
Program Slicing by Calculation

Nuno F. Rodrigues
(Universidade do Minho, Portugal

nfr@di.uminho.pt)

Lúıs S. Barbosa
(Universidade do Minho, Portugal

lsb@di.uminho.pt)

Abstract: Program slicing is a well known family of techniques used to identify code
fragments which depend on or are depended upon specific program entities. They
are particularly useful in the areas of reverse engineering, program understanding,
testing and software maintenance. Most slicing methods, usually oriented towards the
imperative or object paradigms, are based on some sort of graph structure representing
program dependencies. Slicing techniques amount, therefore, to (sophisticated) graph
transversal algorithms. This paper proposes a completely different approach to the
slicing problem for functional programs. Instead of extracting program information to
build an underlying dependencies’ structure, we resort to standard program calculation
strategies, based on the so-called Bird-Meertens formalism. The slicing criterion is
specified either as a projection or a hiding function which, once composed with the
original program, leads to the identification of the intended slice. Going through a
number of examples, the paper suggests this approach may be an interesting, even if
not completely general, alternative to slicing functional programs.

Key Words: program slicing, functional programming, program analysis

Category: D.1.1, I.2.2, I.2.4

1 Introduction

By the end of the century program understanding emerged as a key concern
in software engineering. In a situation in which the only quality certificate of
the running software artifact still is life-cycle endurance, customers and software
producers are little prepared to modify or improve running code. However, faced
with so risky a dependence on legacy software, managers are more and more
prepared to spend resources to increase confidence on — i.e., the level of un-
derstanding of — their (otherwise untouchable) code. In fact the technological
and economical relevance of legacy software as well as the complexity of their
re-engineering entails the need for rigour.

This paper focus on a particular program understanding technique — called
code slicing [20, 18, 19] — which is reframed as a calculational problem in the
algebra of programming [4]. More specifically, computing program slices, i.e.,
isolating parts of a program which depend on or are depended upon a specific

Journal of Universal Computer Science, vol. 12, no. 7 (2006), 828-848
submitted: 28/1/06, accepted: 6/4/06, appeared: 28/7/06 © J.UCS

computational entity, is reduced to the problem of solving an equation on the
program denotational domain.

Program slicing, originally introduced in Weiser’s thesis [18], is a family of
techniques for restricting the behaviour of a program to some fragment of inter-
est which, e.g., contributes to the computation of a particular output or state
variable. Slices are usually regarded as executable sub-programs extracted from
source code by data and control flow analysis. Their computation is driven by
what is referred to as a slicing criterion, which is, in most approaches, a pair
containing a line number and a variable identifier. From the user point of view,
this represents a point in the code whose impact she/he wants to inspect in the
overall program. From the program slicer view, the slicing criterion is regarded
as the seed from which a program slice is computed. According to Weiser original
definition a slice consists of all statements with some direct or indirect conse-
quence on the result of the value of the entity selected as the slicing criterion.
The concern is to find only the pieces of code that affect a particular entity in the
program. A basic distinction is drawn between backwards slicing which collects
all data and code fragments on which the slicing criterion depends, and forward
slicing [9] which seeks for what depends on or is affected by it.

Slicing techniques are typically based on some form of abstract, graph-based
representation of the program under scrutiny, from which dependence relations
between the entities it manipulates can be identified and extracted. Therefore,
in general, the slicing problem reduces to sub-graph identification with respect
to a particular node. What kinds of computational entities can be represented
in a node and what code dependencies does the underlying graph support are
therefore the typical concerns.

As mentioned above, the approach sketched in this paper takes a completely
different path. Instead of extracting program information to build an underlying
dependencies’ structure, we resort to standard program calculation strategies,
based on the so-called Bird-Meertens formalism. The slicing criterion is specified
either as a projection or a hiding function which, once composed with the original
program, leads to the identification of the intended slice. The process is driven by
the denotational semantics of the target program, as opposed to more classical
syntax-oriented approaches documented in the literature. To make calculation
effective and concise we adopt the pointfree style of expression [4] popularized
among the functional programming community.

This approach seems to be particularly suited to the analysis of functional
programs. Actually, it offers a way of going inside function definitions and, in
some cases, to extract new functions with a restricted input or output. Note
that through approaches based on dependencies’ graphs one usually works at an
’external’ level, for example collecting references to an identifier or determining
which functions make use of a particular reference. A recent paper by the authors

829Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

[15] explore such graphs to identify components in functional legacy code. Here,
however, we take a completely different path.

The paper is organised as follows. Section 2 discusses the main intuitions
behind our approach, characterizing, in particular backward and forward slicing
as calculational problems. The following section contains the main contribution:
a case study on slicing by calculation inductive functions. A number of concrete
examples are discussed. Finally section 4 concludes and points some directions
for future work. In a brief appendix, the basic constructions and laws of pro-
gramming with functions are recalled for reference.

2 Slicing Equations

2.1 Algebra of Programming

In his Turing Award lecture J. Backus [2] was among the first to advocate the
need for programming languages which exhibit an algebra for reasoning about the
objects it purport leading to the development of program calculi directly based
on, actually driven by, type specifications. Since then this line of research has
witnessed significant advances based on the functorial approach to datatypes
[11] and reached the status of a program calculus in [4], building on top of a
discipline of algorithm derivation and transformation which can be traced back
to the so-called Bird-Meertens formalism [5, 10, 12] and the foundational work
of T. Hagino [8].

In this paper we intend to build on this collection of programming laws to
solve what we shall call slicing equations. Pointwise notation, as used in classical
mathematics, involving operators as well as variable symbols, logical connectives,
quantifiers, etc, is however inadequate to reason about programs in a concise and
precise way. This justifies the introduction of a pointfree program denotation in
which elements and function application are systematically replaced by functions
and functional composition. The translation of the target program into an equiv-
alent pointfree formulation is well studied in the program calculi community and
shown to be made automatic to a large extent. In [13, 17] its role is compared
to one played by the Laplace transform to solve differential equations in a lin-
ear space. Appendix 4 provides a quick introduction to the pointfree algebra of
functional programs.

2.2 Slicing Equations

Our starting point is a very simple idea: to identify the ’component’ of a function
Φ : A ←− B affected by a particular argument or contributing to a particular
result all one has to do is to pre- or post-compose Φ with an appropriate function,
respectively. In the first case the contribution of an argument is propagated

830 Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

through the body of Φ, forgetting about the role of other possible arguments: σ

is a called a hiding function and equation

Φ · σ = Φ′ (1)

captures the forward slicing problem. Φ′ is the forward slice of Φ wrt slicing
criterion σ. The dual problem corresponds to backward slicing: an output, se-
lected through some sort of projection π, is traced back through the body of Φ.
The equation is

π · Φ = Φ′ (2)

How far can this simple idea be pushed? The simplest case arises whenever
Φ is canonical, i.e., defined as an either or a split. In the first case one gets
Φ = [f, g] : A ←− B1 + B2. The slicing criterion is simply an embedding, e.g.,
ι1 : B1 + B2 ←− B1 and the forward slice becomes just

[f, g] · ι1 = f (3)

Dually, for 〈f, g〉 : A1 × A2 ←− B, one may compute a backward slice, by
post-composition with a projection, e.g., p1 : A1 ←− A1 × A2 and conclude

π1 · 〈f, g〉 = f (4)

The dual cases of computing a forward slice of a function with a multiplica-
tive domain or a backward slice of a function with a additive codomain, amount
to composing Φ with the relational converses of a projection or an embedding,
respectively, leading to equations Φ · π◦

1 or ι◦1 · Φ. Clearly this is relational com-
position. From a formal point of view this entails the need to pursue calculation
in the relational calculus [1]. For the language engineer, however, this means
that, in the general case, there is no unique solution to the slicing problem: one
may end with a set of possible slices, corresponding to different views over the
’theoretical’, relational, non executable, slice.

We will not explore this relational counterpart in this paper. Instead our
aim is to discuss how far one can go keeping within the functional paradigm
in analysing slicing of a particularly important class of functions: the inductive
ones. I.e., functions whose domain is the carrier of an initial algebra for a regular
functor, usually called an inductive type. In this paper, however, we will further
restrict ourselves to structural recursive functions, i.e., specified by catamor-
phisms [4], i.e., Φ = ([f])T : A←− μT, where μT is the inductive type for functor
T and f : A ←− TA is the recursion gene algebra. Such will be our case-study
through the following section.

831Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

3 Slicing Inductive Functions

This section is organised around four different slicing cases whose target is always
an inductive function Φ : A←− μT. Each subsection discusses one of these cases:
product backward, sum forward, sum backward and product forward slicing. An
example is provided in each case.

3.1 Product Backward Slicing

This a ’well-behaved’ case: the codomain of Φ is a product and, therefore, the
slicing criterion is just the appropriate projection. As Φ is recursive, however,
the solution to the slicing problem should be a new gene algebra f ′ such that
πk · Φ = ([f ′]), as explained in the following diagram.

Ak

∏
i Aiπk

�� μT
Φ

��

Φ′=([f ′])

��

TAk

f ′

��

T
∏

i Ai

f

��

Tπk

�� TμT

inT

��

TΦ
��

Solving the slicing equation Φ′ = πk · Φ reduces, by the fusion law for cata-
morphisms, to verify the commutativity of the leftmost square. This becomes
quite clear through an example.

3.1.0.1 Example.

Consider the problem of identifying a slice in the following functional version of
the Unix word-count utility (wc), with the -lc flag.

wc :: [Char] -> (Int, Int)
wc [] = (1, 0)
wc (h:t) = let (lc, cc) = wc t

in if h == ’\n’ then (lc+1, cc+1)
else (lc, cc+1)

which is translated into the Bird-Merteens formalism as

([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

where p = ((′\n′ ==) ·π1) and FX = 1+String×X is the relevant functor.

Our goal is to identify a slice of wc which just computes the number of lines.
This value is given by the first component of the pair returned by the original wc
program. Thus, it is expectable that a function which selects the first element

832 Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

of a pair constitutes a good candidate for a slicing criterion. Thus the slicing
problem reduces to solving the following equation:

([f ′])F = π1 · ([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

which is done as follows

([f ′])F = π1 · ([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

⇐ {cata-fusion}
f ′ · F π1 = π1 · [〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]

⇔ {absorption-+, cancelation-×, natural-id, definition of ×}
f ′ · F π1 = [1, [succ · π1 · π2, π1 · π2] · p?]

⇔ {definition of ×, cancelation-×}
f ′ · F π1 = [1, [succ · π2 · (id× π1), π2 · (id× π1)] · p?]

⇔ {absorption-+, p = p · (id× π1), definiton of ×, cancelation.×}
f ′ · F π1 = [1, [succ · π2, π2] · (id× π1 + id× π1) · (p · (id× π1))?]

⇔ {predicate fusion}
f ′ · F π1 = [1, [succ · π2, π2] · p? · (id× π1)]

⇔ {natural-id, absortion-+, F definition}
f ′ · (id + id × π1) = [1, [succ · π2, π2] · p?] · (id + id× π1)

⇔ {id + id× π1 is surjective}
f ′ = [1, [succ · π2, π2] · p?]

This calculation leads to the identification of gene algebra of the intended slice,
which translated back to Haskell, yields

wc = foldr (\c -> if c == ’\n’ then succ else id) 1

or, going pointwise,

wc’ :: [Char] -> Int
wc’ [] = 1
wc’ (h:t) = let lc = wc’ t

in if h == ’\n’ then lc+1
else lc

3.2 Sum Forward Slicing

This is also a ’well-behaved’ case, in which the slicing criterion reduces to an
embedding. The slicing problem, however, requires to be rephrased so that the
domain of Φ becomes a sum. This is shown in the following diagram where the
slicing criterion is σ = inT · ιk, i.e., the relevant embedding composed with the
initial algebra (which is an isomorphism).

833Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

A μT
Φ=([f])

�� TμT =
∑

i Ui
inT

�� Ukιk

��

σ=inT·ιk

��

Φ′

��

The computation of Φ′ proceeds by the cancelation law for catamorphisms,
as illustrated in the following example.

3.2.0.2 Example.

To illustrate a sum forward slicing calculation consider a pretty printer for a
subset of the Xml language. We start with a data type encoding Xml expres-
sions:
data XML = SimpElem String [XML]

| Elem String [(Att, AttValue)] [XML]
| Text String

type Att = String
type AttValue = String

from which functor FX = S×X∗+S×AS×X∗+S is inferred, where String and
[(Att, AttValue)] are abbreviated to S and AS, respectively. Then consider
the pretty printer program:
pXML (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++

(concat . map pXML $ xmls) ++
"</" ++ e ++ ">" ++ nl

pXML (Elem e atts xmls) = "<" ++ e ++ concat (map pAtts atts) ++ ">" ++
nl ++ (concat . map pXML $ xmls) ++
"</" ++ e ++ ">" ++ nl

pXML (Text t) = t ++ nl
pAtts (att, attvalue) = " " ++ att ++ "=\"" ++ attvalue ++ "\""
nl = "\n"

whose pointfree definition reads

pXML = ([[[pSElem, pElem], id � nl]])F

pSElem = ob � π1 � cb � nl � concat · π2 � oeb � π1 � cb � nl

pElem = ob � π1 · π1 � concat · map pAtts · π2 · π1 � cb � nl �

concat · π2 � oeb � p1 · π1 � cb � nl

pAtts = ” ” � π1 � ” = \”” � π2 � ” \ ””

where nl = ” \ n”, ob = ” < ”, cb = ” > ”, oeb = ” < /”, f � g = ++ ·
〈f, g〉 is a right associative operator and ++ is the uncurried version of the
Haskell operator for list concatenation. The above pointfree definition may
seem complex, but it hopefully becomes clear with the following diagram:

834 Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

XML
outF ��

pXML=([f])F

��

(S ×XML∗ + (S × AS)×XML∗) + S

(id×([f])∗F+(id×id)×([f])∗F)+id

��
A (S × A∗ + (S × AS)× A∗) + S

f=[[pSElem,pElem],id � nl]

��

Now lets suppose one wants to compute a slice with respect to constructor
SimpElem of the XML data type. This amounts to isolate the parts of the pretty
printer that deal with SimpElem constructed values.

To begin with, one has to define a slicing criterion that isolates arguments
of the desired type. This is, of course, given by ι1 · ι1 composed with the initial
algebra of the underlying functor, i.e., σ = inF · ι1 · ι1. The calculation proceeds
by cancellation in order to identify the impact of σ over pXML.

pXML · σ

⇔ {definition of pXML, definition of σ}
([[[pSElem, pElem], id � nl]])F · inF · (ι1 · ι1)

⇔ {cata-cancelation}
[[pSElem, pElem], id � nl] · FpXML · (ι1 · ι1)

⇔ {definiton of F}
[[pSElem, pElem], id � nl] · ((id× pXML∗ + (id× id)× pXML∗) + id) · (ι1 · ι1)

⇔ {definition of +, cancelation-+}
[[pSElem, pElem], id � nl] · (ι1 · (ι1 · (id× pXML∗))

⇔ {cancelation-+ (twice)}
pSElem · (id× pXML∗)

⇔ {definition of pSElem, result (5), constant function }
ob � π1 · (id× pXML∗) � cb � nl � concat · π2 · (id× pXML∗) �

oeb � π1 · (id× pXML∗) � cb � nl

⇔ {definition of ×, cancelation-×}
ob � π1 � cb � nl � concat · pXML∗ · π2 � oeb � π1 � cb � nl

The following result has been used in this calculation

(f � g) · h = f · h � g · h (5)

which is proved as follows:

835Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

(f � g) · h

⇔ {definition of �}
++ · 〈f, g〉 · h

⇔ {fusion-×}
++ · 〈f · h, g · h〉

⇔ {definition of �}
f · h � g · h

The computed slice is a specialized version of function pXML, which only deals
with values built with SimpleElem. Such function can be directly translated to
Haskell, yielding the following program
pXML’ (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++

(concat . map pXML \$ xmls) ++
"</" ++ e ++ ">" ++ nl

3.3 Sum Backward Slicing

The third case is similar to the first one in the sense that in both of them
one seeks for backward slices. This time, however, the domain of the original
function Φ :

∑
i Ai ←− μT is a sum: each slice will therefore be a function which

produces values over a specific output type. This complicates the picture: we
simply cannot project such value from the output of Φ. Just the opposite, the
natural slicing criteria would be the converse of a projection.

Let us take a different approach: if projecting is impossible, we may still
hide. I.e., using the universal ! : 1←− Ak to reduce to 1 the output components
one wants to get rid of. Hiding functions are constructed by combining +, ×
and identities with !. Note that in this formulation the slicing criterion becomes
negative — it specifies what is to be discarded. As we are dealing with inductive
functions, the problem is again to find the gene for the slice, as documented in
the following diagram.

∑
i<k Ai + 1k +

∑
i>k Ai

∑
i Ai

σ =
∑

i<k id+!k+
∑

i>k id
�� μT

Φ=([f])
��

Φ′=([f ′])
		

T(
∑

i<k Ai + 1k +
∑

i>k Ai)

f ′

��

T
∑

i Ai
Tσ

��

f

��

TμT
TΦ

��

inT

��

This sort of slicing is particularly useful when the codomain of original Φ is
itself an inductive type, say for a functor G. In such a case one has to compose

836 Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

Φ with the converse of the G-initial algebra in order to obtain an explicit sum
in the codomain, i.e.

σ = (
∑

i<k

id+!k +
∑

i>k

id) · outG

Such is the case discussed in the following example.

3.3.0.3 Example.

Consider a program which generates the DOM tree of the (simplified) Xml

language introduced in the previous example. Let F be the corresponding poly-
nomial functor. Note that DOM trees themselves are values of an inductive type
for a functor GX = N+N×X∗, as one may extract from the following Haskell

declaration:
data DT a = Leaf NType a

| Node NType a [DT a]
data NType = NText | NElem | NAtt

from which N abbreviates Ntype× a. The program to be sliced is dtree : μG ←−
μF, which is written in pointfree style as follows:
dTree = cata g
g = either (either g1 g2) (Leaf NText)
g1 = uncurry (Node NElem)
g2 = uncurry (Node NElem) . split (p1 . p1) (g3 . p2 . p1 <++> p2)
g3 = map (Leaf NAtt . uncurry (++) . (id >< ("="++)))

where >< is the Haskell implementation of the × point-free operator, and <++>

the implementation of the � operator.
Our aim is to calculate its slice wrt values of type Node, i.e., to identify the

program components which interfere with the production of values of this type.
To do so, the slicing criterion must preserve the right hand side of data type DT

and slice away everything else (in this case just the left hand side). Thus, we
end up with σ = (! + id) · outG. The slicing process is illustrated as follows:

1 + N ×DT ∗ N + N ×DT ∗!+id�� DT
outG�� μF

([f])F=dTree��

F(1 + N ×DT ∗)

[[g′
1,g′

2],g′
3]

��

F(N + N ×DT ∗)

[[g1,g2],g3]

��

F(!+id)
�� F(DT ∗)

f

��

FoutG

�� FμF

inF

��

FdTree
��

The process proceeds by calculating the new genes g′1, g′2 and g′3 which define
the desired slice.

[[g′
1, g

′
2], g

′
3] · (id× (! + id) + id× (!× id) + id) = (! + id) · [[g1, g2], g3]

⇔ {absortion-+, fusion-+}
[[g′

1 · (id× (! + id)), g′
2 · (id× (!× id))], g′

3 · id] =

[[(! + id) · g1, (! + id) · g2], (! + id) · g3]

837Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

For the sake of brevity, we shall now consider only the first component of this
either equality (the remaining cases follow obviously a similar pattern). Thus,
our goal is to find g′1 such that

g′
1 · (id× (! + id)) = (! + id) · g1

Note, however, that using the right distributivity isomorphism, g1 can be further
decomposed as follows

S × (N + N ×DT ∗)
distr ��

g1

��

S ×N + S × (N ×DT ∗)

[h1,h2]

�����������������

N + N ×DT ∗

and similarly for g′1 = [h3, h4] · distr. Then,

[h3, h4] · distr · (id× (! + id)) = (! + id) · [h1, h2] · distr

⇔ {definition of distr, fusion-+}
[h3, h4] · (id×! + id× id)) · distr = [(! + id) · h1, (! + id) · h2] · distr

⇔ {absorption-+}
[h3 · (id×!), h4 · (id× id)] · distr = [(! + id) · h1, (! + id) · h2] · distr

Hence

h3 · (id×!) = (! + id) · h1 and h4 · (id× id) = (! + id) · h2

Let us concentrate again in the first equality (the other case is similar), that is,

S × 1
h3 �� 1 + N ×DT ∗

S ×N

id×!

��

h1 �� N + N ×DT ∗

!+id

��

In the most general case, functions to a sum type are conditionals. Therefore, we
may assume that h3 = p→ ι1 ·e1, ι2 ·e2 and h1 = q → ι1 ·d1, ι2 ·d2, respectively.
Then,

838 Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

(p→ ι1 · e1, ι2 · e2) · (id×!) = (! + id) · (q → ι1 · d1, ι2 · d2)

⇔ {conditionl fusion}
p→ ι1 · e1 · (id×!), ι2 · e2 · (id×!) = q → (! + id) · ι1 · d1, (! + id) · ι2 · d2

⇔ {cancelation-+, natural id}
p→ ι1 · e1 · (id×!), ι2 · e2 · (id×!) = q → ι1·!, ι2 · d2

which amounts to

p · (id×!) = q

e1 · (id×!) = !

e2 · (id×!) = d2

What can be concluded from here? Then p : B ←− S is derived from q : B ←−
S ×N as follows

p(s) = false ≡
∨

n

q(s, n) = false

Finally e2 : N ×DT ∗ ←− S comes from d2 : N ×DT ∗ ←− S ×N . But what
is the relation between them? Actually, abstracting from the second argument
of d2 gives rise to a powerset valued function

γ : S → P(N ×DT ∗)

γ(s) = {d2(n, s) | n ∈ N ∧ p(n, s)}

Therefore e2 is just a possible implementation of γ. This means that the
slice is not unique: we are again in the relational world. It should be stressed,
however, that the advantage of this calculation process is to lead the program
analyst as close as possible of the critical details. Or, putting it in a different
way, directs the slice construction until human interaction becomes necessary to
make a choice.

3.4 Product Forward Slicing

At first sight this is an awkward case as far as inductive functions are concerned.
One may resort to outT to unfold the inductive type, as we did in the sum
forward case, but this leads always to a polynomial functor with sums as the
main connective. So what do we mean by product forward slicing? Suppose the
relevant functor is, say, FX = 1 + A×B ×X + B ×X2. Our aim is to compute
a slice of Φ : A ←− μF corresponding to discarding the contribution of the B

component of the parameters.

839Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

Our first guess is to adopt the strategy of the previous case and define the
slicing criterion as the hiding function

inF · (id + id×!× id+!× id) : μF ←− FμF

This is wrong, of course: the hiding function changes the signature func-
tor. Expression above would become correct if formulated in terms of functor
F′X = 1 + A × 1 × X + 1 × X2. Expression id + id×! × id+! × id becomes a
natural transformation from F to F′. However, during calculations the relational
converse of this natural transformation would be required and making progress
will depend, to a great extent, on the concrete definition of Φ.

Let us, therefore, try a different solution: instead of getting rid of component
B, by composition with !, we replace each concrete values by a mark still be-
longing to B. For that we resort, for the first time in this paper, to the classical
semantics of Haskell in terms of pointed complete partial orders. The quali-
ficative pointed means there exist for each type X a bottom element ⊥X which
can be used for our purposes as illustrated in the following diagram.

μT

outT

��
A μT

Φ
�� ∑

i

∏
j Ui,j

inT

�� TμT =
∑

i

∏
j Ui,j

σ=
∑

i(
∏

j<k id×⊥k×∏
j>k id)

��

σ

��

Care should be taken when calculating functional programs in an order-
theorectic setting. In particular, as embeddings fail to preserve bottoms, the
sum construction is no longer a coproduct and the either is not unique. The
set-theoretical harmony, however, can be (almost) recovered if one restricts to
strict functions (details can be checked in, e.g., [12]). Such is the case of the
example below, whose derivation is, therefore, valid.

3.4.0.4 Example.

Let us return to the pretty printer example. Suppose we want to slice away every
recursive call in this function. This is achieved by the following slicing criteria
σ = inF ·((id×⊥+(id× id)×⊥)+ id) ·outF. The calculation proceeds as follows.

840 Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

pXML · σ

⇔ {definition of pXML, definition of σ}
([[[pSElem, pElem], id � nl]])F · inF · ((id×⊥+ (id× id)×⊥) + id) · outF

⇔ {cata-cancelation}
[[pSElem, pElem], id � nl] · FpXML · ((id×⊥+ (id× id)×⊥) + id) · outF

⇔ {definiton of F, Functor-+, Functor-×, natural-id}
[[pSElem, pElem], id � nl]·
((id× (⊥ · pXML∗) + (id× id)× (⊥ · pXML∗)) + id) · outF

⇔ {absorption-+, natural-id}
[[pSElem · (id× (⊥ · pXML∗), pElem · ((id× id)× (⊥ · pXML∗)], id � nl] · outF

The calculation continues by evaluating the impact of σ upon each parcel.
For the sake of brevity we shall concentrate on the psElem function, other cases
being similar. Then,

pSElem · (id× (⊥ · pXML∗)

⇔ {definition of psElem}
ob � π1 � cb � nl � concat · π2 � oeb � π1 � cb � nl · (id× (⊥ · pXML∗))

⇔ {constant function, result (5)}
ob � π1 � cb � nl � concat · π2 · (id× (⊥ · pXML∗)) � oeb � π1 � cb � nl

⇔ {definition of ×, cancelation-×}
cb � π1 � cb � nl � concat · (⊥ · pXML∗) · π2 � oeb � π1 � cb � nl

The above expression explicitly points out with ⊥, the places where input
information is missing. Given these specific critical points, it is up to the user to
decide how to deal with them, given the overall context of the expression. In this
particular case, one has decided to remove all the elements of the concatenation
polluted with this mark, giving rise to the following slice
pXML (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++ "</" ++ e ++ ">" ++ nl

Note, however, that in general, unlike product backward slicing which always
yields executable solutions, in this case it may succeed that the final slice is not
executable. This does not come to a surprise, since we are filtering input that
can be critical to the overall computation of the original function.

4 Conclusions

This paper presented an approach to slicing of functional programs in which
slice identification is formulated as an equation in an essentially equational and
pointfree program calculus [4].

841Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

The requirement that programs should be first translated to a pointfree nota-
tion may seem, at first sight, a major limitation. However, automatic translators
have been developed within our own research group [6]. Moreover, not only
this sort of translators but also rewriting systems to make program calculation
a semi-automatic task, are needed to scale up this approach to non academic
case-studies. Fortunately this is an active area of research within the algebra of
programming community.

Although specific research in slicing of functional programs is sparse, the work
of Reps and Turnidge [14] should be mentioned as somewhat related to ours. The
idea of composing projection functions to slice other functions comes from their
work, but the approach they take to analyse the impact of such composition
is completely different from ours. They resort to regular tree grammars, which
must be previously given in order to compute the desired slices. This way, their
approach strictly depends on the actual program syntax. Moreover, they limit
themselves to functions dealing with lists or dotted pairs. Another work slightly
related to ours is [21] where a functional framework is used to formalize the
slicing problem in a language independent way. Nevertheless, their primary goal
is not to slice functional programs, but to use the functional motto to slice
imperative programs given a modular monadic semantics.

The approach outlined in this paper is still in its infancy. Current work
includes

– its extension to functions defined by hylomorphims [4], with inductive types
acting as virtual data structures,

– as well as to the dual picture of coinductive functions, i.e., functions to final
coalgebras.

This last extension may lead to a method for process slicing, with processes
encoded in coinductive types (see, e.g., [16] or [3]), with possible applications
to the area of reverse engineering of software architectures (in the sense of e.g.,
[22]).

Finally, we intend to

– to take the relational challenge seriously and look for possible gains in calcu-
lational power by moving to a category of relations as a preferred semantic
universe.

Whether this approach scales up to real, complex examples is currently being
assessed by conducting a major case study in foreign open-source Haskell code.

Acknowledgements

The research reported in this paper is supported by FCT, under contract POSI-
ICHS-44304-2002, in the context of the PURe project.

842 Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

References

1. R. C. Backhouse and P. F. Hoogendijk. Elements of a relational theory of
datatypes. In B. Möller, H. Partsch, and S. Schuman, editors, Formal Program
Development, pages 7–42. Springer Lect. Notes Comp. Sci. (755), 1993.

2. J. Backus. Can programming be liberated from the Von Neumann style? a func-
tional style and its algebra of programs. Communications of the ACM, 21:613–641,
1978.

3. L. S. Barbosa. Process calculi à la Bird-Meertens. In CMCS’01, volume 44.4,
pages 47–66, Genova, April 2001. Elect. Notes in Theor. Comp. Sci., Elsevier.

4. R. Bird and O. Moor. The Algebra of Programming. Series in Computer Science.
Prentice-Hall International, 1997.

5. R. S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design, volume 36 of NATO ASI Series F,
pages 3–42. Springer-Verlag, 1987.

6. A. Cunha. Point-Free Program Calculation. PhD thesis, Dep. Informática, Uni-
versidade do Minho, 2005.

7. J. Gibbons. Conditionals in distributive categories. CMS-TR-97-01, School of
Computing and Mathematical Sciences, Oxford Brookes University, 1997.

8. T. Hagino. A typed lambda calculus with categorical type constructors. In D. H.
Pitt, A. Poigné, and D. E. Rydeheard, editors, Category Theory and Computer
Science, pages 140–157. Springer Lect. Notes Comp. Sci. (283), 1987.

9. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 Conf. on Program-
ming Usage, Design and Implementation, pages 35–46. ACM Press, 1988.

10. G. R. Malcolm. Data structures and program transformation. Science of Com-
puter Programming, 14(2–3):255–279, 1990.

11. E. Manes and A. Arbib. Algebraic Approaches to Program Semantics. Texts and
Monographs in Computer Science. Springer Verlag, 1986.

12. E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings of the 1991
ACM Conference on Functional Programming Languages and Computer Architec-
ture, pages 124–144. Springer Lect. Notes Comp. Sci. (523), 1991.

13. J. Oliveira. Bagatelle in c arranged for vdm solo. Journal of Universal Computer
Science, 7(8):754–781, 2001. Special Issue on Formal Aspects of Software Engi-
neering, Colloquium in Honor of Peter Lucas, Institute for Software Technology,
Graz University of Technology, May 18-19, 2001).

14. T. W. Reps and T. Turnidge. Program specialization via program slicing. In
Selected Papers from the Internaltional Seminar on Partial Evaluation, pages 409–
429, London, UK, 1996. Springer-Verlag.

15. N. Rodrigues and L. S. Barbosa. Component identification through program slic-
ing. In L. S. Barbosa and Z. Liu, editors, Proc. of FACS’05 (2nd Int. Workshop
on Formal Approaches to Component Software), volume (to appear), UNU-IIST,
Macau, October 2005. Elect. Notes in Theor. Comp. Sci., Elsevier.

16. D. Schamschurko. Modeling process calculi with Pvs. In CMCS’98, Elect. Notes
in Theor. Comp. Sci., volume 11. Elsevier, 1998.

17. G. Villavicencio and J. Oliveira. Formal reverse calculation supported by code
slicing. In Proceedings of the Eighth Working Conference on Reverse Engineering,
WCRE 2001, 2-5 October 2001, Stuttgart, Germany, pages 35–46. IEEE Computer
Society, 2001.

18. M. Weiser. Program Slices: Formal, Psychological and Practical Investigatios of an
Automatic Program Abstraction Methods. PhD thesis, University of Michigan, An
Arbor, 1979.

19. M. Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):446–
452, 1982.

843Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

20. M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.
21. Y. Zhang, B. Xu, and J. E. L. Gayo. A formal method for program slicing. In

2005 Australian Software Engineering Conference (ASWEC’05), pages 140–148.
IEEE Computer Society, 2005.

22. J. Zhao. Applying slicing technique to software architectures. In Proc. of 4th
IEEE International Conferencei on Engineering of Complex Computer Systems,
pages 87–98, August 1998.

Appendix

A Glimpse on the Laws of Functions

Composition.

This appendix provides a brief review of the algebra of functions, recalling the
basic constructions and laws used in the paper. We begin mentioning some func-
tions which have a particular role in the calculus: for example identities denoted
by idA : A ←− A or the so-called final functions !A : 1 ←− A whose codomain
is the singleton set denoted by 1 and consequently map every element of A into
the (unique) element of 1. Elements x ∈ X are represented as points, i.e., func-
tions x : X ←− 1, and therefore function application f x can be expressed by
composition f · x.

Functions can be glued in a number of ways which bare a direct correspon-
dence with the ways programs may be assembled together. The most obvious
one is pipelining which corresponds to standard functional composition denoted
by f · g for f : B ←− C and g : B ←− A. Functions with a common domain can
be glued through a split 〈f, g〉 as shown in the following diagram:

Z
f

����
��

��
��

�
g

����
��

��
��

�

〈f,g〉
��

A A×B
π1

��
π2

�� B

which defines the product of two sets. Actually, the product of two sets A and B

can be characterised either concretely (as the set of all pairs that can be formed
by elements of A and B) or in terms of an abstract specification. In this case,
we say set A×B is defined as the source of two functions π1 : A←− A×B and
π2 : B ←− A × B, called the projections, which satisfy the following property:
for any other set Z and arrows f : A ←− Z and g : B ←− Z, there is a unique
arrow 〈f, g〉 : A × B ←− Z, usually called the split of f and g, that makes the
diagram above to commute. This can be said in a more concise way through the
following equivalence which entails both an existence (⇒) and a uniqueness (⇐)
assertion:

k = 〈f, g〉 ≡ π1 · k = f ∧ π2 · k = g (6)

844 Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

Such an abstract characterization turns out to be more generic and suitable for
conducting calculations. Let us illustrate this claim with a very simple example.
Suppose we want to show that pairing projections of a cartesian product has
no effect, i.e., 〈π1, π2〉 = id. If we proceed in a concrete way we first attempt
to convince ourselves that the unique possible definition for split is as a pairing
function, i.e., 〈f, g〉 z = 〈f z, g z〉. Then, instantiating the definition for the case
at hands, conclude

〈π1, π2〉 〈x, y〉 = 〈π1 〈x, y〉, π2 〈x, y〉〉 = 〈x, y〉

Using the universal property (6) instead, the result follows immediately and in
a pointfree way:

id = 〈π1, π2〉 ≡ π1 · id = π1 ∧ π2 · id = π2

Equation

〈π1, π2〉 = idA×B (7)

is called the reflection law for products. Similarly the following laws (known
respectively as × cancelation, fusion and absorption) are derivable from (6):

π1 · 〈f, g〉 = f , π2 · 〈f, g〉 = g (8)

〈g, h〉 · f = 〈g · f, h · f〉 (9)

(i× j) · 〈g, h〉 = 〈i · g, j · h〉 (10)

The same applies to structural equality:

〈f, g〉 = 〈k, h〉 ≡ f = k ∧ g = h (11)

Finally note that the product construction applies not only to sets but also to
functions, yielding, for f : B ←− A and g : B′ ←− A′, function f×g : B×B′ ←−
A×A′ defined as the split 〈f ·π1, g ·π2〉. This equivales to the following pointwise
definition: f × g = λ 〈a, b〉 . 〈f a, g b〉.

Notation BA is used to denote function space, i.e., the set of (total) functions
from A to B. It is also characterised by an universal property: for all function
f : B ←− A×C, there exists a unique f : BC ←− A, called the curry of f , such
that f = ev · (f × C). Diagrammatically,

845Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

A

f

��

A× C

f×idC

��

f

��
����

���

BC BC × C ev
�� B

i.e.,

k = f ≡ f = ev · (k × id) (12)

Dually, functions sharing the same codomain may be glued together through
an either combinator, expressing alternative behaviours, and introduced as the
universal arrow in a datatype sum construction.

The sum A+B (or coproduct) of A and B corresponds to their disjoint union.
The construction is dual to the product one. From a programming point of view it
corresponds to the aggregation of two entities in time (as in a union construction
in C), whereas product entails an aggregation in space (as a record). It also arises
by universality: A + B is defined as the target of two arrows ι1 : A + B ←− A

and ι2 : A+B ←− B, called the injections, which satisfy the following universal
property: for any other set Z and functions f : Z ←− A and g : Z ←− B, there
is a unique arrow [f, g] : Z ←− A + B, usually called the either (or case) of f

and g, that makes the following diagram to commute:

A
ι1 ��

f
����

��
��

��
� A + B

[f,g]

��

B
ι2��

g

����
��

��
��

�

Z

Again this universal property can be written as

k = [f, g] ≡ k · ι1 = f ∧ k · ι2 = g (13)

from which one infers correspondent cancelation, reflection and fusion results:

[f, g] · ι1 = f , [f, g] · ι2 = g (14)

[ι1, ι2] = idX+Y (15)

f · [g, h] = [f · g, f · h] (16)

Products and sums interact through the following exchange law

[〈f, g〉, 〈f ′, g′〉] = 〈[f, f ′], [g, g′]〉 (17)

846 Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

provable by either product (6) or sum (13) universality. The sum combinator also
applies to functions yielding f + g : A′ + B′ ←− A + B defined as [ι1 · f, ι2 · g].

Conditional expressions are modelled by coproducts. In this paper we adopt
the McCarthy conditional constructor written as (p → f, g), where p : B←− A

is a predicate. Intuitively, (p → f, g) reduces to f if p evaluates to true and to
g otherwise. The conditional construct is defined as

(p → f, g) = [f, g] · p?

where p? : A + A←− A is determined by predicate p as follows

p? = A
〈id,p〉 �� A× (1 + 1)

dl �� A× 1 + A× 1
π1+π1 �� A + A

where dl is the distributivity isomorphism. The following laws are useful to cal-
culate with conditionals [7].

h · (p → f, g) = (p → h · f, h · g) (18)

(p → f, g) · h = (p · h → f · h, g · h) (19)

(p → f, g) = (p → (p → f, g), (p → f, g)) (20)

Recursion.

Recursive functions over inductive datatypes (such as finite sequences or binary
trees) are given by their genetic information, i.e., the specification of what is to
be done in an instance of a recursive call. Consider, for example, the pointfree
specification of the function which computes the length of a list len : N ←−
A∗. A∗ is an example of an inductive type: its elements are built by one of
the following constructors: nil : A∗ ←− 1, which builds the empty list, and
cons : A∗ ←− A×A∗, which appends an element to the head of the list. The two
constructors are glued by an either in = [nil, cons] whose codomain is an instance
of polynomial functor FX = 1 + A×X . The algorithm contents of function len

is exposed in the following diagram:

1 + A× N
[0,succ·π2] �� N

1 + A× A∗ in=[nil,cons] ��

id+id×len

��

A∗

len

��

where the ’genetic’ information is given by [0, succ · π2]: either return 0 or the
successor of the value computed so far. Function len, being entirely determined

847Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

by its ’gene’ is said its inductive extension or catamorphism and represented by
([[0, succ · π2]]).

Catamorphisms extend to any polynomial F and possess a number of remark-
able properties, e.g.,

([in]) = id (21)

([g]) · in = g · F ([g]) (22)

f · ([g]) = ([h]) ⇐ f · g = h · F f (23)

([g]) · T f = ([g · F (f, id)]) (24)

where T is the functor that assigns to a set X the corresponding inductive
type for F (in our example, T X = X∗). Laws above are called, respectively,
cata-reflection, -cancelation, -fusion and -absorption.

848 Rodrigues N.F., Barbosa L.S.: Program Slicing by Calculation

