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Abstract: A sequence of increasing translation invariant subspaces can be defined by
the Haar-system (or generally by wavelets). The orthogonal projection to the subs-
paces generates a decomposition (multiresolution) of a signal. Regarding the rate of
convergence and the number of operations, this kind of decomposition is much more
favorable then the conventional Fourier expansion.

In this paper, starting from Haar-like systems we will introduce a new type of multire-
solution. The transition to higher levels in this case, instead of dilation will be realized
by a two-fold map. Starting from a convenient scaling function and two-fold map, we
will introduce a large class of Haar-like systems. Besides others, the original Haar sys-
tem and Haar-like systems of trigonometric polynomials, and rational functions can be
constructed in this way. We will show that the restriction of Haar-like systems to an
appropriate set can be identified by the original Haar-system.

Haar-like rational functions are used for the approximation of rational transfer func-
tions which play an important role in signal processing [Bokor1 1998, Schipp01 2003,
Bokor3 2003, Schipp 2002].

Key Words: Haar-like systems, multiresolution, wavelets, image and signal proces-
sing
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1 Introduction

The classical Fourier analysis where a signal is represented by its trigonometric

Fourier transform, is one of the most widely spread tools in signal and image

processing. Those mathematical problems, which appear at the reconstruction

of continuous functions from its Fourier coefficients were already well known

at the end of the 19th century. Du Bois-Reymond constructed a continuous

function with a divergent Fourier series. Because of this problem Hilbert posed

the question whether there exist any orthonormal systems for which the Fou-

rier series with respect to this system do not posses this type of singularity.
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The answer to this question was given by Alfréd Haar in 1909 [Haar 1910]

when he constructed such an orthonormal system for which the Haar-Fourier

series of continuous functions converge uniformly. This system, which was na-

med after him the Haar system started to gain popularity from the 1960s. It

turned out that the Haar-series possess some specific properties regarding con-

vergence. Important function spaces can be characterized by Haar-Fourier co-

efficients [Schipp 2000, Schipp 1979, Gabor 1946, Walnut 2004]. The number

of operations needed to compute the Haar-Fourier coefficients and reconstruct

functions is much less then in the trigonometric case.

Using dilation and translation, the Haar-system can be constructed from a

single function. Namely

h(x) =







1 (0 ≤ x < 1
2 )

−1 ( 1
2 ≤ x < 1)

0 (x ≥ 1)

(1)

is the function generating the Haar-system. Using this function, the Haar-system

hn,k(x), (x ∈ R+ := [0,∞) ), (normed by the maximum value), can be defined

as follows:

hn,k(x) = h(2nx − k) (x ∈ R+, k, n ∈ N := {0, 1, 2, ...}). (2)

This type of construction was the basis for the wavelet constructions which

started at the end of the 1980s [Daubechies 1988, Strang and Nguyen 1996,

Meyer 1992, Mallat 2001]. In these new constructions, instead of h given in

(1) there have been used smooth functions (the so called mother wavelets) and

orthonormal or biorthogonal systems of type (2) have been constructed. These

systems keep the good properties of the Haar-system, but besides that they are

useful in reconstructing efficiently smooth functions as well. Because of these

properties the wavelets became an efficient tool for signal and image proces-

sing [Kozaitis et al. 2005, Kozaitis and Cofer 2005, Lee and Kozaitis 2000] and

[László et al. 2005].

New systems can be constructed from known orthogonal systems by argu-

ment transformation. For example, the Chebyshev system can be derived in

this way from trigonometric systems. Based on this principle we constructed

systems that can be used in optics and cornea topography for the mathema-

tical description of the cornea [Schipp 2005]. In this paper a generalization

of the Haar-system is given, where instead of dilation another type of argu-

ment transformation is used. These generalizations of the Haar-system contain

free parameters. By an appropriate choice of these parameters we can construct

Haar-like systems adapted to the specific problem. Such type of construction has

been used in [Schipp at-2005], to identify transfer functions of systems which
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play an important role in control theory. A well known application of the clas-

sical Haar system is image compression. Based on the same principle, adaptive

Haar-like systems can be constructed for functions with two variables, or for two

dimensional pictures in order to analyze and compress them efficiently.

The Haar-system can be expressed by the characteristic functions

χn,k(x) =

{

1 (x <∈ In,k),

0 (x ∈ R+, x /∈ In,k)
(3)

of the dyadic intervals In,k := [k2−n, (k+1)2−n) (k, n ∈ N). Further on, between

functions χn,k and hn,k the following relations are satisfied:

i) hn,k(x) = χn+1,2k − χn+1,2k+1

ii) χn,k = χn+1,2k + χn+1,2k+1(k, n ∈ N). (4)

Equation (4)ii) is called scaling equation as it connects two different scales,

indexed by n and n + 1.

The Haar-system is orthogonal with respect to the scalar product of space

L2[0,∞), that is:

∫

∞

0

hn,k(x)hm,l(x)dx = 0 ((n, k) 6= (m, l), n, m, k, l ∈ N),

and further on, for any fixed value of n > 0, the system χn,k (k ∈ N) is also

orthogonal with respect to the same scalar product.

These systems generate a decomposition (multiresolution) of space L2[0,∞).

Specifically let us introduce the subspaces spanned by the functions χn,k (k ∈ N) :

V̂n := span{χn,k : k ∈ N} (n ∈ N). (5)

It follows from (4.)ii). that the subspaces V̂n (n ∈ N) are increasing, i.e.

V̂n ⊂ V̂n+1 (n ∈ N).

The transition from subspace V̂n to the next level of subspace V̂n+1, can

be done by the scale transformation A(x) = 2x (dilation). Namely function f

belongs to space V̂n if and only if for the function (δ2f)(x) := f(2x) (x ≥ 0) the

relation δ2f ∈ V̂n+1 is satisfied. It is easy to prove, that δ2χn,k = χn+1,k, from

which the above statement follows directly.

The support of the functions hn,k and χn,k is the interval In,k :

{x : hn,k(x) 6= 0} = {x : χn,k(x) 6= 0} = In,k .

In this paper we will examine only those types of functions which have their

support in the interval I := I0,0 = [0, 1). In the Haar-Fourier expansion of these
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functions only those Haar-functions hn,k, will appear which also have their

support in this interval, that is for which condition 0 ≤ k < 2n is satisfied. In

accordance with this it is convenient to index these systems continuously with

natural numbers:

h0(x) := χ0(x) := 1 (x ∈ [0, 1)),

hm := hn,k, χm := χn,k (m = 2n + k, k = 0, 1, ..., 2n − 1, n ∈ N). (6)

Instead of spaces V̂n it is appropriate to introduce

Vn := span{χn,k : 0 ≤ k < 2n} (n ∈ N),

and the 2n dimensional subspaces spanned by the Haar-functions

Wn := span{hn,k : 0 ≤ k < 2n} (n ∈ N).

It follows from (4)i) that the orthogonal complementer of the subspace Vn with

respect to Vn+1 is Wn, that is:

Vn ⊂ Vn+1, Vn+1 = Vn ⊕ Wn (n ∈ N). (7)

The 2N dimensional vector spaces VN , consist of the so called dyadic step

functions, constant on the intervals IN,k (0 ≤ k < 2N). The restriction of these

functions to the sets IN := {k2−N : 0 ≤ k < 2N} is a system of discrete

functions, which can be conveniently used in numerical computation. Let us

introduce on this space the discrete inner product

[f, g]N := 2−N
∑

x∈IN

f(x)g(x). (8)

For functions from VN the well known inner product

〈f, g〉 :=

∫ 1

0

f(x)g(x)dx (f, g ∈ L2(I))

coincides with

[f, g]N = 〈f, g〉 (f, g ∈ VN ).

It follows from this that the systems χN,k (0 ≤ k < 2N), and hm (0 ≤ m < 2N )

are orthogonal with respect to the inner product defined by (8).

We would like to emphasize that for functions defined on the interval [0, 1) the

dilation operation has no sense. Extending these functions to the interval [0,∞)

with periodicity 1, dilation can be defined through (δ2f)(x) := f(2x) (x ≥ 0).

In this paper starting out from Haar-like orthogonal systems we will introduce

multiresolution. The Haar-like system Hm : X → C (m ∈ N) defined on a set X
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is generated by a basic function Φ : X → C and by map A : X → X. Map Φ

corresponds to the mother wavelet, and map A to dilation. Specifically when

X = I = [0, 1), Φ = h, A(x) = 2x (mod 1)

we will get the original Haar-system. By the appropriate choice of maps Φ and

A, we can construct discrete trigonometric-, and rational Haar-like functions.

We will show that for any N a set XN := {xN
k : 0 ≤ k < 2N} ⊂ X of 2N

elements can be given on which system HN
m (0 ≤ m < 2N) coincides with the

discrete Haar-system:

hm(k2−N ) = HN
m(xN

k ) (0 ≤ k, m < 2N).

2 Construction of Haar-like Wavelets

In this section we give a procedure to construct Haar-like functions. The functi-

ons are defined on a set X 6= ∅ and are generated by a function

Φ : X → T := {z ∈ C : |z| = 1} and by a twofold map A : X → X. We assume

that the maps Φ and A have the following properties: for every x ∈ X there

exists two x
′

, x
′′

∈ X, x
′

6= x
′′

such that

A(x
′

) = A(x
′′

) = x, Φ(x
′

) = −Φ(x
′′

). (9)

Map A is analogue of dilation δ2, and function Φ corresponds to the mother

wavelet. Define the 2n-fold maps An : X → X and Φn : X → T by

A0(x) := x, An+1(x) := A(An(x)) = An(A(x)),

Φn(x) := Φ(An(x))(n ∈ N) (10)

and starting with x0
0 ∈ X introduce the sets

Xn := A−1
n (x0

0) := {x ∈ X : An(x) = x0
0} := {xn

k : k = 0, 1, ..., 2n − 1}. (11)

Sience Xn+1 = A−1(A−1
n (x0

0)) = A−1(Xn) we can choose the indices such that

A(xn+1
2k ) = A(xn+1

2k+1) = xn
k (k = 0, 1, ..., 2n − 1). (12)

If x0
0 = 0 is a fixpoint of A, that is if A(x0

0) = x0
0 then Xn ⊂ Xn+1 (n ∈ N).

The generalized scaling functions are defined by

I0,0(x) = 1, In,k(x) = 2−n

n−1
∏

j=0

(1 + Φj(x)Φj (x
n
k )),

Hn,k(x) = Φn(x)In,k(x) (0 ≤ k < 2n, n ≥ 1). (13)
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The system In,k (0 ≤ k < 2n) has similar properties on the set Xn as the

collection χn,k (0 ≤ k < 2n) on In, moreover the analogue of equation (4),

that is, scaling and splitting relations hold.

Theorem 1. For any 0 ≤ k < 2n, n ∈ N we have

i) In,k(xn
l ) = χn,k(l2−n)

ii) In+1,2k(x) + In+1,2k+1(x) = In,k(A(x)),

iii) In+1,2k(x) − In+1,2k+1(x) = Φ(x)Φ(xn+1
2k )In,k(A(x)). (14)

To get the analogue of the discrete Haar functions for every N ∈ N we

introduce the finite systems

IN
n,k(x) := In,k(AN−n(x)), HN

n,k(x) := ΦN−n−1(x)Φ(xn+1
2k )IN

n,k(x)

(x ∈ X, 0 ≤ n < 2n, 0 ≤ n < N). (15)

On set XN these discrete systems HN
m := HN

n,k (m = 2n + k, 0 ≤ k < 2n, 0 ≤

n < N) are the same as the discrete Haar-system. Namely we have

Theorem 2. For any 0 ≤ k < 2n, 0 ≤ n < N and any x ∈ X we have

i) HN
m(xN,k) = hm(k2−N) (0 ≤ m < 2N ),

ii) IN
n+1,2k(x) + IN

n+1,2k+1(x) = IN
n,k(x),

iii) IN
n+1,2k(x) − IN

n+1,2k+1(x) = HN
n,k(x). (16)

2.1 Examples

The original Haar system can be obtained in this way. Namely if

A(x) := 2x (mod 1) = frac(2x), Φ(x) := h(x) (x ∈ X := [0, 1)),

then (11) gives the original Haar scaling functions.

To get a Haar-like system of complex trigonometric polynomials we set

X := T, A(z) := z2, Φ(z) = z (z ∈ X).

In this case the functions In,k are complex trigonometric polynomials of order

2n.

The construction of rational Haar-like systems is based on Blaschke functions

Ba(z) =
z − a

1 − az
(a ∈ D := {w ∈ C : |w| < 1}, z ∈ D ∪ T).

If the parameter a belongs to D then the restriction of Ba to D is a bijection

of D. Furthermore Ba is a one-to-one map on the unit circle T. Starting with

functions

A(z) := Ba(z2), Φ(z) = z (z ∈ X := T)

we get a Haar-like system of rational functions.
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2.2 Proofs

Proof of Theorem 1.

First we prove (14)i). If k = l then for j = 0, 1, ..., n − 1 we have

1 + Φj(x
n
l )Φj(x

n
k ) = 2, and by (3) then (14)i) is true in this case. If k 6= l,

then it follows from (9) and (11), that there exists a number j such that

0 ≤ j < n, Aj(x
n
k ) 6= Aj(x

n
l ), Aj+1(x

n
k ) = Aj+1(x

n
l ).

Set x
′

:= Aj(x
n
k ) 6= x

′′

= Aj(x
n
l ). Then A(x

′

) = A(x
′′

) and from (9) and (10)

we get

Φj(x
n
k ) = Φ(x

′

) = −Φ(x
′′

) = −Φj(x
n
l ),

consequently

1 + Φj(x
n
l )Φj(xn

k ) = 1 − Φj(x
n
l )Φj(xn

l ) = 1 − 1 = 0,

and by (3) then (14)i) is proved.

To prove (14)ii) and (14)iii) observe that from the definition of Φj and

from (10) and (12) for t = 0, 1 we get

In+1,2k+t(x) = 2−(n+1)
n

∏

j=0

(1 + Φj(x)Φj(x
n+1
2k+t))

=
1 + Φ(x)Φ(xn+1

2k+t)

2
2−n

n−1
∏

j=0

(1 + Φj(A(x))Φj (A(xn
2k+t))

=
1 + Φ(x)Φ(xn+1

2k+t)

2
In,k(A(x)). (17)

Since Φ(xn+1
2k+1) = −Φ(xn+1

2k ), taking the sum and difference of functions

In+1,2k+t (t = 0, 1) we get (14)ii) and (14)iii).

Proof of Theorem 2.

Applying (14)ii) and (14)iii) for AN−n−1(x) instead of x in equation (15)

we get

IN
n+1,2k(x) + IN

n+1,2k+1(x) = In+1,2k(AN−n−1(x)) + IN
n+1,2k+1(AN−n−1(x)) =

= In,k(A(AN−n−1(x))) = In,k(AN−n(x)) = IN
n,k(x),

IN
n+1,2k(x) − IN

n+1,2k+1(x) = In+1,2k(AN−n−1(x)) − IN
n+1,2k+1(AN−n−1(x)) =

= Φ(AN−n−1(x))Φ(xn+1
2k )In,k(AN−n(x)) = HN

n,k(x).
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and (16)ii), and (16)iii) is proved.

It follows from (12) that

Aj(x
n
k ) = xn−j

[k2−j ] (0 ≤ k < 2n, 0 ≤ j ≤ n, n ∈ N),

where [t] denotes the integer part of the number t ∈ R. This and (15) imply

IN
n+1,2k(xN

l ) = In,k(AN−n(xN
l )) = In,k(xn

[l2n−N ]) = χn,k(l2−N),

ΦN−n−1(x
N
l )Φ(xn+1

2k ) = Φ(xn+1
[l2n+1−N ]

)Φ(xn+1
2k ) = Φ(xn+1

2s+r)Φ(xn+1
2k ),

where 2s + r := [l2n+1−N ] and r = 0, 1. Thus from (15) we get

HN
n,k(xN

l ) = Φ(xn+1
2s+r)Φ(xn+1

2k )χn,k(l2−N)

and consequently

HN
n,k(xN

l ) =







0 (l2−N /∈ [k2−n, (k + 1)2−n)),

1 (l2−N ∈ [k2−n, (k + 1/2)2−n))

−1 (l2−N ∈ [(k + 1/2)2−n, (k + 1)2−n)).

Thus (16)i) is proved.

3 Applications

In this section we will show trigonometric and rational Haar-like functions const-

ructed as desctibed in the previous section for both, the continuous and discrete

case as well.

3.1 Haar-, and Haar scaling functions

The continuous and discrete Haar scaling functions In,k, IN
n,k and Haar functi-

ons Hn,k, HN
n,k are represented on the next figures for trigonometric polynomials

i.e. a = 0 and for the general case, a 6= 0, i.e. rational functions, by using the

corresponding values of the parameter a.

We would like to emphasize that Haar-like trigonometric polynomials Hn,k

corresponding to the parameter a = 0, form an orthogonal system with respect

to the ususal scalar product of the interval I0,0.

Figure 1. represents the real and imaginary parts of the scaling function

In,k generated by the two-fold map A(z) = z2, that is for the the case a = 0

which corresponds to the continuous case of Haar-like scaling systems of complex

trigonometric polynomials.

Figure 2. represents the real and imaginary parts of the continuous Haar

function Hn,k generated by the two-fold map A(z) = z2.
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Figure 1: A Scaling function; a=0, continuous

Figure 2: A Haar function; a=0, continuous

Figure 3. represents the real and imaginary parts of the scaling function

IN
n,k generated by the two-fold map A(z) = z2, and the corresponding scaling

function χN
n,k. This case corresponds to a discrete Haar-like scaling system of

complex trigonometric polynomials.

Figure 4. represents the real and imaginary parts of the Haar-function HN
n,k
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Figure 3: A Scaling function; a=0, discrete

Figure 4: A Haar function; a=0, discrete

generated by the two-fold map A(z) = z2, together with the corresponding

Haar-function hN
n,k.

Figures 5., 6., 7., and 8. represent the real and imaginary parts of the con-

tinuous and discrete rational scaling functions and Haar functions respectively,

generated by the twofold map A(z) = Ba(z2), with Re(a) = 0.6, Im(a) = 0.
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Figure 5: A Scaling function; a=0.6, continuous

Figure 6: A Haar function; a=0.6, continuous

4 Conclusions

Wavelets are localized functions. Because of their favorable properties, they have

important applications in many areas such as signal and image processing, edge

detection, denoising and image compression. Due to this advantage of the wavelet
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Figure 7: A Scaling function; a=0.6, discrete

Figure 8: A Haar function; a=0.6, discrete

transform when compared to the Fourier transform it became an important and

growing area to study.

In this paper we introduced a new type of multiresolution constructed by

a large class of Haar-like systems. The systems are generated by the mother

wavelet Φ and by a two-fold map A. We have shown that by an appropriate
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choice of Φ and A Haar-like trigonometric functions and Haar-like rational

functions can be obtained.

These type of Haar-like systems can be used in optics and cornea topography

for the mathematical description of the cornea [Schipp 2005]. By an appropriate

choice of the parameters, Haar-like systems adapted to specific problems can be

constructed. Such type of systems are used in [Schipp at-2005], to identify

transfer functions of systems which play an important role in control theory.

A well known application of the classical Haar system is image compression.

Based on the same principle, adaptive Haar-like systems can be constructed for

functions with two variables, or for two dimensional pictures in order to analyze

and compress them efficiently, without significantly affecting the quality of the

image.
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