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Abstract: In this paper we give a possible model for handling uncertain information. The 
concept of fuzzy knowledge-base will be defined as a quadruple of any background knowledge, 
defined by the proximity of predicates and terms; a deduction mechanism: a fuzzy Datalog 
program; a connecting algorithm, which connects the background knowledge with the program 
and a decoding set of the program, which help us to determine the uncertainty level of the 
results. Evaluation strategies will also be presented. 
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1 Introduction 

A large part of human knowledge can not be modelled by pure inference systems, 
because this knowledge is often ambiguous, incomplete and vague. The study of 
inference systems is faced in literature with several and often very different 
approaches. When knowledge is represented as a set of facts and rules, this 
uncertainty can be handled by means of fuzzy logic. The concept of deductive 
databases and fuzzy logic is discussed in the classical works, for example in [CGT], 
[DP], [L], [N], [U]. 

A few years ago in [AK1] and [A1] a possible combination of Datalog-like 
languages and fuzzy logic was given. In these works the concept of fuzzy Datalog 
was introduced by completing the Datalog-rules and facts by an uncertainty level and 
an implication operator. In [AK2] we extended the fuzzy Datalog to fuzzy relational 
databases.  

Parallel with these works, there were researches on possible combinations of 
Prolog language and fuzzy logic. Several solutions were suggested for this problem. 
These solutions propose different methods for handling uncertainty. Most of them use 
the concept of similarity, but in various ways. They consider similarity as reflexive, 
symmetric and transitive relation. Some of them take a classification according to 
similarities and use these equivalence classes to make unification and fuzzy 
resolution, for example [AFG], [S]. In [V1], [V2] the author deals with linguistic 
variables and their linguistic values, and gives a definition of the fuzzy unification 
algorithm by means of these values. In [SS] the authors discuss a special kind of 
fuzzy unification. They deal with the problem of missing parameters and mismatching 
predicates and parameters. They define the edit distance of terms, which is compound 
according to the number of mismatches, and give the unification algorithm according 
to these distances. 

Journal of Universal Computer Science, vol. 12, no. 9 (2006), 1087-1103
submitted: 31/12/05, accepted: 12/5/06, appeared: 28/9/06 © J.UCS



In this paper, continuing our former concept, we give another possible model for 
handling uncertain information, based on the extension of fuzzy Datalog. We will be 
also supported by the concept of similarity, but it is not expected to be transitive. 

Although in [AK1], [AK2], [AK3] the authors deal with the concept of fuzzy 
Datalog in detail, in the following we give a short summary of it.   

2 The fuzzy Datalog 

A Datalog program consists of facts and rules. In fuzzy Datalog we can complete the 
facts by an uncertainty level, the rules by an uncertainty level and an implication 
operator, which means, that evaluating the fuzzy implication connected to the rule, its 
truth-value according to the implication operator is at least the uncertainty level of the 
rule. According to this operator we can compute the uncertainty level of the rule-head. 

For example, if in the program  
beautiful(’Mary’); 0.7. 
likes(’John’, X) ← beautiful(X); 0.8; I. 

the implication operator is the Gödelian, (that is I(α,β) = 1, if α ≤ β, I(α,β) = β 
otherwise), then the uncertainty level of the rule-head is the minimum of the 
uncertainty levels of the rule-body and the rule. In our case this means, that 

likes(’John’,’Mary’); 0.7, 
that is, John likes Mary at least 0.7 level.  

Now we are going to summarise the concept of fuzzy Datalog (fDATALOG) 
based on [AK1], [AK2].  

Definition 1. 
A fDATALOG rule is a triplet r;β;I, where r is a formula of the form  

A ← A1,...,An   (n≥0). 
A is an atom (the head of the rule), A1,...,An are literals (the body of the rule); I is an 
implication operator and β ∈ (0,1] (the level of the rule). 

 
For getting finite result, all the rules in the program must be safe. A fDATALOG 

rule is safe if 
– all variables occurring in the head also occur in the body; 
– all variables occurring in a negative literal also occur in a positive literal. 

A fDATALOG program is a finite set of safe fDATALOG rules. There is a 
special type of rule, called fact. A fact has the form A ← ;β;I. Further on we refer to 
facts as (A,β), because according to implication I, the level of A easily can be 
computed.  

The semantics of fDATALOG is defined as the fixpoints of consequence 
transformations. Depending on these transformations we can define two semantics for 
fDATALOG. Deterministic semantics is the least fixpoint of deterministic 
transformation, nondeterministic semantics is the least fixpoint of nondeterministic 
transformation. According to the deterministic semantics, the rules of a program are 
evaluated parallel, while in the nondeterministic case the rules are considered 
independently one after another. Further on we deal only with nondeterministic 
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transformation, because we can’t use the deterministic semantics when the program 
has any negation. This transformation is the following: 

Definition 2. 
Let BP the Herbrand base of the program P, and let F(BP) denote the set of all fuzzy 
sets over BP. The consequence transformation NTP: F(BP) → F(BP) is defined as   

NTP(X) = {(A, αA )} U X, 
where  

(A ← A1,…,An ; I ; β) ∈ ground(P), 
(|Ai|,αAi 

)∈X, 1 ≤ i ≤n, αA=max(0,min{γ | I(αbody,γ) ≥ β}). 
ground(P) denotes the set of all ground instances of P’s rules, |Ai| denotes the kernel 
of the literal Ai, (that is it is the ground atom Ai, if Ai is a positive literal, and ¬Ai, if 
Ai is negative).  
 

In [AK2] it was proved, that starting from the set of facts, both deterministic and 
nondeterministic transformations have their own fixpoint, which is the least fixpoint 
in the case of negation-free program. The fixpoint of nondeterministic transformation 
is denoted by lfp(NTP). 

It was also proved, that lfp(NTP) is a model of P, so lfp(NTP) can be defined as the 
nondeterministic semantics of the fDATALOG program P. For function- and negation-
free fDATALOG, the two semantics are the same, but as it was mentioned above, the 
deterministic semantics is not suitable when the program has any negation. In this 
case the nondeterministic semantics is applicable under certain conditions. This 
condition is the stratification. Stratification gives an evaluating sequence in which the 
negative literals are evaluated first. (Detailed in [AK2].) 

Example 1. 
Given the next fDATALOG program: 

1. (r(a), 0.8). 
2. p(x) ← r(x),¬q(x); 0.6; I. 
3. q(x) ← r(x); 0.5; I. 
4. p(x) ← q(x); 0.8; I. 

The stratification is: P1 = {r,q} , P2 = {p}, so the evaluation order is: 1., 3., 2., 4.  
(Precisely: firstly 1. and 3. in arbitrary order, then 2. and 4. in arbitrary order.) 
Then in the case of Gödelian implication operator the nondeterministic semantics of 
the program is lfp(NTP ) = {(r(a),0.8); (p(a),0.5); (q(a),0.5)}. 
 

Further on we deal only with nondeterministic semantics. 

3 Background knowledge 

The facts and rules of a fDATALOG program can be regarded as any kind of 
knowledge, but sometimes we need other information, some background knowledge, 
in order to get answer for a query. In this section we give a possible model of 
background knowledge, which is based on the concept of proximity.  
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Definition 3. 
A proximity on a domain D is a fuzzy subset SD: D×D → [0,1] such that the following 
properties hold: 
 SD (x,x) = 1 for any x∈D  (reflexivity) 
 SD (x,y) = SD (y,x) for any x,y ∈D (symmetry). 
 

If a proximity is transitive, that is  
 SD (x,z) ≥ min (SD (x ,y), SD (y,z) ) for any x,y,z ∈D, 
then it is called similarity.    

Example 2. 
Let us consider the next proximity matrix: 
  

 a b c d e 
a 1 0.7 0.8 0.7 0.8 
b 0.7 1 0.7 0.9 0.7 
c 0.8 0.7 1 0.7 0.8 
d 0.7 0.9 0.7 1 0.7 
e 0.8 0.7 0.8 0.7 1 

 
It can be easily checked that the proximity defined by this matrix is transitive, so it is 
similarity.  
 

In our model the background knowledge is a set of proximity sets: 

Definition 4. 
Let d ∈ D be an element of domain D. The proximity set of d is a fuzzy subset over 
D: 

Sd = {(d1 , λ1), (d2 , λ2), …, (dn , λn)}, 
where di ∈ D and SD (d, di) = λi for i = 1,…n. 
 

Based on proximities we can construct the background knowledge, which gives 
information about the proximity of terms and predicate symbols. 

Definition 5. 
Let C be a set of ground terms, R be a set of predicate symbols. Let SC and SR be 
proximities over C and R respectively. The background knowledge is the union of 
proximity sets of C and R: 

Bk = {SCt | t ∈ C} U {SRp | p ∈ R} 
 
4 Fuzzy knowledge-base 

We made two steps on the way leading to the concept of fuzzy knowledge-base: we 
defined the concept of fuzzy Datalog program and the concept of background 
knowledge. The next step is the connection of these concepts which is made by a 
connecting algorithm. This algorithm gives a modified fDATALOG program, which 
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is the extension of the original one according to proximity. Evaluating this program, 
the resulting uncertainty levels are not yet the final ones; those can be computed from 
these levels and from the proximity values of actual predicates and theirs arguments. 
To do this, we need the concept of decoding functions. It is expectable, that in the 
case of identity the decoding functions should not change the original level, but in 
other cases the final level should be less or equal than the original level or than the 
proximity values. Furthermore we require the decoding function to be monotone 
increasing.   

Definition 6. 
A decoding function is an (n+2)-ary function :  

ϕ(α, λ, λ1 ,…, λn) : (0,1] × (0,1] × (0,1] × … ×  (0,1] → [0,1], 
so that  

ϕ(α, λ, λ1 ,…, λn)  ≤ min (α, λ, λ1 ,…, λn),  
ϕ (α, 1, 1 ,…, 1) = α, and 

ϕ(α, λ, λ1 ,…, λn) is monotone increasing in all arguments. 

Example 3. 
ϕ1(α, λ, λ1 ,…, λn) = min (α, λ, λ1 ,…, λn);  
ϕ2(α, λ, λ1 ,…, λn) = min (α, λ, (λ1 ⋅ ⋅ ⋅ λn)); 

ϕ3(α, λ, λ1 ,…, λn) = α ⋅ λ ⋅ λ1 ⋅ ⋅ ⋅ λn 
are decoding functions. 

 
It is worth mentioning that any triangular norm is suitable for decoding function, 

for example the above min and product operators are t-norms.  
We have to assign decoding functions to all – but at least to the head – predicates 

of the program. The set of decoding functions will be the decoding set of the program. 
To define this set, we need the concept of the functor, which is characterized by the 
predicate symbol and the arity of an atom, that is for example in the case of  
p(t1, t2 , …, tn), the functor is p/n.  

Definition 7. 
Let P be a fuzzy Datalog program, and FP be the set of the program’s functors. The 
decoding set of P is: 

ΦP = { ϕq (α, λ, λ1 ,…, λn) | ∀q/n ∈ FP } 
 

Clearing the required concepts, we can define the fuzzy knowledge-base: 
Definition 8. 
A fuzzy knowledge-base (fKB) is a quadruple (Bk, P, ΦP, mA), where Bk is a 
background knowledge, P is a fuzzy Datalog program, ΦP is a decoding set of P and 
mA is any modifying (or connecting) algorithm. 

Definition 9. 
Let (Bk, P, ΦP, mA) be a fuzzy knowledge-base, and mP be the modified program 
according to mA. The consequence of the knowledge-base, denoted by  
C(Bk, P, ΦP, mA), is the least fixpoint of mP: C(Bk, P, ΦP, mA) = lfp(mP). 
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5 Modifying algorithms 

There may be several modifying algorithms, but in the following we define only two 
kinds of them. According to the first one we modify the program and use the original 
consequence transformation for evaluation; in the second case a modified 
consequence transformation is applied for the original program. Here we summarize 
these methods. 

5.1 Simple modification (algorithm mA1) 

Let P be a fuzzy Datalog program, and let Bk be any background knowledge. By the 
proximities of the background knowledge we can define the modified fDATALOG 
program, mP: Let us replace each predicate symbol p of the program P by SRp, each 
ground term t ∈ Hp by SCt and each variable x by X={x}. (Note: it may occur, that 
SRp or SCt is not in Bk, in this case SRp = {(p,1)} or SCt = {(t,1)}.)  
The algorithm of modification is the following: 

Algorithm 1. 
Procedure modification(P, mP) 
 mP := ∅ 
 while not(empty(P)) do 
  (r;I;β) := first rule of P 
  (R;I;β) := (replace(r);β;I)  
  mP := mP U (R;β;I) 
  P := P – {(r;β;I)} 
 endwhile 
endprocedure 
 
function replace(r) 
 Predr := set of r’s predicate symbols 
 Termr := set of r’s ground terms 
 Varr := set of r’s variables 
  
 while not(empty(Predr)) do 
  q := first predicate-symbol of Predr 
  Q := SRq 
  Predr := Predr – {q} 
 endwhile 
 while not(empty(Termr)) do 
  t := first ground term of Termr 
  T := SCt 
  Termr := Termr – {t} 
 endwhile 
 while not(empty(Varr)) do 
  x := first variable of Varr 
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 a b 
a 1 0.8 
b 0.8 1 

  X := {x} 
  Varr := Varr – {x} 
 endwhile 
 return replace(r) 
endfunction 
 

The modified fDATALOG program, mP is evaluable as an ordinary fDATALOG 
program. The resulting fixpoint contains the proximity sets, from which we have to 
decide the final ground terms. These terms form the fixpoint of modified program:  

Definition 10. 
The least fixpoint of the modified program, mP is: 

lfp(mP) = U {( q(t1, t2 , …, tn); ϕq (αq, λq, λt1
 ,…, λtn

)) |  
∀(Q((T1, T2 , …, Tn); α) ∈ lfp(NTmP),  (q , λq) ∈ Q, (ti , λti

) ∈ Ti , 1 ≤ i ≤ n}. 
 

Because in the case of (q(t1, t2,… tn); α) ∈ lfp(NTP) 
(Q(T1,T2,…,Tn); α) = (SRq (SCt1

,SCt2
,…,SCtn

); α) ∈ lfp(NTmP), 
and ϕq(α,1,1,…,1) = α, therefore the next proposition is true : 

Proposition 1.  
lfp(NTP) ⊆ C(P, Bk, ΦP, mA1). 

Example 4. 
Let us see the fDATALOG program of the first example (with the Gödelian 
implication operator) and let us extend it by a background knowledge and a decoding 
set! 
 
(r(a), 0.8). 
p(x) ← r(x),¬q(x); 0.6; I. 
q(x) ← r(x); 0.5;I. 
p(x) ← q(x); 0.8;I. 
 

 
 

 

ϕp(α, x, y) = ϕq(α, x, y) = min (α, x, y);  
ϕr(α, x, y) = α ⋅ x ⋅ y 

 
 
According to example 1, lfp(NTmP ) = {(R(A),0.8); (P(A),0.5); (Q(A),0.5)} =  
{({(r,1),(s,0.6),(t,0.7)}({(a,1),(b,0.8)}), 0.8); ({(p,1),(q,0.4)}({ (a,1),(b,0.8)}),0.5);  
({(q,1),(p,0.4)}({ (a,1),(b,0.8)}), 0.5)}. 

From this lfp(mP) = {(r(a),0.8), (r(b),0.64), (s(a),0.48), (s(b),0.384), (t(a),0.56), 
(t(b),0.448), (p(a),0.5), (p(b),0.5), (q(a),0.5), (q(b),0.5)}. 

 p q r s t 
p 1 0.4    
q 0.4 1    
r   1 0.6 0.7 
s   0.6 1  
t   0.7  1 
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5.2 Transformation modification (algorithm mA2) 

Previously we modified the program and used the original consequence 
transformation for evaluation; in the next case a modified consequence transformation 
is applied for the original program. The modified program is denoted by mP also.  

The original consequence transformation is defined over the set of all fuzzy sets 
of P’s Herbrand base, that is over F(BP). To define the modified transformation’s 
domain, let us extend P’s Herbrand universe with all possible ground terms occurring 
in background knowledge – so we get the modified Herbrand universe, mHP. Let the 
modified Herbrand base, mBP be the set of all possible ground atoms whose predicate 
symbols occur in P U Bk and whose arguments are elements of mHP. The modified 
consequence transformation is defined over this modified Herbrand base, so we can 
deduce to the atoms being in the rule-heads and the atoms being similar to them. 
More precisely:  

Definition 11. 
The modified consequence transformation mNTP :  F(mBP) → F(mBP) is defined as   

 
mNTP(X)={(q(s1,...,sn), φp(α, λq, λs1

 ,…, λsn
)| (q, λq) ∈ SRp;  (si, λsi

) ∈ SCti
 , 1 ≤ i ≤ n} 

U X, 
where  

(p(t1,...,tn) ← A1,...,Ak ; β; I) ∈ ground(P),  
(|Ai|, αAi

) ∈ X , 1 ≤ i ≤ k, α = max(0,min{γ | I(αbody, γ) ≥ β}). 
|Ai| denotes the kernel of the literal Ai.  
 

It can be proven, that starting from the facts of the program and creating the 
powers of the transformation mNTP, finally we reach the fixpoint. As the modification 
has no influence on the order of rules, therefore neither it has influence on the 
stratification. So the modified consequence transformation has a least fixpoint in the 
case of stratified program too.   
 
The fixpoint of the modified program, that is the consequence of knowledge-base is 
defined as the fixpoint of the transformation mNTP. 

Definition 12. 
The least fixpoint of the modified program, mP is: 

lfp(mP) = lfp(mNTP). 
 

From the above construction it is obvious: 

Proposition 2. 
lfp(NTP) ⊆ C(P, Bk, ΦP, mA2). 

Example 5. 
Let us see again the first three component of the knowledge-base from example 4, but 
let us change the modifying algorithm to mA2! 
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The starting set of facts is X = {(r(a), 0.8)}, and the evaluation order is the same, 
as in the first example, that is: 1., 3., 2., 4.  

According to the proximities the starting set turns into the following set: 
X = {(r(a), 0.8), (r(b),0.64), (s(a),0.48), (s(b),0.384), (t(a),0.56), (t(b),0.448)}. 

The third rule expands this set with the set {(q(a), 0.5), (q(b), 0.5)}, then 
according to proximity this set is expanded with the set {(p(a),0.4), (p(b),0.4)}. 

According to the second rule, we can deduce for the atoms {(p(a), 0.5), (p(b), 
0.5)}. As the next steps don’t give new atoms, therefore the least fixpoint of the 
transformation and so the consequence of knowledge-base is: 
lfp(mP) = {(r(a),0.8), (r(b),0.64), (s(a),0.48), (s(b),0.384), (t(a),0.56), (t(b),0.448), 
(q(a),0.5), (q(b),0.5), (p(a), 0.5), (p(b), 0.5)} 
 

In our case the two algorithms led to the same consequence, but in general the 
consequence of the second knowledge-base is wider than the consequence of the first 
one. Comparing the two constructions it is obvious: 

Proposition 3. 
C(P, Bk, ΦP, mA1) ⊆ C(P, Bk, ΦP, mA2). 

 
It is also easily provable, that in both cases lfp(mP) is a model of P, but  

lfp(NTP) ⊆ lfp(mP), so it is not a minimal one.   

Example 6. 
Let us see the next knowledge-base:  
 
lo(x,y) ← gc(y), mu(x); 0.7; I. 
(fv(V), 0.9). 
(mf(M), 0.8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then 
C(P, Bk, ΦP, mA1) = {(fv(V),0.9); (fv(B),0.81); (gc(V),0.675); (gc(B),0.6075); 
(mf(M),0.8); (mu(M),0.6)} 

 B V M 

B 1 0.9  

V 0.9 1  

M   1 

φlo := φ = φ(α,x,y,z) := min(α,x,y,z) 

φfv := θ = θ(α,x,y) := α⋅x⋅y 

φmf := ω = ω(α,x,y) := min(α, x⋅y) 

⎩
⎨
⎧

β
β≤α

=βα
otherwise 

, if 1
  ) ,I( 

  

 lo li gc fv mu mf 

lo 1 0.8     

li 0.8 1     

gc   1 0.75   

fv   0.75 1   

mu     1 0.6 

mf     0.6 1 

(according to the modifying algorithm, it is 
enough to consider only the decoding 
functions of head-predicates) 
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C(P, Bk, ΦP, mA2) = {(fv(V),0.9); (gc(V),0.675); (fv(B),0.81);  (gc(B),0.6075); 
(mf(M),0.8); (mu(M),0.6); (lo(M,V),0.6); (lo(M,B),0.6); (li(M,V),0.6); li(M,B),0.6)}. 
 

Note: The above knowledge-base can have the next meaning: Let us suppose that 
the musicians (mu) generally (on level 0.7) love (lo) the good composers (gc).  Mary 
(M) fairly (on 0.8 level) is a music founder (mf), and Vivaldi (V) is generally (on 0.9 
level) is a favourite composer (fv). It is known that Vivaldi and Bach (B) are similar 
composers. How much does Mary like (li) Bach?  
Our experience is: according to the algorithm mA1 we can’t reply to this question, but 
there is an answer in the case of algorithm mA2. 

6 Evaluation strategies 

The consequence of a fuzzy knowledge-base is defined as fixpoint semantics. This 
means that starting from the facts, applying the rules and proximities we can deduce 
all reasonable atoms. This kind of evaluation is called “bottom up” deduction. 
However many times there is no need for full evaluation, because we want to answer 
a concrete question, we want to know the truth value of a statement or we want to 
determine its uncertainty level. This means, that in the knowledge of the goal, it is 
enough to make the evaluation “expediently”, that is it is enough to take into 
consideration only those rules which are needed to reach the goal. This kind of 
evaluating strategy, which starts from the goal and deduces in the direction of facts is 
called “top down evaluation”. To apply this strategy we have to complete the 
knowledge-base with a goal (query), that is with a pair (q(t1, t2,…, tn), α), where q(t1, 
t2,…, tn) is an atom, and α is the uncertainty level of this atom. Both the arguments 
and the uncertainty level can be given or wanted values. In the next section we deal 
with top-down evaluation of knowledge-base.         

6.1 Evaluating of knowledge-base based on algorithm mA1 

The top down evaluation of fuzzy Datalog is treated in [A1] and [AK3], its extension 
for fuzzy knowledge-base is discussed in [A2] and [A3]. Now we are going to give a 
short summary about this.   

Generally the top down evaluation works through sub-queries. This means, that 
all possible rules are selected whose head can be unify with the given goal, and the 
atoms of the body are considered as new sub-goals. This procedure continues until 
obtaining the facts. In the case of fuzzy Datalog, the evaluation doesn’t terminate 
obtaining the facts, because we need to determine the uncertainty level of the goal. 

The evaluation is executed by the aid of an evaluation tree. This is a special 
hyper-graph, based on the AND/OR tree concept. The root of the tree is the goal-
atom, every odd edge of this tree is an n-order hyper-edge with the set-node of n 
elements, and every even edge is an ordinary edge with one node. On every even level 
of the graph there are sub-goals, that is suitably unified rule-heads, and on every odd 
level there are rule-bodies. The leaves of the tree are the symbols YES or NO: if the 
sub-goal is unified with a fact, than there is YES, else there is NO.  
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The ordinary edges of this graph are labelled: this label contains the applied 
unification, the uncertainty level and the implication operator of the suitable rule, 
represented by this edge. The answer can be obtained from the labels on the ordinary 
edges of hyper-path ending in symbol YES: starting from the leaves, going backward 
to the root, the uncertainty levels can be calculated from these labels. This procedure 
can be extended for stratified fDATALOG too. 

In the knowledge-base connected according to algorithm mA1, the modified 
program, mP has the same structure as the original one, so in the case of a given goal, 
mP can also be evaluated in top-down manner. To do this, using the proximity sets, 
we have to modify the original goal (q(x1, x2,…, xn); α), to the modified goal  
(Q(X1, X2,…, Xn); α). For this query we get an answer according to the above 
procedure. Applying the suitable decoding functions we can decide an answer-set, 
which contains the required answer. The decoding algorithm can be found below: 

Algorithm 2. 
Procedure decoding (Q, SR, SC, ΦP, Answers) 
 S := set of answers for the query (Q; α) 
 Answers := ∅ 
 while not(empty(S)) do 
  (Q(T1, T2 , …, Tn); α) := first element of S 
  Answers := Answers ∪ decoded((Q(T1, T2 , …, Tn); α)) 
   /* all of the decoded answer for the goal 
    (q(t1, t2,… tn); α)  is produced */ 
  S := S – {(Q(T1, T2 , …, Tn); α)} 
 endwhile 
endprocedure 
function decoded((Q(T1, T2 , …, Tn); α)) 
 Decoded_set := ∅ 
 while not(empty(Q) do  
  (q , λq) := first element of Q 
  q_set := ∅ 
  for each (ti , λti

) ∈ Ti do 
   q_set := q_set ∪ {(q(t1, t2 , …, tn); ϕq (α, λq, λt1

 ,…, λtn
)) 

  endfor 
  Decoded_set := Decoded_set ∪ q_set 
   /* all of the decoded answer for the goal 
    (Q(T1,T2,…,Tn);α) is produced*/ 
  Q := Q – {(q , λq)} 
 endwhile 
 return Decoded_set 
endfunction 
 

Based on the algorithm above, it can be easily seen: 
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Proposition 4.  
Let Answers be the set of evaluated goals by Algorithm 2. Then 

Answers ⊆ C(P, Bk, ΦP, mA1). 

6.2 Evaluating of knowledge-base based on algorithm mA2 

This kind of knowledge-bases is based on more complicated transformation, and its 
consequence is wider than the consequence of the first kind of knowledge-base. 
Therefore in this case the top-down evaluation is more desirable. Recently the pure 
top-down evaluation is not solved yet, because to do this, we have to solve the 
problem of fuzzy unification and the inversion of decoding functions.  

Similarly to the evaluation of ordinary fuzzy Datalog, our evaluation will have 
two directions, a top-down and a bottom up turn, moreover we rather rely on the 
bottom up evaluation, but the selection of required starting facts takes place in a top-
down way. Thus the aim of the further procedure is to decide the required starting 
facts, from which we can reply for the query. As only these facts are searched, 
therefore in the top-down part of the evaluation there are no need for the uncertainty 
levels, so we search only among the ordinary facts and rules. To do this, we need the 
concept of substitution and unification which are given for example in [A1], [CGT], 
[P], [U], etc. But now sometimes we also need other kind of substitutions: to substitute 
some predicate p or term t for their proximity sets SRp and SCt, and to substitute some 
proximity sets for their members. 

In the next, for the sake of simpler terminology, the concepts goal, rules and facts 
are ment without uncertainty levels. An AND/OR tree arise during the evaluation, this 
is the searching tree. Its root is the goal; its leaves are one of YES or NO. The parent-
nodes of YES are the required starting facts. This tree is build up by alternation of 
proximity-based and rule-based unification.  

The rule-based unification unifies the sub-goals with the head of suitable rules, 
and continues the evaluating by the bodies of these rules. This unification is special in 
the sense that during this unification a constant can be substituted with its proximity 
set, and the proximity sets of terms behave as ordinary constants. 

The proximity-based unification unifies the predicate symbols of sub-goals by the 
members of its proximity set, excepting the first and last unification. The first 
proximity-based unification unifies the ground terms of the goal with their proximity 
sets, and the last one unifies the proximity sets among the parameters of resulting 
facts with their members.  

According to the above conception, the searching graph is built up in the 
following way: If the goal is on depth 0, then every successor of any node on depth 
3k+2 (k=0,1,…) are in AND connection, the others are in OR connection. In detail:  

The successors of goal g(t1,t2,…tn) be all possible g’(t’1,t’2,…t’n), where g’∈ Sg; 
t’i = ti if ti is some variable and t’i = S ti

 if ti is a ground term.  
If the atom p(t1,t2,…tn) is in depth 3k (k=1,2,…), then the successor nodes be all 

possible p’(t1,t2,…tn), where p’∈ Sp.  
If the atom L is in depth 3k+1 (k=1,2,…), then the successor nodes be the bodies 

of suitable unified rules, or the unified facts, if L is unifiable with any fact of the 
program, or NO, if there is not any unifiable rule or fact. That is, if the head of rule  
M ← M1,...,Mn (n>0) is unifiable with L, then the successor of  L be M1θ, ... ,Mnθ, 
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where θ is the most general unifier of L and M. If L = p(t1,t2,…tn) and in the program 
there is any fact with predicate symbol p, then the successor nodes be all possible 
p(t’1,t’2,…t’n), where t’i ∈ Sti

 if ti = Sti
 or t’i = tiθ, if ti is a variable, and θ is a suitable 

unification. 
According to the previous paragraph, there are three kinds of nodes in depth 3k+2 

(k=1,2,…): a unified body of a rule; a unified fact with ordinary ground term 
arguments; or the symbol NO. In the first case the successors are the members of the 
body. They are in AND connection, which is not important in our context, but maybe 
important for a possible future development. In the second case the successors are the 
symbol YES or NO, depending on whether the unified fact is among the ground 
atoms of the program. The NO-node has not successor.  

From the construction of searching graph, it is obvious: 

Proposition 5. 
Let X0 be the set of ground facts being in parent-nodes of symbols YES. Starting from 
X0, the fixpoint of mNTP contains the answer for the query. 
 

From the viewpoint of the query, this fixpoint may contain more superfluous 
ground atom, but generally it is smaller than the consequence of knowledge-base. 
More reduction of the number of superfluous resulting facts is the work of a possible 
further development.   

Example 7. 
Let us complete the knowledge-base of example 6. by the goal li(M,x), where x is a 
variable. The searching graph of the query is: 
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Starting from the set X0 = {(fv(V), 0.9), (mf(M), 0.8)}, now we obtain the same 
fixpoint as in example 6., but generally this fixpoint is tighter than the full 
consequence of knoledgebase.  

According to the above construction, the procedure of searching the starting facts 
is summarized in the next algorithm:  

Algorithm 3. 
procedure evaluation(g(t), Resulting_Facts)   /* g(t) is the goal */ 
 Heads := {the heads of the program’s rules} 
 Facts := {the facts of the program} 
 Resulting_Facts := ∅   /* the set of resulting starting facts */ 
 for all t ∈ t do 
  if is_variable(t) then s := t 

       else s := St /* St is the proximity set of t */ 
  end_if 
 end_for 
 
 Nodes := {g(s)}   
    /*Nodes is the set of evaluable nodes,  
    s is the vector of elements s in the original order 
*/ 
 New_nodes := ∅   /* the successor nodes of Nodes */ 
 while not_empty(Nodes) do 
  p(t) := element(Nodes) 
  Spnodes := ∅  /* the successor nodes of p(t) */ 
  proximity_evaluation(p(t),Spnodes) 
  New_nodes := New_nodes U Spnodes  
  Nodes := Nodes – {p(t)} 
 end_while 
 

1100 Achs A.: Creation and Evaluation of Fuzzy Knowledge-base



 
 Nodes := New_nodes 
 New_nodes := ∅ 
 while not_empty(Nodes) do 
  p(t) := element(Nodes) 
  Spnodes := ∅   /* the successor nodes of p(t) */ 
  rule_evaluation(p(t),Spnodes) 
  New_nodes := New_nodes U Spnodes  
  Nodes := Nodes – {p(t)} 
 end_while 
end_procedure 
 
procedure proximity_evaluation(p(t),Spnodes) 
 for all q ∈ Sp do    /* Sp is the proximity set of p */ 
  Spnodes := Spnodes U {q(t)} 
 end_for 
end_procedure  
 
procedure rule_evaluation(p(t),Spnodes) 
 for all p(v) ∈ Heads do 
  if  is_unifiable(p(t),p(v)) then  
     Spnodes := Spnodes U  
   {unified predicates of the body belonging to p(vθ)} 
      /* θ is the suitable unifier */ 
  end_if  
 end_for 
 
 for all p(v) ∈ Facts do 
  if  is_unifiable(p(t),p(v)) then  
     for all St ∈ vθ do  /* θ is the suitable unifier */ 
   if is_variable(St) then   
        t := Stτ  /* τ is the suitable unifier */ 
   else if is_proximity_set(St) then 
        t := element(St) 
   end_if  
     end_for 
  end_if 
  for all possible t do     
    /* t is the vector of elements t in the right order */ 
   if p(t) ∈ Facts then 
    Resulting_Facts := Resulting_Facts U {p(t)} 
   end_if 
  end_for 
 end_for 
end_procedure         
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This algorithm can be applied for stratified fDATALOG too, by determining the 
successor of a rule-body without negation. 

7 Summary 

In this paper we gave a possible model of handling uncertain information by defining 
fuzzy knowledge-base as a quadruple of a background knowledge which is based on 
the concept of proximity; a deduction mechanism, which is the fuzzy Datalog; the set 
of decoding functions, according to which we can compute the uncertainty level of 
results, and some modifying algorithm which connects the background knowledge to 
the deduction mechanism. We defined two kind of modifying algorithm, and gave 
top-down strategies to evaluate the knowledge-base. Possibly this evaluation strategy 
can be improved, or maybe there is a better modifying algorithm. A possible further 
development is to find these better solutions. 
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