Journal of Universal Computer Science, vol. 12, no. 7 (2006), 868-884
submitted: 28/1/06, accepted: 6/4/06, appeared: 28/7/06 © J.UCS

Strong Mobility in Mobile Haskell

André Rauber Du Bois
(Escola de Informaética
Universidade Catdlica de Pelotas, Brazil
dubois@ucpel.tche.br)

Phil Trinder
(School of Mathematical and Computer Sciences
Heriot-Watt University, UK
trinder@macs.hw.ac.uk)

Hans-Wolfgang Loidl
(Institut fiir Informatik
Ludwig-Maximilians-Universitdt Miinchen, Germany
hwloidl@informatik.uni-muenchen.de)

Abstract: In a mobile language, computations can move between locations in a net-
work to better utilise resources, e.g., as in a computational GRID. Mobile Haskell, or
mHaskell, is a small extension of Concurrent Haskell that enables the construction of
distributed mobile software by introducing higher order communication channels called
Mobile Channels (MChannels). mHaskell only provides weak mobility, i.e. the ability
to start new computations on remote locations. This paper shows how strong mobil-
ity, i.e. the ability to migrate running threads between locations, can be implemented
in a language like mHaskell with weak mobility, higher-order channels and first-class
continuations. Using Haskell’s high level features, such as higher-order functions, type
classes and support for monadic programming, strong mobility is achieved without any
changes to the runtime system, or built-in support for continuations. Strong mobility
is illustrated with examples and a mobile agent case study.

Key Words: Mobile Computation, Strong Mobility, Functional Programming,
Haskell

Category: D.3.3

1 Introduction

In languages that support mobile computation [Cardelli 1999], executing compu-
tations can move over the network to better utilise the available resources, e.g.,
as in a computational GRID [Foster and Kesselman 1999]. In essence a mobile
program can transport its state and code to another location in the network,
where it resumes execution. Mobile computations are commonly user applica-
tions or autonomous mobile programs such as agents.

There are a number of important mobility concepts. Hardware mobility is
the mobility of physical devices like laptops or PDAs. Software mobility, or

Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ... 869

mobile computation, is the mobility of programs or code between locations or
devices. There is a strong connection between both areas as mobile hardware can
benefit from mobile computation. Mobile computation may either be weak or
strong [Fuggetta et al. 1998]. Weak mobility is the ability to move code between
locations, or basically to start new computations on remote locations. With
weak mobility either a program running on a location dynamically links to the
incoming code or a new thread is started to run the incoming code. Strong
mobility is the ability to move code together with the execution state of the
program, or moving computations. The execution is suspended, transmitted to
the destination site, and resumed there. Mobile agents are a common application
of strong mobility.

Languages that support weak mobility usually provide constructs for remote
evaluation, or remote thread creation, which would have these types in Haskell:

rfork :: I0 () -> HostName -> I0 ()
reval :: I0 a -> HostName -> I0 a

The primitive for remote thread creation, rfork, takes as arguments a com-
putation and a location in the network and executes the computation on that
location. Remote evaluation, reval, executes a remote computation and returns
the result of this computation to the location that called reval. The abstraction
provided by reval is similar to that provided by Java’s RMI [Grosso 2001], the
difference being that reval sends the whole computation (including its code) to
be evaluated on the remote host, and RMI uses proxies (stubs and skeletons) to
give access to remote methods. With weak mobility, the programmer can only
start remote computations and no migration of running threads is possible. Writ-
ing programs using weak mobility can be complicated in some cases, specially
when the programmer wants to control where the continuation of a computation
will be executed.

mHaskell is an extension of the purely functional language Haskell for mo-
bile computation. It extends Haskell with higher-order polymorphic commu-
nication channels, MChannels. These low level constructs can be used to im-
plement medium-level abstractions for weak mobility such as rfork and reval
[Du Bois et al. 2005b].

This paper demonstrates that strong mobility can be elegantly implemented
in a language with weak mobility, higher-order channels and first-class contin-
uations. As mobile communication is stateful, the implementation also makes
essential use of stateful operations, and in mHaskell the use of monads poten-
tially allows reasoning even about these stateful operations. We also demonstrate
the practical usability of the resulting programming style in Haskell by imple-
menting several small examples and one realistic case study.

870 Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ...

2 Mobile Haskell

Mobile Haskell, or mHaskell [Du Bois et al. 2005a], is a small extension of Con-
current Haskell [Peyton Jones 2001]. It enables the construction of distributed
mobile software by introducing higher order communication channels called Mo-
bile Channels, or MChannels. MChannels allow the communication of arbitrary
Haskell values including functions, IO actions and channels. Figure 1 shows the
MChannel primitives.

data MChannel a -- abstract

type HostName = String

type ChanName = String

newMChannel :: I0 (MChannel a)

writeMChannel :: MChannel a -> a -> I0 ()

readMChannel :: MChannel a -> I0 a

registerMChannel :: MChannel a -> ChanName -> I0 ()
unregisterMChannel:: MChannel a -> I0()

lookupMChannel :: HostName -> ChanName -> I0 (Maybe (MChannel a))

Figure 1: Mobile Channels

The newMChannel function is used to create a mobile channel and the functions
writeMChannel and readMChannel are used to write/read data to/from a chan-
nel. MChannels provide synchronous communication between hosts but when
used locally have similar semantics to Concurrent Haskell channels. When a
readMChannel is performed in an empty MChannel it will block until a value is
received on that MChannel and, when a value is written to a MChannel, the
current thread blocks until the value is received in the remote host. The func-
tions registerMChannel and unregisterMChannel register/unregister channels in
a name server. Once registered, a channel can be found by other programs using
lookupMChannel, which retrieves a mobile channel from the name server. A name
server is always running on every location of the system and a channel is always
registered in the local name server with the registerMChannel function. MChan-
nels are single-reader channels, meaning that only the program that created the
MChannel can read values from it. Values are evaluated to normal form before
being communicated, but IO actions are never executed.

MChannels are single reader channels mainly for security: if all programs
could read from a channel retrieved using lookupMChannel, then a client could
pretend to be a server and steal its messages.

Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ... 871

2.1 Finding Resources

One of the objectives of mobile programming is to better exploit the resources
available in a network. Hence, if a computation migrates from one location of
a network to another, this computation must be able to discover the resources
available at the destination e.g. databases, local functions, load information, etc.

type ResName = String

registerRes :: a -> ResName -> I0 ()
unregisterRes :: ResName -> I0 ()
lookupRes :: ResName -> I0 (Maybe a)

Figure 2: Primitives for resource discovery

mHaskell provides primitives for resource discovery and registration (Fig-
ure 2). All locations running mHaskell programs must also run a registration
service for resources. The registerRes function takes a name (ResName) and a
resource (of type a) and registers this resource with the name given. The func-
tion unregisterRes unregisters a resource associated with a name, and lookupRes
takes a ResName and returns a resource registered with that name in the local
registration service. To avoid a type clash the programmer should register re-
sources using dynamic types. The GHC [GHC 2006] Haskell compiler has basic
support for dynamic types [Ladmmel and Peyton-Jones 2003], providing opera-
tions for injecting values of arbitrary types into a dynamically typed value, and
operations for converting dynamic values into a monomorphic type.

2.2 Remote Thread Creation

mHaskell also provides a construct for remote thread creation:

rfork :: I0 () -> HostName -> IO ()

It is similar to Concurrent Haskell’s forkI0 as it takes an IO action as an
argument but instead of creating a local thread, it sends the computation to be
evaluated on the remote host HostName. The rfork function has a straightforward
implementation using MChannels as described in [Du Bois et al. 2005b], and the
reval construct described in the Introduction, can be implemented in terms of

rfork.

872 Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ...

3 Mobile Threads

Some languages that support code mobility also support the migration of running
computations or strong mobility. mHaskell could be extended with a primitive
for transparent strong mobility, i.e., a primitive to explicitly migrate threads:

moveTo :: HostName -> I0()

The moveTo primitive receives as an argument a HostName to where the current
thread should migrate.

Strong mobility is an extension of the remote evaluation paradigm. While
with reval the programmer can send subprograms to be executed remotely, with
strong mobility, running computations migrate between hosts, hence allowing
arbitrary code movement. Strong mobility is very useful when the programmer
wants to control where the continuation of a computation will be executed.

Strong mobility is usually implemented in one of two ways: runtime system
(RTS) support, or continuations + weak mobility:

— RTS support: In this case the language provides libraries for serialising
the state of the current thread (its stack) into a stream of bytes that
can be easily communicated using any network protocol (as in the Jo-
caml [Conchon and Fessant 1999] system). These routines for serialisation
are more complicated than those usually available in programming languages
(i.e., Java), as not only data must be communicated but the state of the
whole computation including registers, stacks and memory. Our work on
thread migration presented in [Du Bois et al. 2002], can be seen as the first
steps in providing strong mobility at the RTS level in mHaskell.

— Continuations + Weak Mobility: In languages that have na-
tive support for continuations (through a construct like
call/cc [Friedman and Felleisen 1995]) and weak mobility, a strong
mobility construct can be easily implemented by capturing the continua-
tion of the current computation and sending it to be executed remotely
(as in Kali Scheme [Cejtin et al. 1995], and Sumii’s implementation of a
mobile version of Scheme [Sumii 2000]). In some languages that do not
have native support for continuations, strong mobility is implemented by
using code transformation: the code of a mobile thread is transformed so
that at the point where the moveTo construct is called, the continuation
of the thread is available as an extra argument for remote execution.
This approach is used in languages like Mobile Java [Sekiguchi 1999] and
Klaim [Bettini and Nicola. 2001].

Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ... 873

In this Section, we present a somewhat different implementation of Strong
Mobility. mHaskell has primitives for weak mobility but the current implemen-
tations of Haskell do not have built-in support for continuations. It is well known
how continuations can be elegantly implemented in Haskell using a continuation
monad [Wadler 1995, Claessen 1999], and using Haskell’s support for monadic
programming and interaction between monads, a continuation monad can op-
erate together with the IO monad, hence inheriting support for concurrent and
distributed programming using Concurrent Haskell and MChannels. First, in
Section 3.1 a new type of mobile threads based on a continuation monad is pre-
sented. Section 3.2 describes how a primitive for strong mobility can be imple-
mented using weak mobility and the continuation monad. In Sections 3.3 to 3.5
examples of the use of mobile threads are given, including a tree search algorithm
and a new implementation of the mobility skeleton mfold [Du Bois et al. 2005b],
using foldr and lazy evaluation.

3.1 A Continuation Monad

To implement mobile threads, we need to have the continuation of a
thread available at any time while the thread is running. The current
implementations of Haskell do not have a built-in primitive to capture
the continuation of a computation, as call/cc in the functional language
Scheme [Friedman and Felleisen 1995]. To make the continuation of the cur-

rent thread available in Haskell, we use a simple continuation monad, adapted
from [Claessen 1999]:

newtype Mm a = M {runC :: (a -> Action m) -> Action m}

bindC :: Mma->(a->Mmb) ->Mmbd
m ‘bindC* k =M $ \¢ > runCm $ (\a -> runC (k a) c)

returnC :ta->Mma
returnC x =M (\c -> ¢ x)

instance Monad m => Monad (M m) where
m>=k =m ‘bindC* k
return x = returnC x

The Action data type describes what can be done in the continuation monad.
The type has two values, an Atom that is the computation being executed, and
Stop that is used to stop the execution of the current thread when writing escape
functions. An Atom describes an atomic computation that when executed returns
a new Action, which is the continuation of the current thread.
data Action m

= Atom (m (Action m))
| Stop

action :: Monad m => M m a -> Action m

874 Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ...

action m = runC m (\a -> Stop)
atom :: Monad m =>ma ->Mma
atom m = M (\c -> Atom (do a <- m ; return (c a)))

The atom function is used to execute other monads inside the continuation
monad. In Haskell, threads created using concurrent Haskell are executed inside
the IO monad, hence mobile threads should be able to execute IO actions in a
similar way. The atom function, can be used to transform any IO action (of type
10 a) into a mobile action of type M 10 a. The monad M is a monad transformer,
and the act of transforming one monad into another is called lifting:

instance MonadTrans M where
1lift = atom

An Action can be either an Atom that must be executed, or a Stop that
tells that the current computation is finished or should be aborted. A monad
usually has a run function, that is used to execute the monad. In the case of
the continuation monad, it will execute the Actions, until it finds a Stop value,
meaning that the computation has finished.
execute :: Monad m => Action m -> m ()

execute Stop return ()
execute (Atom am) do a <- am ; execute a

run :: Monad m => Mma ->m ()
run m = execute (action m)

Mobile threads should run as real threads in the runtime system. In Concur-
rent Haskell, threads are forked using the forkI0 primitive, and mobile threads
are run inside of a Concurrent Haskell thread, hence providing real concurrency:
forkMT :: M I0 () -> I0 O

forkMT io = do forkIO (run io)
return ()

The forkMT function, takes as an argument a mobile thread of type M 10 ()
and creates a Concurrent Haskell thread to run the computation using the run
function of the continuation monad.

3.2 The moveTo operation

The moveTo function, that appears in Figure 3, sends the continuation of the
current thread to be executed on a remote host, and terminates the thread that
called it.

It takes as an argument a HostName where the computation should continue its
execution and uses rfork to start a remote thread that evaluates the continuation
of the current thread. The moveTo operation is an escape function, meaning that
the current thread finishes after sending its continuation for remote execution.

Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ... 875

moveTo :: HostName —> M I0 ()
moveTo host = M (\c -> action $ 1lift (rfork (execute (c ())) host))

Figure 3: The moveTo function

3.3 Example 1: Migrating a Thread

In Figure 4 a simple example using strong mobility is given. The program gets
the name of the current location, moves to a new location where the name of
the previous location is printed.

main = do
forkMT ex

ex :: M IO Q)

ex = do name <- 1lift getHostName
moveTo "lxtrinder"
lift $ print name

Figure 4: A Simple Strong Mobility Example

The important thing to notice in the example is that, besides the use of 1ift,
the use of a continuation is completely hidden in the monad, and the mobile
thread is written in a similar way as a normal Concurrent Haskell thread.

3.4 Example 2: Mobile Tree Search

The advantage of using strong mobility comes when the programmer wants to
control where the continuation of a computation must be executed. As an ex-
ample, taken from [Sekiguchi 1999], consider the mHaskell program in Figure 5.
It is a tree search algorithm, the idea is that there is a network of computers
connected as a binary tree, and the algorithm will transverse the tree and exe-
cute an IO action on each Leaf, combining the results with an operator. This is
the typical behaviour of a search robot that analyses web pages by following the
links in them.

In the base case, when mTSearch finds a Leaf it will simply execute the I0
action. In the next case, findLoc is used to extract the next location to be visited
from the right (treer) and left (treel) branches of the tree:
findLoc :: Tree HostName -> HostName

findLoc (Leaf host) = host
findLoc (Node host treer treel) = host

876 Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ...

mTSearch :: I0 a -> (a -> a -> a) —-> Tree HostName -> M I0 a
mTSearch action op (Leaf host) = lift action
mTSearch action op (Node host treel treer)= do

moveTo (findLoc treel)

x <- mTSearch action op treel

moveTo (findLoc treer)

y <- mSearch action op treer

return (op x y)

Figure 5: Tree search using strong mobility

For each branch, it does a recursive call to mTSearch to search for a Leaf.

One could try to write the same recursive program using remote evaluation
as in the example of Figure 6. Looking closely to both versions of the program,
it is possible to see that they do not have the same pattern of control transfer
between the locations visited. Considering the Tree of Figure 7, where there is a
node A with two subtrees B and €. The program in Figure 5 would migrate from
A to B, and then to ¢. The program using remote evaluation (Figure 6) migrates
from A — B — A — ¢ — A. While the addition in the first program takes place
in C, in the second it takes place in A.

mTSearch :: I0 a -> (a -> a -> a) -> Tree HostName -> I0 a
mTSearch action op (Leaf host) = action
mTSearch action op (Node host treel treer)= do
x <- reval (mTSearch action op treel) (findLoc treel)
y <- reval (mTSearch action op treer) (findLoc treer)
return (op x y)

Figure 6: Tree search using weak mobility

To make the remote evaluation program to have the same behaviour as the
one using strong mobility, it would need to have an extra argument representing
the continuation of the computation, making the code bigger and more difficult
to understand [Sekiguchi 1999]. Hence, the advantage of using mobile threads
and the moveTo construct, is that the continuation is hidden in the continua-
tion monad, and the program can be written as a normal Concurrent Haskell
program.

3.5 Example 3: The mfold Skeleton

Mobility skeletons are polymorphic higher-order functions that encapsulate com-
mon patterns of mobile computation [Du Bois et al. 2005b]. A common pattern
of mobility is a computation that visits a set of locations performing an action

Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ... 877

/\

Figure 7: Searching in a Tree

at every location and combining the results. This pattern matches the concept
of a distributed information retrieval (DIR) system. A DIR application gathers
information matching some specified criteria from information sources dispersed
in the network. This kind of application has been considered “the killer ap-
plication” for mobile languages [Fuggetta et al. 1998]. A skeleton that has this
behaviour is shown in Figure 8. The mfold skeleton takes as arguments an action
(of type I0 a) to be executed on every host, a function to combine the results
of these actions, an initial value, a function that tells what should be done with
the result of the computation, and a list of locations to visit.

mfold::I0 a-> (a-> a-> a)-> a-> (a-> I0 ())-> [HostName]-> M I0 ()
mfold f op v final hosts = do
result <- foldr (1iftM2 op) (return v) (map (move f) hosts)
1lift $ final result
where
move::I0 a —> HostName -> M I0 a
move action host = do
moveTo host
result <- 1lift action
return result

Figure 8: mfold using strong mobility

The interesting thing to notice in the implementation of mfold presented here,
is that although the function move is mapped over the list of hosts generating a
list of actions, the mobility of the thread only occurs when the foldr consumes
the list, executing the IO actions.
The application of mfold to its arguments, generates a mobile thread, hence
the program must be executed using forkMT, as in the following program:
main = do
mch <- newMChannel
forkMT (mfold getLoad (+) O (writeMChannel mch) listofhosts)

resp <- readMChannel mch
print ("Total Load: " ++ show resp)

In the example, mfold uses getLoad to get the load of the hosts in 1istofhosts,

878 Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ...

and after visiting all the elements of the list, the result of the computation is
sent back through the MChannel mch.

4 Case Study: A Mobile-Agent Platform

A mobile agent is a program that can move across locations in a network inter-
acting with resources and other agents. An agent should be autonomous enough
in order to decide when and where to move, even when the host that launched
the agent is not connected to the network anymore. In this section we describe
how mHaskell can be used to implement a simple mobile agent platform, based
on the Agent Tcl platform [Gray et al. 1996], that supports partially connected
computers i.e., computers that are not always connected to the network, such
as laptops and PDAs. Mobile Agents is an interesting programming paradigm
when partially connected computers are involved: a user can launch an agent to
do some work and then disconnect his laptop. When connected to the network
again, the user can retrieve the information gathered by the agent.

The objective of the simple mobile agent system presented here is to provide
the following functionalities:

— Communication between an agent and its creator, and among agents.
— A way of locating and killing agents that are moving on a network
— An agent should be able to find and use resources available in the locations

— The system must be able to handle partially connected machines and its
agents

4.1 The Docking System

The mobile agent platform presented here is based on the idea of a docking
system (Figure 9). Every mobile computer in the network is associated with a
permanently connected computer, or docking station, that controls and coordi-
nates the mobile agents created by the mobile computer.

The docking station keeps track of the current state of an agent:

data AgentState = Located HostName |
Moving HostName | Killed

Every time an agent wants to migrate from one location in the network to
another, the docking station must be asked for permission. The docking station
contacts the destination and if it is ready to receive the agent, a permission for
migration is given and the state of the agent is updated in the docking station.
This process is described in Figure 10.

Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ... 879

=

L™] L -
'—T.'_'zl- Docking Station T =
=5 <o

Laptop Docking Station IT

Permanently Connected Network

L.

Laptop

Figure 9: Mobile Agent Platform

agentLoop :: MVar AgentState ->
MChannel DockMesg -> I0 ()
agentLoop statea mch = do
msg <- readMChannel mch
case msg of
Move newhost (returnch) —> do
s <- takeMVar statea
case s of
Killed -> do
writeMChannel returnch Die
collectGarbage
return ()
Located h -> do
procMigration returnch newhost statea
agentLoop statea mch

...

Figure 10: Processing messages sent by the agent

The docking station has one thread to manage each agent registered
(agentLoop). When the agent executes the moveTo primitive, moveTo asks the
docking station for permission by sending a Move message. If the agent was killed
by another process, the docking station sends a Die message back to the agent,
deletes from its internal tables any reference do the agent (collecGarbage), and
stops the agentLoop thread. The current state of the agent is kept inside of an
MVar [Peyton Jones 2001], that is a shared mutable variable, and works as a
semaphore: every thread that tries to read from an empty MVar will block until
it is filled with a value. If the agent is located somewhere, procMigration is called
(Figure 11).

The procMigration function, checks if the remote location is able to receive
another agent. If the destination is Available, the docking station sends a per-
mission to move and updates the state of the agent. Once the agent arrives, the

880 Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ...

procMigration returnch newhost statea = do
resp <- checkRemoteLocation newhost
case resp of
Available -> do
writeMChannel returnch 0K
putMVar statea (Moving newhost)
NotAvailable -> do
writeMChannel returnch MoveToDock
myname <- getHostName
putMVar statea (Located myname)

Figure 11: The procMigration function

agent system sends a message back to the docking station confirming its new
location. If the agent needs to migrate to a location that is NotAvailable, e.g.
a laptop that is not currently connected to the network, the agent is told to
move to the docking station, and wait until the laptop is connected again to the
network. A location in the network can be NotAvailable for a long time and, in
that case, it would be a waste of resources to keep the agent in memory, so its
state, the continuation of its thread, could be saved on disk, using mHaskell’s
serialisation primitives [Du Bois et al. 2005a], and recovered once the docking
station detects that the location to where the agent wants to move is available.

All locations in the system must run an agent server that keeps track of the
agents currently running on that location, and is used, together with the docking
station, to send messages to the agents, as described in Section 4.4.

The forkMT and moveTo functions have to be modified in order to register the
agent in the docking station once it is created, and to contact it every time the
agent needs to change its current location:

type MAgentID = MChannel DockMesg

forkMT :: M I0 () -> HostName -> I0 MAgentID
forkMT action dockingstation = do
mch <- registerAgent dockingstation
tid <- forkI0 (run action)
registerWithAgentServer tid mch
return mch

The new forkMT function registers the agent with the docking station using
registerAgent, that will contact the docking station, create a new agentLoop
thread for the agent, and return an MChannel that can be used to contact
the agentLoop thread. The new agent is created using forkI0 and its thread id
is registered with the local agent server. The reason for that is explained in
Section 4.4.

An MAgentID is simply an MChannel through which it is possible to contact
the agentLoop thread for the agent in the docking station. When an agent mi-
grates from the machine that created it, it can only be reached through the

Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ... 881
docking station using its MAgentID.

4.2 TUsing Resources

As described in Section 2.1, mHaskell already provides primitives for resource
registration and discovery, and the same primitives can also be used by an agent
to find and use the resources available in the locations that it visits.

We do not describe here how agents find the names for resources and and
where they are located. Agents could find these names in distributed databases,
or yellow pages [Gray et al. 1996], where resources can be registered and accessed
as in a peer-to-peer network.

4.3 Agent Communication

Agent
Owner’s Thread I R Dock_A ~ Server
-t~ write msg S

post—office A readmsg “~ N

Host X Host Y Host Z

Figure 12: The Post-Office

MChannels are single-reader channels, meaning that an agent can only read
values from the channel in the location where the channel was created. If the
agent migrates to another location, even if it has a reference to a MChan-
nel, it cannot read values from it anymore. Multiple-reader channels for agents
(AgChannels) can be implemented in mHaskell using a centralised server, or,
post-office: an MChannel is created in a remote location, the location where the
post-office is, and threads reading and writing to the AgChannel send messages to
this location. The post-office is represented as a thread that reads/writes values
into the MChannel, and the primitives for writing and reading values into the
AgChannel simply send messages to the post-office requesting the operations, as
can be seen in Figure 12.

4.4 Locating and Killing Agents

An agent can be easily located and killed through the docking station. For ex-
ample, here is a function that finds where the current location of an agent is:

882 Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ...

Agent kill agent A Agent
Server Dock Apy--=77-"-" | Server

killThread

Host X Host Y

Figure 13: Killing a Mobile Agent

pingAgent :: MAgentID -> IO HostName
pingAgent mch = do
resp <- newMChannel
writeMChannel mch (Ping resp)
currentLocation <- readMChannel resp
return currentLocation

It uses the MAgentID MChannel to contact the docking station, and ask what
the current placement of an agent is, returning an empty name if the agent is not
alive anymore. This function is useful when an agent is sent off to visit a large
number of locations sequentially, and its owner wants to know approximately
the agent’s position.

An agent can be killed using the killAgent function:

killAgent :: MAgentID -> I0 ()
killAgent mch = writeMChannel mch KillAgent

This function sends a KillAgent message to the agentLoop thread. The state
of the agent is updated to Killed, and it will not be allowed to migrate to new
locations anymore. Then the docking station tells the agent server in the agent’s
current location that the agent should die. The agent server uses the killThread
function, available in the Concurrent Haskell library, to kill the thread in which
the agent is running (Figure 13).

5 Conclusions and Future Work

This paper has shown how strong mobility can be elegantly implemented
in a language like mHaskell with weak mobility, higher-order channels and
first-class continuations. Strong mobility has been illustrated using exam-
ples and a non-trivial case study. It is well-known in principle that strong
mobility can be implemented using weak mobility constructs and continua-
tions [Cejtin et al. 1995, Sumii 2000]. However, we also demonstrate in a real-
istic case study the usability of the resulting programming style in a modern

Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ... 883

functional language such as mHaskell, exploiting in particular Haskell’s support
for monadic programming and higher order functions.

The work could be developed further in several ways. Programs using strong
mobility are cumbersome if most of the actions in the mobile thread are monadic,
as IO actions have to be lifted into the continuation monad. It would be very
useful to add another stage in the Haskell compiler that automatically changes
a program of type I0 () into a program of type M 10 (). Similarly, Concurrent
Haskell supports asynchronous exception [Peyton Jones 2001], and the same ap-
proach used to kill an agent can be used to raise an exception in a remote thread.
The mobile agent system presented here can serve as a model for implementing
a library for distributed asynchronous exceptions in Haskell.

Acknowledgements

The authors would like to thank the anonymous referees for their constructive
suggestions that helped to improve both the text and the code presented in
the paper. This work has been partially supported by an ORS and James Watt
Scholarship.

References

[Bettini and Nicola. 2001] Bettini, L. and Nicola., R. D. (2001). Translating strong
mobility into weak mobility. In Proc. of 5th IEEE Int. Conf. on Mobile Agents
(MA). Springer-Verlag, LNCS 2240.

[Cardelli 1999] Cardelli, L. (1999). Mobility and Security. In Proceedings of the NATO
Advanced Study Institute on Foundations of Secure Computation, pages 3-37, Mark-
toberdorf, Germany.

[Cejtin et al. 1995] Cejtin, H., Jagannathan, S., and Kelsey, R. (1995). Higher-order
distributed objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 17(5):704-739.

[Claessen 1999] Claessen, K. (1999). A poor man’s concurrency monad. J. Funct.
Program., 9(3):313-323.

[Conchon and Fessant 1999] Conchon, S. and Fessant, F. L. (1999). Jocaml: Mobile
agents for Objective-Caml. In First International Symposium on Agent Systems and
Applications (ASA’99)/Third International Symposium on Mobile Agents (MA’99),
Palm Springs, CA, USA.

[Du Bois et al. 2002] Du Bois, A. R., Loidl, H.-W., and Trinder, P. (2002). Thread
migration in a parallel graph reducer. In IFL. Springer-Verlag, LNCS 2670.

[Du Bois et al. 2005a] Du Bois, A. R., Trinder, P., and Loidl, H.-W. (2005a).
mHaskell: mobile computation in a purely functional language. Journal of Universal
Computer Science, 11(7):1234-1254.

[Du Bois et al. 2005b] Du Bois, A. R., Trinder, P., and Loidl, H.-W. (2005b). Towards
Mobility Skeletons. Parallel Processing Letters, 15(3):273—-288.

[Foster and Kesselman 1999] Foster, I. and Kesselman, C., editors (1999). The grid:
blueprint for a mew computing infrastructure. Morgan Kaufmann Publishers Inc.,
San Francisco, CA; USA.

[Friedman and Felleisen 1995] Friedman, D. P. and Felleisen, M. (1995). The Little
Schemer, 4th edition. MIT Press.

884 Rauber Du Bois A., Trinder P., Loidl H.-W.: Strong Mobility ...

[Fuggetta et al. 1998] Fuggetta, A., Picco, G., and Vigna, G. (1998). Understanding
Code Mobility. Transactions on Software Engineering, 24(5):342-361.

[GHC 2006] GHC (2006). The Glasgow Haskell Compiler,
http://www.haskell.org/ghc. WWW page.

[Gray et al. 1996] Gray, R. S., Kotz, D., Nog, S., Rus, D., and Cybenko, G. (1996).
Mobile agents for mobile computing. Technical Report TR96-285, Dartmouth Col-
lege.

[Grosso 2001] Grosso, W. (2001). Java RMI. O’Reilly.

[Lidmmel and Peyton-Jones 2003] Lammel, R. and Peyton-Jones, S. (2003). Scrap
your boilerplate: a practical design pattern for generic programming. In Proceed-
ings of TLDI 2003. ACM Press.

[Peyton Jones 2001] Peyton Jones, S. (2001). Tackling the awkward squad: monadic
input/output, concurrency, exceptions, and foreign-language calls in Haskell. In
Hoare, T., Broy, M., and Steinbruggen, R., editors, Engineering theories of software
construction, pages 47-96. I0S Press.

[Sekiguchi 1999] Sekiguchi, T. (1999). A Study on Mobile Language Systems. PhD
thesis, Department of Information Science, The University of Tokio.

[Sumii 2000] Sumii, E. (2000). An implementation of transparent migration on stan-
dard scheme. In Scheme and Functional Programming 2000, pages 61-64.

[Wadler 1995] Wadler, P. (1995). Monads for functional programming. In J. Jeuring,
E. M., editor, First International Spring School on Advanced Functional Program-
ming Techniques, LNCS 925, pages 24-52. Springer-Verlag.

