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Abstract: We present two probabilistic leader election algorithms for anonymous uni-
directional rings with FIFO channels, based on an algorithm from Itai and Rodeh
[Itai and Rodeh 1981]. In contrast to the Itai-Rodeh algorithm, our algorithms are
finite-state. So they can be analyzed using explicit state space exploration; we used
the probabilistic model checker PRISM to verify, for rings up to size four, that even-
tually a unique leader is elected with probability one. Furthermore, we give a manual
correctness proof for each algorithm.
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1 Introduction

Leader election is the problem of electing a unique leader in a network, in the
sense that the leader (process) knows that it has been elected and the other pro-
cesses know that they have not been elected. Leader election algorithms require
that all processes have the same local algorithm and that each computation ter-
minates, with one process elected as the leader. This is a fundamental problem
in distributed computing and has numerous applications. For example, it is an
important tool for breaking symmetry in a distributed system. By choosing a
process as the leader it is possible to execute centralized protocols in a decen-
tralized environment. Leader election can also be used to recover from token loss
for token-based protocols, by making the leader responsible for generating a new
token when the current one is lost.

There exists a broad range of leader election algorithms; see e.g. the sum-
mary in the text books [Tel 1994, Lynch 1996]. These algorithms have different
message complexity in the worst and/or average case. Furthermore, they vary
in communication mechanism (asynchronous vs. synchronous), process names
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(unique identities vs. anonymous), and network topology (e.g. ring, tree, com-
plete graph).

A first leader election algorithm for unidirectional rings was given by Le
Lann [Le Lann 1977]. It requires that each process has a unique identity, with
a total ordering on identities; the process with the largest identity becomes
the leader. The basic idea of Le Lann’s algorithm is that each process sends
a message around the ring bearing its identity. Thus it requires a total of n2

messages, where n is the number of processes in the ring. Chang and Roberts
[Chang and Roberts 1979] improved Le Lann’s algorithm by letting only the
message with the largest identity complete the round trip; their algorithm still
requires in the order of n2 messages in the worst case, but only n log n on av-
erage. Franklin [Franklin 1982] developed a leader election algorithm for bidi-
rectional rings with a worst-case message complexity of O(n log n). Peterson
[Peterson 1982] and Dolev, Klawe, and Rodeh [Dolev et al. 1982] independently
adapted Franklin’s algorithm so that it also works for unidirectional rings. All
the above algorithms work both for asynchronous and for synchronous commu-
nication, and do not require a priori knowledge about the number of processes.

Sometimes the processes in a network cannot be distinguished by means of
unique identities. First, as the number of processes in a network increases, it may
become difficult to keep the identities of all processes distinct; or a network may
accidentally assign the same identity to different processes. Second, identities
cannot always be sent around the network, for instance for reasons of efficiency.
An example of the latter is FireWire, the IEEE 1394 high performance serial bus
(see Section 6 for a more detailed description). A leader election algorithm that
works in the absence of unique process identities is also desirable from the stand-
point of fault tolerance. In an anonymous network, processes do not carry an
identity. Angluin [Angluin 1980] showed that there does not exist a terminating
algorithm for electing a leader in an asynchronous anonymous network.

In [Itai and Rodeh 1981, Itai and Rodeh 1990] a probabilistic leader election
algorithm for anonymous unidirectional rings is proposed, based on the Chang-
Roberts algorithm. Each process selects a random identity from a finite domain,
and processes with the largest identity start a new election round if they detect
a name clash. It is assumed that the size of the ring is known to all processes,1

algorithm exists to elect a leader in so that each process can recognize its own
message (by means of a hop counter that is part of the message). The Itai-
Rodeh algorithm terminates with probability one (it exhibits infinite traces, but
the probability that such an infinite trace is executed is zero), and all its terminal
states are correct, meaning that exactly one leader is elected; its average-case
message complexity is Θ(n log n).
1 Given an anonymous ring of which the size is unknown to the processes, no (weakly

terminating) algorithm exists for which in all terminal states the correct ring size
has been computed, see e.g. [Tel 1994].
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The Itai-Rodeh algorithm makes no assumptions about channel behavior, ex-
cept fair scheduling. An old message, that has been overtaken by other messages
in the ring, could in principle result in a situation where no leader is elected (see
Fig. 1 in Section 2.2). In order to avoid this problem, the algorithm proceeds
in successive rounds, and each process and message is supplied with a round
number. Thus an old message can be recognized and ignored. Due to the use of
round numbers, the Itai-Rodeh algorithm has an infinite state space.

In this paper, we make the assumption that channels are FIFO. We show
that in this case round numbers can be omitted from the Itai-Rodeh algorithm.
We present two adaptations of the Itai-Rodeh algorithm, that are correct in the
presence of FIFO channels. In the first algorithm, a process may only choose
a new identity when its message has completed the round trip, as is the case
in the Itai-Rodeh algorithm. In the second algorithm, a process selects a new
identity as soon as it detects that another process in the ring carries the same
identity (even though this identity may not be the largest one in the ring). Since
both algorithms do not use round numbers, they are finite-state. This means
that we can apply model checking [Clarke et al. 2000] to automatically verify
properties of an algorithm, specified in some temporal logic. These properties
can be checked against the explicit (finite) state space of the algorithm, for spe-
cific ring sizes. We used PRISM [Kwiatkowska et al. 2002], a probabilistic model
checker that can be used to model and analyze systems containing probabilistic
aspects. We specified both algorithms in the PRISM language, and for rings up
to size four we verified the property: “with probability one, eventually exactly
one leader is elected”. Furthermore, we present a manual correctness proof for
both algorithms, for arbitrary ring size.

PRISM offers the possibility to calculate the probability that our algorithms
have terminated after some number of messages. These statistics show that the
first algorithm on average requires more messages to terminate than the second
algorithm.

1.1 Outline of the paper

Section 2 contains the original Itai-Rodeh algorithm. In Sections 3 and 4, we
present two probabilistic leader election algorithms for anonymous rings with
FIFO channels. We explain our verification results with PRISM, and give a
manual correctness proof for each algorithm. Section 5 reveals some experimental
results using PRISM on the number of messages needed to terminate. Related
work is summarized in Section 6. We conclude this paper and discuss some future
work in Section 7.
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2 Itai-Rodeh Leader Election

We consider an asynchronous, anonymous, unidirectional ring consisting of n ≥ 2
processes p0, . . . , pn−1. Processes communicate asynchronously by sending and
receiving messages over channels, which are assumed to be reliable, and have
capacity n. Channels are unidirectional: a message sent by pi is added to the
message queue of p(i+1) mod n. It is assumed that receiving a message, processing
it, and possibly sending a subsequent message take zero time (i.e., are instan-
taneous). The message queues are guided by a fair scheduler, meaning that in
each infinite execution sequence, every sent message eventually arrives at its des-
tination. Processes are anonymous, so they do not have unique identities. The
challenge is to present a uniform local algorithm for each process, such that one
leader is elected among the processes.

2.1 The Itai-Rodeh algorithm

In [Itai and Rodeh 1981, Itai and Rodeh 1990] it is studied how to break the
symmetry in anonymous networks using probabilistic algorithms. They presented
a probabilistic algorithm to elect a leader in the above network model, under the
assumption that processes know that the size of the ring is n. It terminates with
probability one, and all its terminal states are correct, meaning that exactly one
leader is elected. The Itai-Rodeh algorithm is based on the Chang-Roberts algo-
rithm [Chang and Roberts 1979], where processes are assumed to have unique
identities, and each process sends out a message carrying its identity. Only the
message with the largest identity completes the round trip and returns to its
originator, which becomes the leader.

In the Itai-Rodeh algorithm, each process selects a random identity from a
finite set. So different processes may carry the same identity. Again each process
sends out a message carrying its identity. Messages are supplied with a hop
counter, so that a process can recognize its own message (by checking whether
the hop counter equals the ring size n). Moreover, a process with the largest
identity present in the ring must be able to detect whether there are other
processes in the ring with the same identity. Therefore each message is supplied
with a bit, which is dirtied when it passes a process that is not its originator
but shares the same identity. When a process receives its own message, either it
becomes the leader (if the bit is clean), or it selects a new identity and starts the
next election round (if the bit is dirty). In this next election round, only processes
that shared the largest identity in the ring are active. All other processes have
been made passive by the receipt of a message with an identity larger than their
own. The active processes maintain a round number, which initially starts at
zero and is augmented at each new election round. Thus messages from earlier
election rounds can be recognized and ignored.
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We proceed to present a detailed description of the Itai-Rodeh algorithm.
Each process pi maintains three parameters:

- id i ∈ {1, . . . , k}, for some k ≥ 2, is its identity;

- statei ranges over {active, passive , leader};
- round i ∈ N

+ represents the number of the current election round.

Only active processes may become the leader; passive processes simply pass on
messages. At the start of a new election round, each active process sends a
message of the form (id , round , hop, bit), where:

- the values of id and round are taken from the process that sends the message;

- hop is a counter that initially has the value one, and which is increased by
one every time it is passed on by a process;

- bit is a bit that initially is true, and which is set to false when it visits a
process that has the same identity but that is not its originator.

We will refer to a message traveling through the ring with the letter m. The
parameters id and round of a message stay unchanged during a round trip, while
its other two parameters may change.

The Itai-Rodeh algorithm.

– Initially, all processes are active, and each process pi randomly selects its
identity id i ∈ {1, . . . , k} and sends the message (id i, 1, 1, true).

– Upon receipt of a message (id , round , hop, bit), a passive process pi

(statei = passive) passes on the message, increasing the counter hop by
one; an active process pi (statei = active) behaves according to one of the
following steps:

• if hop = n and bit = true, then pi becomes the leader (state ′
i = leader );

• if hop = n and bit = false, then pi selects a new random identity
id ′

i ∈ {1, . . . , k}, moves to the next round (round ′
i = round i + 1), and

sends the message (id ′
i, round ′

i, 1, true);

• if (round , id) = (round i, id i) and hop < n, then pi passes on the mes-
sage (id , round , hop + 1, false);

• if (round , id) > (round i, id i) (where (round , id) and (round i, id i)
are compared lexicographically), then pi becomes passive (state ′

i =
passive) and passes on the message (id , round , hop + 1, bit);

• if (round , id) < (round i, id i), then pi purges the message.
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We say that an execution sequence of the Itai-Rodeh algorithm has termi-
nated if each process is either passive or elected as the leader, and there are no
remaining messages in the channels.

Theorem 1. [Itai and Rodeh 1981] The Itai-Rodeh algorithm terminates with
probability one, and upon termination a unique leader has been elected.

2.2 Round numbers are needed

v
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Figure 1: Round numbers are essential if channels are not FIFO

Fig. 1 presents a scenario to show that if round numbers were omitted, the
Itai-Rodeh algorithm could produce an execution sequence in which all processes
become passive, so that no leader is elected. This example uses the fact that chan-
nels are not FIFO. Let k ≥ 3. Fig. 1 depicts a ring of size three; black processes
are active and white processes are passive. Initially, all processes are active, and
the two processes above select the same identity u, while the one below selects an
identity v < u. (See the left side of Fig. 1.) The three processes send a message
with their identity, and at the receipt of a message with identity u, process v

becomes passive. Since channels are not FIFO, the message (v, 1, true) can be
overtaken by the other two messages with identity u. The latter two messages
return to their originators with a dirty bit. So the processes with identity u de-
tect a name clash, select new identities w < v and x < v, and send messages
carrying these identities. (See the middle part of Fig. 1.) Finally, the message
with identity v makes the processes with identities w and x passive. The three
messages in the ring are passed on forever by the three passive processes. (See
the right side of Fig. 1.)

3 Leader Election without Round Numbers

We observe that if channels are FIFO, round numbers are redundant. Thus we
obtain a simplification of the Itai-Rodeh algorithm. Algorithm A is obtained
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by considering only those cases in the Itai-Rodeh algorithm where the active
process pi and the incoming message have the same round number. Correctness
of Algorithm A follows from the proposition below.

Algorithm A.

– Initially, all processes are active, and each process pi randomly selects its
identity id i ∈ {1, . . . , k} and sends the message (id i, 1, true).

– Upon receipt of a message (id , hop, bit), a passive process pi (statei =
passive) passes on the message (id , hop + 1, bit); an active process pi

(statei = active) behaves according to one of the following steps:

• if hop = n and bit = true, then pi becomes the leader (state ′
i = leader );

• if hop = n and bit = false, then pi selects a new random identity
id ′

i ∈ {1, . . . , k} and sends the message (id ′
i, 1, true);

• if id = id i and hop < n, then pi passes on the message (id , hop +
1, false);

• if id > id i, then pi becomes passive (state ′
i = passive) and passes on

the message (id , hop + 1, bit);

• if id < id i, then pi purges the incoming message.

Proposition2. Consider the Itai-Rodeh algorithm where all channels are FIFO.
When an active process receives a message, then the round number of the process
and of the message are always the same.

Proof. Let message m, which originates from process pj, arrive at active process
pi in the form (idj , roundj , hop, bit). Suppose that up to this moment, messages
never arrived at active processes with a different round number. We prove that
the round number round i of pi is equal to roundj . We derive the desired equality
in two steps.

– round i ≤ roundj .

Let round i > 1, for else we are done. Then a message m′ with round number
round i−1 originated at pi and completed the round trip, where all the active
processes that it visited had round number round i−1. FIFO behavior guar-
antees that after m′ returned to pi, no other message with round number
≤ round i−1 can arrive at pi. So round i ≤ round j .

– round i ≥ roundj .

Let roundj > 1, for else we are done. Then a message m′′ with round number
round j−1 originated at pj and completed the round trip, where all the active
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processes that it visited (so in particular pi) had round number round j−1.
Since m′′ completed the round trip and passed pi while this process remained
active, it follows that both pi and pj had the maximal identity in round
round j−1. And by the induction hypothesis, the message m′′′ that originated
at pi with round number roundj−1 did not meet any active process with a
round number ≥ round j . So m′′′ was not purged by any active process. FIFO
behavior guarantees that m′′′ arrived at pj before m′′, so that m′′′ passed pj

before m was created at pj . FIFO behavior also guarantees that m′′′ arrived
at pi before m. So round i ≥ roundj .

Hence, round i = roundj . ��

Theorem 3. Let channels be FIFO. Then Algorithm A terminates with proba-
bility one, and upon termination exactly one leader is elected.

Proof. By Proposition 2 and Theorem 1. ��

3.1 Automated verification with PRISM

Owing to the elimination of round numbers, Algorithm A is finite-state, contrary
to the Itai-Rodeh algorithm. Hence we can apply explicit state space generation
and model checking to establish the correctness of Algorithm A for fixed ring
sizes. This analysis of Algorithm A was actually performed before construct-
ing the manual correctness proof of Algorithm A from the previous section, as a
means to confirm our intuition that Algorithm A works correctly in case of FIFO
channels. Moreover, this model checking exercise has some additional value com-
pared to Theorem 3. Namely, since the manual proofs of Theorem 1, Proposition
2 and Theorem 3 were not formalized and checked with a theorem prover, there
is no absolute guarantee that they are free of flaws.

3.1.1 A short introduction to PRISM

PRISM [Kwiatkowska et al. 2002] is a probabilistic model checker, being de-
veloped at the University of Birmingham. It allows one to model and analyze
systems and algorithms containing probabilistic aspects. PRISM supports three
kinds of probabilistic models: discrete-time Markov chains (DTMCs), Markov
decision processes (MDPs) and continuous-time Markov chains (CTMCs). Anal-
ysis is performed through model checking such systems against specifications
written in the probabilistic temporal logic PCTL [Hansson and Jonsson 1994,
Baier and Kwiatkowska 1998] if the model is a DTMC or an MDP, or CSL
[Baier et al. 2000] in the case of a CTMC.

In order to model check probabilistic properties of Algorithm A, we first
encoded the algorithm as an MDP model using the PRISM language, which is a
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simple, state-based language, based on the Reactive Modules formalism of Alur
and Henzinger [Alur and Henzinger 1999]. A system is composed of a number
of modules that contain local variables, and that can interact with each other.
The behavior of an MDP is described by a set of commands of the form:

[a] g → λ1 : u1 + . . . + λ� : u�

a is an action label in the style of process algebras, which introduces synchroniza-
tion into the model. It can only be performed simultaneously by all modules that
have an occurrence of action label a in their specification. If a transition does not
have to synchronize with other transitions, then no action label needs to be pro-
vided for this transition. The symbol g is a predicate over all the variables in the
system. Each ui describes a transition which the module can make if g is true.
A transition updates the value of the variables by giving their new primed value
with respect to their unprimed value. The λi are used to assign probabilistic in-
formation to the transition. It is required that λ1+· · ·+λ� = 1. This probabilistic
information can be omitted if � = 1 (and so λ1 = 1). PRISM considers states
without outgoing transitions as error states; terminating states can be modeled
by adding a self-loop. PRISM models which are MDPs can also exhibit local
non-determinism, which allows the moduels to make non-deterministic choices
themselves. For example, the probabilistic choice in the previous command can
be made non-deterministic as follows:

[a] g → u1;

...

[a] g → u�;

A more detailed description of PRISM can be found in [PRISM].

3.1.2 Verifying Algorithm A with PRISM

We used PRISM to verify that Algorithm A satisfies the probabilistic property
“with probability 1, eventually exactly one leader is elected”. We modeled each
FIFO channel and each process as a separate module in PRISM. The following
code in the PRISM language gives the specification for a channel of size two.
The channel channel1 receives a message (mes1 id,mes1 counter,mes1 bit) from
process p1 (synchronized on action label rec from p1) and sends it to process
p2 (synchronized on action label send to p2). Each position i ∈ {1, 2} in the
channel is represented by a triple of natural numbers: one for the process identity
contained in a message (b 1 2 i1), one for the hop counter (b 1 2 i2), and one
for the bit (b 1 2 i3). If the natural numbers for a position in a channel are
greater than zero, it means this position is occupied by a message. Otherwise,
the position is empty.
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We present the channel between processes p1 and p2. Both the number of
processes and the size of the identity set are two (N=2; K=2).

module channel1

b 1 2 11: [0..K]; b 1 2 12:[0..N]; b 1 2 13:[0..1];

b 1 2 21: [0..K]; b 1 2 22:[0..N]; b 1 2 13:[0..1];

[rec from p1] b 1 2 11=0

→ (b 1 2 11’=mes1 id) & (b 1 2 12’=mes1 counter) &

(b 1 2 13’=mes1 bit);

[rec from p1] (b 1 2 11>0) & (b 1 2 21=0)

→ (b 1 2 21’=mes1 id) & (b 1 2 22’=mes1 counter) &

(b 1 2 23’=mes1 bit);

[send to p2] b 1 2 11>0

→ (b 1 2 11’=b 1 2 21) & (b 1 2 12’=b 1 2 22) &

(b 1 2 13’=b 1 2 23) & (b 1 2 21’=0) &

(b 1 2 22’=0) & (b 1 2 23’=0);

endmodule

mes1 id, mes1 counter and mes1 bit are shared variables. They are used in the
module process1 below for receiving and sending messages. Only in that module
values can be assigned to these variables. mes1 id carries the identity of a mes-
sage, mes1 counter its hop counter, and mes1 bit the clean (1) or dirty (0) bit.
If no message is present, all three variables have the value zero. (So mes1 bit=0

can have two meanings: either there is no message, or the bit is dirty.)
Each process pi is specified by means of a variable processi id:[0..K] for its

identity (where 0 means that the process is passive or selecting a new identity),
a variable si:[0..5] for its local state (this is explained below), and a variable
leaderi:[0..1] (where in state 0 means that the process is passive, and 1 that it is
the leader). The following PRISM code is the specification for process p1.

module process1

process1 id:[0..K]; s1:[0..5]; leader1:[0..1];

mes1 id:[0..K]; mes1 counter:[0..N]; mes1 bit:[0..1];

When a process is in state 0, it is active and can randomly (modeled by the prob-
ability rate R=1/K) select its identity, build a new message with this identity,
and set its state to 1.

[ ] s1=0

→ R: (s1’=1) & (process1 id’=1) & (mes1 id’=1) &

(mes1 counter’=1) & (mes1 bit’=1)

+ R: (s1’=1) & (process1 id’=2) & (mes1 id’=2) &

(mes1 counter’=1) & (mes1 bit’=1);
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When s1=1, the process sends the new message into channel 1 (modeled by a
synchronization with module channel1 on action rec from p1), and moves to state
2.

[rec from p1] s1=1

→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0) &

(mes1 bit’=0);

In state 2 the process can receive a message from channel 2 (modeled by a
synchronization with module channel2 on action send to p1), and go to state 3.
Note that b 2 1 11, b 2 1 12 and b 2 1 31 are shared variables, representing the
first position in the module channel2.

[send to p1] s1=2

→ (s1’=3) & (mes1 id’=b 2 1 11) &

(mes1 counter’=b 2 1 12) & (mes1 bit’=b 2 1 13);

When a process is in state 3, it has received a message and takes a decision.
If the process got its own message back (mes1 counter=N) and the bit of the
message is clean (mes1 bit=1), the process is elected as the leader (leader1’=1),
and moves to state 4.

[ ] (s1=3) & (mes1 counter=N) & (mes1 bit=1)

→ (s1’=4) & (process1 id’=0) & (mes1 id’=0) &

(mes1 counter’=0) & (mes1 bit’=0) & (leader1’=1);

If mes1 counter=N and mes1 bit=0, the process changes its state to 0 and will
select a new random identity.

[ ] (s1=3) & (mes1 counter=N) & (mes1 bit=0)

→ (s1’=0) & (process1 id’=0) & (mes1 id’=0) &

(mes1 counter’=0) & (mes1 bit’=0);

If mes1 id=process1 id and mes1 counter<N, the process has received a message
with the same identity, but the message does not originate from itself. It increases
the hop counter in the message by one, makes the bit dirty, and moves to state
5 to pass on the message.

[ ] (s1=3) & (mes1 id=process1 id) & (mes1 counter<N)

→ (s1’=5) & (mes1 counter’=mes1 counter+1) &

(mes1 bit’=0);

If mes1 id<process1 id, the process purges the message, and moves back to state
2 to receive another message.

[ ] (s1=3) & (mes1 id<process1 id)

→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0) &

(mes1 bit’=0);
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If mes1 id>process1 id, the process increases the hop counter in the message
by one, and goes to state 4 where it becomes passive (i.e., the value of leader1

remains zero).

[ ] (s1=3) & (mes1 id>process1 id)

→ (s1’=4) & (process1 id’=0) &

(mes1 counter’=mes1 counter+1);

In state 5, a process passes on a message, and moves to state 2.

[rec from p1] (s1=5)

→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0) &

(mes1 bit’=0);

In state 4, a passive process (leader1=0) can only pass on messages with their
hop counter increased by one.

[send to p1] (s1=4) & (leader1=0) & (mes1 id=0)

→ (mes1 id’=b 2 1 11) & (mes1 counter’=b 2 1 12+1) &

(mes1 bit’=b 2 1 13);

[rec from p1] (s1=4) & (leader1=0) & (mes1 id>0)

→ (mes1 id’=0) & (mes1 counter’=0) & (mes1 bit’=0);

We added the conjunct leader1=0 to the predicate in order to emphasize that the
leader does not have to deal with incoming messages. Namely, when a process
is elected as the leader there are no remaining messages, owing to the fact that
channels are FIFO.

A self-loop with synchronization on an action label done is added to processes
in state 4, to avoid deadlock states.

[done] (s1=4) → (s1’=s1);

endmodule

Other channels and processes can be constructed by carefully module renaming
modules channel1 and process1. The initial value of each variable is the minimal
value in its range.

Below we specify the property “with probability 1, eventually exactly one
leader is elected” for a ring with two processes as a PCTL formula:

Property: P>=1 [ true U (s1=4 & s2=4 & leader1+leader2=1 &

b 1 2 11+b 2 1 11=0) ]

It states that the probability that ultimately both p1 and p2 get into state 4 (s1=4

& s2=4), with exactly one process elected as the leader (leader1+leader2=1), is
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Processes Identities Channel size FIFO States Transitions
Ex.1 2 2 2 yes 127 216
Ex.2 3 3 3 yes 5,467 12,360
Ex.3 4 3 4 yes 99,329 283,872

Table 1: Model checking result for Algorithm A with FIFO channels

at least one. In addition, we check that the algorithm terminates with no message
in the ring (b 1 2 11+b 2 1 11=0).

Note that, for MDPs, since probabilities can only computed once the non-
deterministic choices have been resolved. Hence, there is actually a minimum and
a maximum probability of a formula being satisfied, quantifying over all possible
resolutions. Therefore, for MDPs PRISM allows two possible types of formula:
Pmax>=1[. . .] and Pmin>=1[. . .] for the above property, which return the maxi-
mum and minimum probabilities, respectively. Our analysis of both Algorithms
A and B in PRISM showed that nondeterminism does not make difference for the
computation of the maximum and minimum probabilities of the PCTL formulas
we want to check, namely for all the formulas we have checked in this paper,
their minimum probability is equivalent to their maximum probability. Thus, we
do not make distinction between the maximum and minimum probabilities in
our presentation of the analysis results in PRISM (see Sections 4.1 and 5).

To model check this property, the algorithmic description (in the module-
based language) was parsed and converted into an MTBDD [Fujita et al. 1997].
In PRISM, reachability is performed to identify non-reachable states and the
MTBDD is filtered accordingly. Table 1 shows statistics for each model we have
built. The first part gives the parameters for each model: the ring size n, the
size of the identity set, and the size of the channel. It is not hard to see that
at any time there are at most n messages in the ring, so channel size n suffices;
and having n different possible identities means that in each “round”, all active
processes can select a different identity. The second part gives the number of
states and transitions in the MTBDD representing the model.

Property was successfully checked on all the ring networks in Table 1 (we used
the model checker PRISM 2.0 with its default options). Note that for n = 4, we
could only check the property for an identity set of size three. For n = 4 and an
identity set of size four, and in general for n ≥ 5, PRISM fails to build a model
due to the lack of memory.
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4 Leader Election without Bits

Algorithm B.

– Initially, all processes are active, and each process pi randomly selects its
identity id i ∈ {1, . . . , k} and sends the message (id i, 1).

– Upon receipt of a message (id, hop), a passive process pi (statei = passive)
passes on the message (id, hop + 1); an active process pi (statei = active)
behaves according to one of the following steps:

• if hop = n, then pi becomes the leader (state ′
i = leader );

• if id = id i and hop < n, then pi selects a new random identity id ′
i ∈

{1, . . . , k} and sends the message (id ′
i, 1);

• if id > id i, then pi becomes passive (state ′
i = passive) and passes on

the message (id , hop + 1);

• if id < id i, then pi purges the incoming message.

In this section, we present another leader election algorithm, which is a vari-
ation of Algorithm A. Again channels are assumed to be FIFO. We observe that
when an active process pi detects a name clash, meaning that it receives a mes-
sage with its own identity and hop counter smaller than n, it is not necessary for
pi to wait for its own message to return. Instead pi can immediately select a new
random identity and send a new message. Algorithm B is obtained by adapting
Algorithm A according to this observation. In particular all occurrences of bits
are omitted.

We first discuss the automatic verification of Algorithm B with PRISM in
Section 4.1. Then we give a manual correctness proof for Algorithm B, for arbi-
trary ring size, in Section 4.2.

4.1 Automated verification with PRISM

Channels are modeled in the same way as in Section 3. We present each process
pi with a variable process i id:[0..K] for its identity, a variable s i:[0..4] for its
local state, and a variable leader i:[0..1]. We present only part of the PRISM
specification for process p1. The parts when a process is in state 0, 1, 2 or 4 are
omitted, as this behavior is very similar to Algorithm A (see Section 3.1). State
5 is redundant here, because a process selects a new identity as soon as it detects
a name clash.

module process1

process1 id:[0..K]; s1:[0..4]; leader1:[0..1]; mes1 id:[0..K];
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mes1 counter:[0..N];

When a process in state 3, it has received a message from the channel
and takes a decision. If mes1 counter=N, the process is elected as the leader
(leader1’=1), and moves to state 4.

[ ] (s1=3) & (mes1 counter=N)

→ (s1’=4) & (process1 id’=0) & (mes1 id’=0) &

(mes1 counter’=0) & (leader1’=1);

If mes1 id=process1 id and mes1 counter<N, the process goes back to state 0 and
will select a new identity.

[ ] (s1=3) & (mes1 id=process1 id) & (mes1 counter<N)

→ (s1’=0) & (mes1 id’=0) & (mes1 counter’=0) &

(process1 id’=0);

If mes1 id<process1 id, the process purges the message, and moves back to state
2 to receive another message.

[ ] (s1=3) & (mes1 id<process1 id)

→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0);

If mes1 id>process1 id, the process becomes passive, increases the hop counter
of the message by one, and goes to state 4.

[ ] (s1=3) & (mes1 id>process1 id)

→ (s1’=4) & (process1 id’=0) &

(mes1 counter’=mes1 counter+1);

...

endmodule

Other channels and processes can be constructed by module renaming.
Property was successfully model checked with respect to Algorithm B, in a

setting with FIFO channels, for rings up to size five. For any larger ring size,
and in case of ring size five and an identity domain containing three elements,
PRISM fails to produce an MTBDD. Table 2 summarizes the verification results
for Algorithm B with PRISM.

4.2 The correctness proof

In this section we give a correctness proof for Algorithm B, in case of FIFO
channels, with respect to ring networks of arbitrary size. Intuitively, the pro-
cesses and messages between a process p and a message m are the ones that are
encountered when traveling in the ring from p to m. This notion is inductively
defines as follows.

995Fokkink W., Pang J.: Variations on Itai-Rodeh Leader Election ...



Processes Identities Channel size FIFO States Transitions
Ex.1 2 2 2 yes 97 168
Ex.2 3 3 3 yes 6,019 14,115
Ex.3 4 4 4 yes 537,467 1,615,408
Ex.4 5 2 5 yes 752,047 2,626,405

Table 2: Model checking result for Algorithm B with FIFO channels

Definition 4. Consider a state of Algorithm B. If a message m is in the channel
pq from process p to process q, then the messages between p and m are the ones
that were sent by p after it sent m. If m is not in the channel pq, then (1) the
messages in the channel pq, (2) the process q, and (3) the processes and messages
between q and m are all between p and m.

Lemma5. Consider a reachable state of Algorithm B. Let active process p have
identity idp and message m have identity idm. If idp �= idm, then there is an
active process or message between p and m with an identity ≥ min{idp, idm}.

Proof. We apply induction on the minimal number of transitions needed to reach
this state from an initial state.
Basis: Prior to the first arrival of a message, every process is active and has
generated a message with its own identity; thus the lemma trivially holds.
Induction step: When a message arrives at a passive process, it is simply for-
warded. Assume a message m with parameters (id , hop) arrives at an active
process pi with identity id i. If hop = n, then pi is elected as the leader. Since
channels are FIFO, in this case the round trip of the final message of pi guaran-
tees that there are no remaining messages; thus the lemma trivially holds. Now
suppose that hop < n. We consider three cases. In each case we only consider
each pair of an active process and a message that could violate the condition of
the lemma due to the arrival of m at pi.

– id i > id . Then m is purged by pi.

Let pj be an active process with identity id j and m′ a message with identity
id ′, such that pi and m are between pj and m′, and id ≥ min{id j , id ′}. The
active process pi between pj and m′ has identity id i > min{id j , id ′}.

– id i < id . Then pi becomes passive and sends the message (id , hop + 1).

Let pj be an active process with identity id j and m′ a message with identity
id ′, such that pi and m are between pj and m′, and id i ≥ min{id j , id ′}. The
message (id , hop + 1) between pj and m′ has identity id > min{id j , id ′}.
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– id i = id . Then pi selects a new identity id ′
i and sends the message (id ′

i, 1).

We consider three cases, covering each pair of an active process and a message
with different identities that is either newly created (the first two cases) or
that could violate the condition of the lemma due to the new identity of pi

(the third case).

• For any message m′ with identity id ′ �= id ′
i, (id ′

i, 1) is a message between
pi and m′ with identity id ′

i ≥ min{id ′
i, id

′}.
• For any active process pj with identity id j �= id ′

i, pi is an active process
between pj and (id ′

i, 1) with identity id ′
i ≥ min{id j, id ′

i}.
• Let pj be an active process with identity id j and m′ a message with

identity id ′ �= id j , such that pi and m are between pj and m′, and
id i ≥ min{id j , id ′}. Since id ′ �= id j , either id j �= id i or id i �= id ′. So
by induction there is an active process or message either between pj

and m with an identity ≥ min{id j , id i}, or between pi and m′ with an
identity ≥ min{id i, id ′}. Since id i ≥ min{id j , id ′}, in either case there
is an active process or message between pj and m′ with an identity
≥ min{id j , id ′}. ��

Definition 6. Consider a state of Algorithm B. An active process p is related
to a message m if they have the same identity id , and all active processes and
messages between p and m have an identity smaller than id .

Lemma7. Consider a reachable state of Algorithm B. Let active process p be
related to message m. Let ξ be the maximum of all identities of active processes
and messages between p and m (ξ = 0 if there are none).

1. Between p and m, there is an equal number of active processes and of mes-
sages with identity ξ; and

2. if p is not the originator of m, then there is an active process or message
between p and m.

Proof. We apply induction on the minimal number of transitions needed to reach
this state from an initial state.
Basis: Prior to the first arrival of a message, every process is active and has
generated a message with its own identity; thus the lemma trivially holds.
Induction step: When a message arrives at a passive process, it is simply for-
warded. Assume a message m with parameters (id , hop) arrives at an active
process pi with identity id i. If hop = n, then pi is elected as the leader. Since
channels are FIFO, in this case the round trip of the final message of pi guaran-
tees that there are no remaining messages; thus the lemma trivially holds. Now
suppose that hop < n. We consider three cases. In each of these cases we only
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consider related pairs that were either created or affected by the arrival of m at
pi.

– id i > id . Then m is purged by pi.

Let pi be between an active process pj and a message m′. Clearly, id is not
the maximal identity of active processes and messages between pj and m′. So
if pj and m′ are related after the purging of m, they were also related before
this moment. Hence, by induction, the pair pj and m′ satisfies condition 1 of
the lemma. Furthermore, pi is an active process between pj and m′, so the
pair also satisfies condition 2.

– id i < id . Then p becomes passive and sends the message (id , hop + 1).

If an active process p′ is related to (id , hop+1), then clearly it was also related
to m. So by induction the pair p′ and (id , hop + 1) satisfies conditions 1 and
2.

Let pi and (id , hop + 1) be between an active process pj and a message m′.
Clearly, id i is not the maximal identity of active processes and messages
between pj and m′. So if pj and m′ are related after pi has become passive,
they were also related before this moment. Hence, by induction, the pair pj

and m′ satisfies condition 1 of the lemma. Furthermore, (id , hop + 1) is a
message between pj and m′, so the pair also satisfies condition 2.

– id i = id . Then pi selects a new identity id ′
i and sends the message (id ′

i, 1).

Note that pi is the only active process related to (id ′
i, 1), and vice versa.

Clearly, conditions 1 and 2 of the lemma are satisfied by this pair.

Let an active process pj with identity id j be related to a message m′, such
that pi and (id ′

i, 1) are between pj and m′. Since pi is between pj and m′,
condition 2 is satisfied by this pair. We proceed to prove condition 1 for this
pair. We consider three cases.

• id i > id j .

Then by Lemma 5 there is an active process or message between pi and
m′ with identity ≥ id j . This active process or message is also between
pj and m′, which contradicts the fact that pj is related to m′.

• id i < id j .

Then pj and m′ were already related before m reached pi, so by induction
this pair satisfied condition 1 before m reached pi. Let ξ denote the
maximum of all identities of active processes (and of messages) between
pj and m′ before m reached pi; and let # denote the number of active
processes (and of messages) between pj and m′ with identity ξ before m

reached pi. Moreover, let ξ′π and ξ′μ denote the maximum of all identities
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of active processes and messages, respectively, between pj and m′ after
m reached pi; and let #′

π and #′
μ denote the number of active processes

and messages, respectively, between pj and m′ with identity ξ′π and ξ′μ,
respectively, after m reached pi. Clearly id i ≤ ξ. We consider five cases.

If id ′
i > ξ, then ξ′π = id ′

i = ξ′μ and #′
π = 1 = #′

μ.

If id ′
i = ξ and id i = ξ, then ξ′π = ξ = ξ′μ and #′

π = # = #′
μ.

If id ′
i = ξ and id i < ξ, then ξ′π = ξ = ξ′μ and #′

π = # + 1 = #′
μ.

If id ′
i < ξ and id i = ξ, then ξ′π = ξ = ξ′μ and #′

π = #−1 = #′
μ. Namely,

since id i < id j , by Lemma 5 there must be an active process or message
between pi and m′ with identity ≥ id i. Since id i = ξ, this identity must
be equal to id i.

If id ′
i < ξ and id i < ξ, then ξ′π = ξ = ξ′μ and #′

π = # = #′
μ.

• id i = id j .

Then before m reached pi, pj was related to m and pi was related to m′.
So by induction, before m reached pi, these pairs satisfied condition 1. Let
ξ1 and ξ2 denote the maximum of all identities of active processes (and
of messages) between pj and m and between pi and m′, respectively,
before m reached pi; and let #1 and #2 denote the number of active
processes (and of messages) between pj and m and between pi and m′,
respectively, before m reached pi. Moreover, let ξ′π, ξ′μ, #′

π and #′
μ have

the same meaning as in the previous case. We consider seven cases.

If id ′
i > max{ξ1, ξ2}, then ξ′π = id ′

i = ξ′μ and #′
π = 1 = #′

μ.

If ξ1 > max{id ′
i, ξ2}, then ξ′π = ξ1 = ξ′μ and #′

π = #1 = #′
μ.

If ξ2 > max{id ′
i, ξ1}, then ξ′π = ξ2 = ξ′μ and #′

π = #2 = #′
μ.

If id ′
i = ξ1 > ξ2, then ξ′π = id ′

i = ξ′μ and #′
π = #1 + 1 = #′

μ.

If id ′
i = ξ2 > ξ1, then ξ′π = id ′

i = ξ′μ and #′
π = #2 + 1 = #′

μ.

If ξ1 = ξ2 > id ′
i, then ξ′π = ξ1 = ξ′μ and #′

π = #1 + #2 = #′
μ.

If id ′
i = ξ1 = ξ2, then ξ′π = id ′

i = ξ′μ and #′
π = #1 + #2 + 1 = #′

μ. ��

We say that an active process or message is maximal if its identity is maximal
among the active processes or messages in the ring, respectively. In the following
proposition we write ξπ and ξμ for the identity of maximal active processes and
messages, respectively. The number of active processes and messages with the
same identity id is denoted by #id

π and #id
μ , respectively. We write #π and #μ

for the number of maximal active processes and messages, respectively.

Proposition8. For Algorithm B, until a leader is elected, there exist active
processes and messages in the ring, and ξπ = ξμ and #π = #μ.
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Proof. Consider a reachable state of Algorithm B in which no leader has yet
been elected. We apply induction on the minimal number of transitions needed
to reach this state from an initial state.
Basis: Prior to the first arrival of a message, every process is active and has
generated a message with its own identity; thus the proposition trivially holds.
Induction step: By induction, ξπ = ξμ and #π = #μ; we write ξ for ξπ and ξμ,
and # for #π and #μ. When a message arrives at a passive process, it is simply
forwarded. Assume a message m with parameters (id , hop) arrives at an active
process pi with identity id i. If hop = n, then pi is elected as the leader. Now
suppose that hop < n. We consider four cases.

– id i > id . Since ξπ = ξμ, m is not a maximal message. It is purged by pi. The
values of ξπ and ξμ remain unchanged.

– id i < id . Since ξπ = ξμ, pi is not a maximal process. It becomes passive.
The values of ξπ and ξμ remain unchanged.

– id i = id < ξ. Then pi selects a new identity id ′
i, and sends the message

(id ′
i, 1). If id ′

i > ξ, then ξ′π = id ′
i = ξ′μ and #′

π = 1 = #′
μ. If id ′

i = ξ, then
ξ′π = ξ = ξ′μ and #′

π = (# + 1) = #′
μ. If id ′

i < ξ, then ξ′π = ξ = ξ′μ and
#′

π = # = #′
μ.

– id i = id = ξ. Then pi selects a new identity id ′
i, and sends the message

(id ′
i, 1). We distinguish two cases.

• # > 1. If id ′
i > ξ, then ξ′π = id ′

i = ξ′μ and #′
π = 1 = #′

μ. If id ′
i = ξ,

then ξ′π = ξ = ξ′μ and #′
π = # = #′

μ. If id ′
i < ξ, then ξ′π = ξ = ξ′μ and

#′
π = (# − 1) = #′

μ.

• # = 1. Then clearly pi is related to m, and all other active processes
and messages are between them. Since hop < n, pi is not the originator
of m, so by Lemma 7.2 there is some active process or message between
them. Let ξ0 > 0 be the maximum of all identities of active processes
�= pi and messages �= m. By Lemma 7.1, #ξ0

π = #ξ0
μ . If id ′

i > ξ0, then
ξ′π = id ′

i = ξ′μ and #′
π = 1 = #′

μ. If id ′
i = ξ0, then ξ′π = ξ0 = ξ′μ and

#′
π = (#ξ0

π + 1) = #′
μ. If id ′

i < ξ0, then ξ′π = ξ0 = ξ′μ and #′
π = #ξ0

π =
#′

μ. ��

Theorem 9. Let channels be FIFO. Then Algorithm B terminates with proba-
bility one, and upon termination exactly one leader is elected.

Proof. By Proposition 8, some processes remain active until a leader is elected.
A process can be elected as the leader only if it receives a message with a
hop counter equal to n, which means the message has passed through all other
processes and made them passive. Hence, we have uniqueness of the leader.
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It remains to show that the algorithm terminates with probability one. When
there are � ≥ 2 active processes in the ring, these processes all remain active if
and only if they all the time choose the same identity. Otherwise, at least one
active process will become passive. The probability that all active processes select
the same identity in one “round” is ( 1

k )�−1. So the probability for all � active
processes to choose the same identity m times in a row is ( 1

k )m(�−1). Since k ≥ 2,
the probability that the number of active processes eventually decreases is one.

Clearly, when there is only one active process in the ring, it will be elected
as the leader. After the round trip of its final message there are no remaining
messages, because channels are FIFO. ��

5 Performance Analysis

A probabilistic analysis in [Itai and Rodeh 1981] reveals that if k = n, the ex-
pected number of rounds required for the Itai-Rodeh algorithm to elect a leader
in a ring with size n is bounded by e· n

n−1 . The expected number of messages for
each round is in the order of n logn. Hence, the average message complexity of
the Itai-Rodeh algorithm is Θ(n log n). Likewise, Algorithms A and B have an
average message complexity of Θ(n log n).

The probabilistic temporal logic PCTL can be used to express soft deadlines,
such as “the probability of electing a leader within t discrete time steps is at
most 0.5”.2 A PCTL formula to calculate the probability of electing a leader
within t discrete time steps for a ring with two processes is

P=? [ true U<=t (s1=4 & s2=4 & leader1+leader2=1)]

We used PRISM to calculate the probability that Algorithms A and B termi-
nate within a given number of transitions, for rings of size two and three. The
experimental results presented in Fig. 2 and Fig. 3 indicate that Algorithm B
seems to have a better performance than Algorithm A. Note that when t moves
to infinity, both algorithms elect a leader with probability one.

6 Formal Verifications of Leader Election Algorithms

On the web page of PRISM [PRISM], the Itai-Rodeh algorithm for asynchronous
rings was adapted for synchronous rings. In PRISM, processes synchronize on
action labels, so a synchronous ring can simply be modeled by excluding channels
from the specification. Processes are synchronized in the same round, thus round
numbers are not needed (similar to our Algorithm A). The state space therefore
becomes finite, and PRISM could be used to verify the property “with probability
2 Each discrete time step corresponds to one transition in the algorithm.
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Figure 2: The probability of electing a leader with deadlines.

one, eventually a unique leader is elected”, for rings up to size eight. Also the
probability of electing a leader in one round was calculated.

Garavel and Mounier [Garavel and Mounier 1997] described both Le Lann’s
algorithm and the Chang-Roberts algorithm using the process algebraic language
LOTOS. They studied these two algorithms in the presence of unreliable commu-
nication network and/or unreliable processes and suggested some improvements.
Their verification was performed using the model checker CADP. Fredlund et
al. [Fredlund et al. 1997] gave a manual correctness proof of the Dolev-Klawe-
Rodeh algorithm in the process algebraic language μCRL, for arbitrary ring size.
Brunekreef et al. [Brunekreef et al. 1996] designed a number of leader election
algorithms for a broadcast network, where processes may participate and crash
spontaneously. They used linear-time temporal logic to manually prove that the
algorithms satisfy their requirements.

The IEEE 1394 high performance serial bus (called “FireWire”) is used to
transport video and audio signals within a network of multimedia devices. In
the tree identify phase of IEEE 1394, which takes place after a bus reset in
the network, a leader is elected. For the sake of performance, identities of nodes
cannot be sent around the network, so that it is basically an anonymous network.
The leader election algorithm in the IEEE 1394 standard works for acyclic,
connected networks. If a cycle is present, it produces a timeout. The algorithm
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Figure 3: The probability of electing a leader with deadlines.

has been specified and verified with a number of different formal techniques. We
give an overview of these case studies.

Shankland and van der Zwaag [Shankland and van der Zwaag 1998] manu-
ally verified the leader election algorithm in μCRL, at three different levels of
detail. Shankland and Verdejo [Shankland and Verdejo 2001] used E-LOTOS to
manually verify the algorithm. Abrial et al. [Abrial et al. 2003] used an event-
driven approach with the B Method to develop mathematical models of the
algorithm; the internal consistency of each model as well as its correctness
with regard to its previous abstraction were proved mechanically. Verdejo et
al. [Verdejo et al. 2003] described the algorithm at different abstract levels, us-
ing the language Maude based on rewriting logic; they verified the algorithm
by an exhaustive exploration of the state space that always exactly one leader
is chosen. Moreover, they gave a manual correctness proof for general acyclic
networks. Devillers et al. [Devillers et al. 2000] verified the algorithm using an
I/O automata model; the main part of their proof has been checked with the
theorem prover PVS. Romijn [Romijn 2001] extended their I/O automata model
with timing parameters from the IEEE 1394 standard, and manually proved that
under certain timing restrictions the algorithm behaves correctly. Calder and
Miller [Calder and Miller 2003] verified some properties of the algorithm using
the model checker Spin, for networks with up to six nodes. Schuppan and Biere
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[Schuppan and Biere 2003] used the model checker SMV to check the correctness
of the algorithm for networks with up to ten nodes.

7 Conclusion and Future Work

In this paper, we presented two probabilistic leader election algorithms for anony-
mous unidirectional rings with FIFO channels. In [Fokkink and Pang 2004], we
also showed that if processes can select identities from a set of only two elements,
then both of our algorithms work correctly for non-FIFO channels. We gave a
manual correctness proof for each algorithm. Future work is to formalize and
check these proofs by means of a theorem prover such as PVS.

Both algorithms were specified and successfully model checked with PRISM.
They satisfy the property “with probability 1, eventually exactly one leader
is elected”. The complete specifications in PRISM can be found at seshome.

informatik.uni-oldenburg.de/~jun/leader/. The generation of state spaces
and the verifications were performed on a 1.4 GHz AMD AlthlonTM Processor
with 512 Mb memory. The PRISM automatic verification of our algorithms was
reported in [Fokkink and Pang 2005]. Although the PRISM verification of the
two algorithms is limited to ring size up to four, it allowed us to perform some
analysis during the design phase, which gave us some insight into the algorithms.
In particular, we found that the experiments feature in PRISM is quite useful. It
provides a way of automating multiple instances of model checking. By making
such experiments, we could show that the first algorithm is on average faster
than the other (see Section 5). The work with PRISM has given additional value
to this work and has proved beneficial.

In [Itai and Rodeh 1981] it is stated:

“We could have used any of the improved algorithms [Dolev et al. 1982],
[Burns 1980], [Hirschberg and Sinclair 1980], [Peterson 1982].”

Following this direction, we developed two more probabilistic leader election al-
gorithms, based on the Dolev-Klawe-Rodeh algorithm [Dolev et al. 1982]. Both
of them are finite-state, and we model checked them successfully in μCRL
[Blom et al. 2001] up to ring size six. The adaptations of the Dolev-Klawe-
Rodeh algorithm are very similar to our adaptations (Algorithms A and B)
of the Chang-Roberts algorithm; i.e., processes again select random identities,
and name clashes are resolved in exactly the same way. Therefore our adap-
tations of the Dolev-Klawe-Rodeh algorithm are not presented here. The in-
terested reader can find the specifications of all our algorithms at seshome.

informatik.uni-oldenburg.de/~jun/leader/. These specifications are in the
language μCRL, which was used for an initial non-probabilistic model checking
exercise.
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