 3.140011 | 3.683094
12 4.975663 3.145563 | 3.683095 4.976706 3.140011 | 3.683094
13 4.976138 3.142791 | 3.683094 4.976706 3.140011 | 3.683094
14 4.976398 3.141404 | 3.683094 4.976706 3.140011 | 3.683094
15 4.976540 3.140709 | 3.683094 4.976706 3.140011 | 3.683094
16 4.976617 3.140361 | 3.683094 4.976706 3.140011 | 3.683094
17 4.976658 3.140187 | 3.683094 4.976706 3.140011 | 3.683094
18 4.976680 3.140099 | 3.683094 4.976706 3.140011 | 3.683094
19 4.976692 3.140055 | 3.683094 4.976706 3.140011 | 3.683094
20 4.976699 3.140033 | 3.683094 4.976706 3.140011 | 3.683094
Table 1: One-dimensional case computer test
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Appendix

To show formula (12), first we calculate another integral we need in the proof.

Iog(a2 + pzxz)

Ia(p):j - dx =27z logla+ p| for a,peR (32)
. 1+x
In the special case, when p=0 formula (32) becomes
1,(0) = .[Ioga dx =2 logla] for ae R (33)

We calculate (32) as a parametric integral.

dl (p) 2px® 20 a*+px’-a’ B
-[1+x)(a +px)dx pJF;(l ox=

- + xz)(a2 + pzxz)

e e
o 1+ X2 ) [+ x? fa? + p?x?)
(34)
2r 2@’ A B
=—-— + dx
P P Jil+x2 a’ + pzxzj
1 p?
Where A:rpz, B :—rpz
Calculating the elementary integrals in (34) we get:
di,(p) _ 2z
= 35
dp a+p (39)
This yields:
I.(p) =2zlogla+ p|+C (36)

The value of the constant C can be obtained by substitution p=0 in (36). Comparing it
with (33) we see that C=0. With this step the proof of (32) is complete.



Nagy F.: Parameter Estimation of the Cauchy Distribution ... 1343

Now we start with the proof of (12). We use the method of parametric integral again.
Let us denote the integral in (12) by I(b).

dl(b) f _2ax .
)L+ x*fa? —2abx +x?)

Ax+B Cx+D
_[ 5 > |dx

1+ x? a —2abx + X (37)
2a(’-1) _4a%

ab) " a®)’
and q(b) = (a2 —1)2 +4a’h?

where A=— C=-A D=-a’B

Formula (37) can be written in the form

dl(b) J-(A 2X 2x —2ab jdx+
21+x2 2 a’—2abx+x’
(38)
Cab+D B
+ j 5 >+ 5 |dx
2la”—2abx+x" 1+x
Having C=-A we see that the first integral is zero and the second is elementary:
dl (b) d|l A 2 2 2
—~ = |—|—=llog({l+ x“ )—logla® — 2abx + x“)) |dx +
)= [l 1) ool )
(39)
T
+Bz+(D - Aab)———
av1l-b?
Substituting constants B,D and A by their values we get
di(b) 4a’h (Za( 2_1) 4a2b] P
= T+ —-a (40)
do  alb) alb) ab) Jav1-b?
After a little algebra this formula simplifies to
dl(b 8a’h _ 2abla®+1
() _z8a’h_ 2abla’ +1) "

db 29b) " gbNi-b
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Integrating (41) we get

I(b):%logq(b)—Zna(a2 +1j4db+ K, (42)

q(bW1-b?

Where K is a constant to be determined. We substitute the square root in (42) by vy,
which yields:

/4 dy
I (b) ==logq(b)+2mala® +1)| f 1+ K 43
2 ( )'[ [(a2 —1)2 +4a’ —4a2y2J )
Making the substitution Z = 22 Y we obtain
1(b) = Zlogq(b) K :Elogq(b)+zlogl+—z+K (44)
2 2 2 1-
Returning back to variable y and then to b we get
1) = Zlog [(1 a?f +4a%?’ J|1+ a’+2avl- b2J @5)
2 1+a® — 2a\1-b?
Eliminating the square root in the denominator we get
2y 212 2 2
I(b)=zlog [(1—a ) +4a b2 ][Ha +2avl1l-b ]Z+K (46)
2 (L+a*f —4a%(1-b?)
(46) simplifies to
|(b)=ﬂ'|09h+ a’ +2a\/1—b2J+ K (47)

Let us choose now in (12) b=0. It leads to the special case of (32) for p=1, which
gives 27rlog|a+1| . Quantity (47) yields 7zlog(1+ a)2 + K for b=0. Comparing

them we can see that K=0.
This finishes the proof of (12).



