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Abstract: Modern Java Compilers, such as Sun’s HotSpot compilers, implement a
number of optimizations, ranging from high-level program transformations to low-level
architecure dependent operations such as instruction scheduling. In a Just-in-Time
(JIT) environment, the impact of each optimization must be weighed against its cost
in terms of total runtime. Towards better understanding the usefulness of individual
optimizations, we study the main optimizations available on Sun HotSpot compilers
for a wide range of scientific and non-scientific benchmarks, weighing their cost and
benefits in total runtime. We chose the HotSpot technology because it is state of the
art and its source code is available.
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1 Introduction

Modern compilers perform a number of code optimizations in order to improve

space and time performance of compiled programs [Muchnick 1997]. Optimiza-

tions allow programmers to write at a higher level of abstraction, hence ex-

pressing their intentions more clearly. They further allow compilers to take best

advantage of the target hardware. Note that, contrary to what the term might

imply, the optimization process rarely results in code that is ”optimal” by some

measure, only in hopefully improved code. In general, it is undecidable whether

an optimization will improve the performance of a particular program.

Java applications are an important example of the benefits of optimizing com-

pilers. The Java language is a very popular object-oriented programming lan-

guage. However, the standard interpreted Java execution model has performance

issues. Interpreting a Java method can be rather slow because each bytecode re-

quires executing at least a template consisting of several machine instructions,

hence limiting achievable performance [Romer et al 1996]. Best performance re-

quires compiling the bytecodes to machine code. Just-In-Time (JIT) compilers

go one step further, by doing the compilation at run-time and only for highly

used methods. The price to pay is that the overall execution time now suffers
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from the compilation overhead of the JIT compiler. Understanding JIT com-

pilation technology thus requires deciding on (1) which methods to compile;

(2); when to compile them; and, of course, (3) choosing which optimizations to

apply.

JIT technology can work as well as standard compiler technology for applica-

tions with long-running times, such as scientific code [da Silva and Costa 2005].

A question is whether JIT can perform as well for non-scientific code, which

is dominant in actual real-world Java programs. Often, these applications can

be expected to have complex access patterns and/or relatively short execution

times. Given the pressure on compilation time, it is particularly important to

understand which optimizations are most valuable, and how to control them.

This work addresses this problem.

We study the impact of some optimizations applied by Sun HotSpot JIT

compilers to reduce the execution time in Java programs. We focus on the Sun

HotSpot compilers beause they are state of the art, and because they are open

source. We focus on a number of well-known optimizations. Inlining is a par-

ticularly important optimization for Object Oriented applications. It reduces

overheads in method call, while increasing the opportunity for further optimiza-

tions. Value Numbering replaces fully redundant computations with copies. The

Sun HotSpot compilers can detect value equivalence, thus the expressions need

not be textually identical. Conditional Expression Elimination simultaneously

removes dead code and eliminates expressions throughout a program. Range

Check Elimination allows the compiler to safely remove checking in situations

where it can determine that the index must fall within valid bounds, arguably

an issue with Java. ADL-based Spill uses Architecture Description Language

(ADL) [Shaw et al 1995] [Garlan et al 1994] supplied CISC instructions during

register allocation. Coalescing removes register copies. Peepholing examines a few

instructions at a time, towards reducing the number of instructions of replacing

instructions. We also analyze the impact of using on-stack replacement, which

allows moving from interpreted to compiled code during method execution.

Our methodology was to first evaluate the global performance of the system

through performance, and then study the effect of each optimization by knock-

ing it off. For this purpose, we used both high-level and cpu-level profiling to

best understand program execution. We studied performance on both the Sun

HotSpot Client compiler and the Sun HotSpot Server compiler, and for the Intel

Pentium 4 architecture, with several scientific and non-scientific Java workloads.

This work show not only how some optimizations increase the execution

performance of the Sun’s Java Virtual Machine, but its contributions are:

– To measure the impact of the some optimizations, in several Java workloads.

Several works about Java evaluate the system with only the SPECjvm98

benckmark [SPEC 2005]. However, it is interesting to undertand the perfor-
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mance with several (others) benchmarks.

– To show that it is not enough to apply some optimizations in an determined

application, without adjusting them at characteristics of the application.

– To show some problems in Sun’s Java Virtual Machine. This implies in,

– To suggest new directions of research.

The rest of the paper is organized as follows. Section 2 gives an overview of

both Sun HotSpot Client Compiler and Sun HotSpot Server Compiler. Section

3 describes the optimizations analyzed in this paper and an brief description

about on-stack replacement. Section 4 gives experimental results with statistics

and performance data. Section 5 summarizes some related works. And the last

section, section 6, presents our conclusions.

2 Just-In-Time Compilers

The HotSpot Virtual Machine (VM) [MicroSystems 2003] includes two different

environments, the Client VM and the Server VM. The Java HotSpot Client VM

is designed for running interactive applications and is tuned for fast application

start-up and low memory footprint. The Java HotSpot Server VM is designed for

maximum execution speed of server applications. Both share the same runtime,

but include different just-in-time compilers, namely, the Client compiler and the

Server compiler.

The Server compiler [Palecnz et al. 2001] is proposed for applications where

the initial time needed can be neglected and only the execution time of the gen-

erated code is relevant. The Client compiler [MicroSystems 2003] achieves sig-

nificantly higher compilation speed by omitting time-consuming optimizations.

As a positive side effect, the internal structure of the Client compiler is much

simpler than the Server compiler. Figure 1 depicts the structure of the Server

compiler and Client compiler.

The structure of Client Compiler is separated into a machine-independent

frontend and a partly machine-dependent backend. First, the frontend builds

a high-level intermediate representation (HIR) by iterating over the bytecodes

twice (similar to parsing process of the server compiler we discuss next). Only

simple optimizations like constant folding are applied in this step. Next, the

innermost loops are detected to facilitate the register allocation of the backend.

The backend converts the HIR to a low-level intermediate representation

(LIR) similar to the final machine code. A simple heuristic is used for register

allocation: it assumes that all local variables are initially located on the stack.

Registers are allocated when they are needed for a computation and freed when

the value is stored back to a local variable. If a register remains completely
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Figure 1: Structure of the Server compiler and Client compiler.

unused inside a loop or even in the entire method, then this register is used to

cache the most frequently used local variable. This reduces the number of loads

and stores to memory especially on architectures with many registers.

To determine the unused registers, the same code generator is run twice.

In the first pass, code emission is disabled and only the allocation of registers

is tracked. After any unused registers are assigned to local variables, the code

generator is run again with code emission enabled to create the final machine

code.

In contrast, the Server compiler uses an intermediate representation (IR)

based on a static single assignment (SSA) graph [Appel 1998]. Operations are

represented by nodes, the input operands are represented by edges to the nodes

that produce the desired input values (data-flow edges). The control flow is

also represented by explicit edges that need not necessarily match the data-flow

edges. This allows optimizations of the data flow by exchanging the order of

nodes without destroying the correct control flow.

The compiler proceeds through the following steps when it compiles a method:

bytecode parsing, machine-independent optimizations, instruction selection,

global code motion and scheduling, register allocation, peephole optimization

and at last code generation.

The parser needs two iterations over the bytecodes. The first iteration iden-

tifies the boundaries of basic blocks. The second iteration visits all basic blocks
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and translates the bytecodes of the block to nodes of the IR. The state of the

operand stack and local variables that would be maintained by the interpreter

is simulated in the parser by pushing and popping nodes from and to a state

array. Because the instruction nodes are also connected by control flow edges,

the explicit structure of basic blocks is revealed. This allows a later reordering

of instruction nodes.

Optimizations like constant folding and global value numbering

[Gulwani and Necula 2004, Briggs et al. 1997] for sequential code sequences are

performed immediately during parsing. Loops cannot be optimized completely

during parsing because the loop end is not yet known when the loop header

is parsed. Therefore, the above optimizations, extended with global optimiza-

tions like loop unrolling and branch elimination [Wedign 1984, Rastislav 1997],

are re-executed after parsing until a fixed point is reached where no further op-

timizations are possible. This can require several passes over all blocks and is

therefore time-consuming.

The translation of machine-independent instructions to the machine instruc-

tions of the target architecture is done by a bottom-up rewrite system

[Pelegri and Graham 1988, Henry et al 1992]. This system uses the architecture

description file that must be written for each platform. When the accurate costs

of machine instructions are known, it is possible to select the optimal machine

instructions.

Before register allocation takes place, the final order of the instructions must

be computed. Instructions linked with control flow edges are grouped to basic

blocks again. Each block has an associated execution frequency that is esti-

mated by the loop depth and branch prediction. When the exact basic block

of an instruction is not fixed by data and control flow dependencies, then it is

placed in the block with the lowest execution frequency. Inside a basic block, the

instructions are ordered by a local scheduler.

Global register allocation is performed by a graph coloring register allocator.

First, the live ranges are gathered and conservatively coalesced, afterwards the

nodes are colored. If the coloring fails, spill code is inserted and the algorithm is

repeated. After a final peephole optimization, which optimizes processor specific

code sequences, the executable machine code is generated. This step also creates

additional meta data necessary for deoptimization, garbage collection and ex-

ception handling. Finally, the executable code is installed in the runtime system

and is ready for execution.

3 Optimizations

The Sun HotSpot engines initialy interprete all methods and, based on run-

time information collected during interpretation, identify the most frequently
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hot executed methods that deserve JIT compilation. This strategy is based on

the observation that virtually all programs spend most of their time in a small

range of code. Each method has a method-entry and a backward-branch counter.

The method-entry counter is incremented at start of the method. The backward

counter is incremented when a backward branch to the method is executed. If

these counters exceed a certain threshold, the transition for a new version occur.

A number of optimizations can be performed by the engine. We focus only

on a number of particularly important optimizations. Namely:

Inlining It [Waddell and Dybig 1997] is a well-kown technique that replaces

calls to methods with copies of their bodies. It reduces the overhead of

method invocation, which can be significant in object-oriented languages.

It also enlarges compilation scope, exposing more optimization opportuni-

ties and eliminating the runtime overhead of creating a stack frame and

passing arguments and return values. Excessive application of inlining can

degrade performance. This is because of the increase in code size, which

can severely decrease locality, hence decreasing the IPC (instructions per

cycle). Explosive code growth can be avoided by concentrating only on hot

spots. Heuristics or profiling feedback can further help in deciding which

methods to inline. Experience has shown that choosing smaller methods is

a good heuristic [Zhao and Amaral 2003]. If there is a single call site, inlin-

ing it should almost always result in reducing execution time. Inlining calls

inside a loop is likely to provide significant opportunities for other optimiza-

tions. Constant-value parameters will also enable further optimizations on

the inlined method.

Value Numbering Value numbering [Briggs et al. 1997] is one method for de-

termining that two computations are equivalent and eliminating one of them.

It associates a symbolic value with each computation without interpreting

the operation performed, but in such a way that any two computations with

the same symbolic value always compute the same value. Value numbering

can operate on individual basic blocks or over the the entire method. The

latter method, global value numbering uses SSA form [Cytron et al. 1991].

Muchnick [Muchnick 1997] presents an discuss about both local and global

value numbering.

Conditional Expression Elimination Conditional expression elimination

[Muchnick 1997] analyzes at compile time expressions and replaces the in-

structions for it results. It allows the compiler to eliminate constant-valued

expressions and unreachable branches, resulting in dead code that can be

later eliminated.

Range Check Elimination The Java language specification requires all array

accesses to be checked at runtime, so that an attempt to use an out of range
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index will cause an exception to be thrown. The compiler can eliminate these

checks [Gupta 1993] if it can prove that the index is always within the correct

range, or if it can prove that an earlier check covers this check. If the compiler

cannot prove this, the array reference must include range checking code.

This ckecking can be very expensive for computation-intensive applications

that heavily involve arrays, thus we would expect the optimization to be

particularly useful for numerical applications.

ADL-based Spill Register allocator assigns the many temporaries to a small

number of machine register. For this intention from an examination of the

control and dataflow graph, an interference graph is derived. Now, it will

be assigned a color to each node of this graph. It will be used as few col-

ors as possible, but no pair of nodes connected by an edge may be assigned

the same color. These colors corresponde to registers. If target machine has

W registers, and it can W -colors the graph, then the coloring is a valid

register assignment. But, if there is no W -coloring some variables and tem-

poraries will be kept in memory instead of registers. When this occours

is called spilling [Muchnick 1997]. Sun HotSpot Server compiler uses Ar-

chitecture Description Language to assist the spill phase [Shaw et al 1995]

[Garlan et al 1994].

Coalescing Register coalescing [Budimlic et al. 2002] is a well-known technique

that eliminates copying betweeen registers. Coalescing searches the code for

register copy instructions, such as: R1 ← R2. Upon finding such as instruc-

tion, it searches for the instructions that wrote to R2 and modifies them to

put their results in R1 instead and removing the copy instruction.

Peepholing This technique inspects each instruction or sequence of adjacent

instructions to determine if it may be replaced by a better instruction

[Spinellis 1999]. The optimization is invoked by the machine-dependent mod-

ules, at a late stage.

On-Stack Replacement An on-stack replacement (OSR) [Fink 2003] mech-

anism enables a virtual machine to transfer execution between compiled

versions, even while a method runs. Relying on this mechanism, the system

can exploit powerful techniques to reduce compile time and code space, dy-

namically de-optimize code, and invalidate speculative optimizations. This

techique is particularly important for long-running methods, such as the ones

found in scientific code and in interpreters. The transitions from interpreted

code to optimized code for long-running loops is based on invocations and

loop counters. Additionally, the HotSpot compiler uses deferred compilation

to avoid generating code for uncommon branches, such as the failed branch

of class-hierarchy-based guarded inlining, and program points that invoke

class initializers.
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4 Experimental Results

In this section, we evaluate the impact of the optimizations we discussed in

section 3. We used eighteen Java programs, nine of which (Crypt, FFT, LU,

Heap Sort, Sparse, Euler, MolDyn, Monte Carlo and Raytracer) are part of

Java Grande Forum Benchmark [JGF 2005]. The remaining nine (Antlr, Batik,

Bloat, Chart, Fop, Hsqldb, Jython, Pmd and Xalan) are benchmarks in DaCapo

Benchmark Suite [DaCapo 2005]. The table 1 presents an brief description of

each applications and its problem size. All the measurements were obtained on

an Intel(R) Pentium(R) 4 CPU 2.80 GHz uni-processor with 1024 MB memory,

running Linux, and using the Sun HotSpot JVM version 1.5.0.

We also profiled application performance. We used both the Java profiler and

use the CPU’s performance counters in order to measure hardware instructions,

memory reads and memory writes, cache misses, and instructions per cycles

(IPC) of both the Client compiler and Server compiler. We used perfctr Intel/x86

hardware performance counters [PerfCTR 2005] for Linux with the associated

kernel patch and libraries [PCL 2005].

Our first step was collect performance data for all optimizations we studied

turned on and off. Next we investigated the individual optimizations. To do so,

we knock off each individual optimization and measure its impact. After this,

we analyzed the code size.

4.1 Client Compiler Versus Server Compiler

Figure 2 shows running times for these benchmarks, both with and without

optimizations. We have four columns per application: the two left ones regard

the Client Compiler, and the two to the right regard the Server compiler. The

first column (leftmost) regards execution with all studied optimizations turned

off, and the rightmost column gives performance with all optimization on. We

further used the Java profiler to divide time among compilation time, garbage

collection time, and execution time of compile and interpreted code.

Running times vary widely, between few seconds for Fop and for Euler to

over a minute. The running time is most often dominated by the execution of

compiled code. One exception is that applications such as Crypt, FFT, Sparse

and Jython require on-stack replacement to take full advantage of the compiler.

The second major exception is that we have long compilation times with Server

compiler for some applications, such as Antlr (this also reflects in an increase in

interpreted execution time).

There is not a clear advantage between compilers. Regarding numerical ap-

plications, Crypt, FFT, Euler, and Sparse show similar performance. The Server

compiler does better than Client compiler on Crypt, FFT, LU, HeapSort, Sparse,

Euler, MolDyn and RayTracer. Surprisingly, it does worse than Client compiler
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Benchmark Description Problem Size

Crypt IDEA (International Data Encryption 50.000.000 bytes

Algorithm) encrypton and descryption

FFT One-dimensional forward transform 16M complex numbers

LU Linear system factorization 2000X2000 system

Heap Sort Heap sort algorithm 25000000 integers

Sparse Sparse matrix multiplication 500000X500000

sparse matrix

Euler Computational Fluid Dynamics 96X384 meshes

MolDyn Molecular Dynamics simulation 8788 particles

MonteCarlo Monte Carlo simulation 60000 sample time series

RayTracer 3D Ray Tracer 500X500 pixels

Antlr Parses grammar files and generates 320 grammars

a parser and lexical analyzer for each

Batik Renders a number of SVG files. 6 svg files

Bloat Performs a number of optimizations 82 Java files

and analysis on Java bytecode files

Chart Plot a number of complex line 52 graphs

graphs and renders each one as PDF

Fop Takes an XSL-FO file, parses it and , 1 XSL-FO file

formats it generating a PDF file

Hsqldb Executes a JDBC-like in-memory 20 clients

benchmark 5 transactions per client

Jython Interprets a series of Python programs 4 python programs

Pmd Analyzes a set of Java classes for a 17 source codes

range of source code problems

Xalan Transforms XML documents 1 XML file

into HTML

Table 1: Applications used in this paper.

on MonteCarlo, due to the number of cache misses. Compilation costs are always

negligible for Client compiler on these benchmarks, and negligible for Server com-

piler except for the smallest application, Euler, which has the shortest running

time and longest compilation time.

The optimizations we study have a significant impact in performance. We

observed that Server compiler most often performs better than Client compiler

with all our optimizations out. Server compiler includes a range of optimizations

which we do not discuss in this paper. The exception is the applications that

require on-stack-replacement to actually take advantage of the compiler.

796 da Silva A.F., Costa V.S.: Our Experience with Optimizations ...



0s

20s

40s

60s

80s

100s

120s

Optimizations On

Optimizations Off

Client Server

RayTracerMonteCarloMolDynEulerSparseHeap SortLUFFTCrypt

328.727305.178 218.925241.823

(a) Scientific Applications

0s

10s

20s

30s

40s

50s

60s

Compilation Time
Garbage Collection Time
Compiled Code Time
Interpreted Code Time

XalanPmdJythonHsqldbFopChartBloatBatikAntlr

(b) Non-Scientific Applications

Figure 2: Execution time breakdown of both compilers.

The results for Java Grande applications do not carry to the DaCapo bench-

marks. First, we can observe that Server compiler tends not to perform much

better than Client compiler, even for applications with long running times, such

as Bloat. This is due to 3 reasons:

1. Much longer compilation times: over 20 seconds for Bloat, and even higher

for Antlr (some of the compilation time seems to be hidden in emulator time)

. In general, compilation times are much longer for the DaCapo applications

than for the Java Grande datasets, and much longer for Server compiler than
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for Client compiler.

2. These benchmarks perform I/O and rely on system libraries, and thus, may

spend a significant amount of time in native methods. A typical example

is a method to deflate a ZIP archive, which takes about a quarter of total

execution time in Chart.

3. In smaller benchmarks, a significant amout of time may be spent running

interpreted methods for Server compiler, as Server compiler takes longer

to compile a method than Client compiler. This happens with Fop, which

spends about 10% of total time running a Java library method. This problem

should not be an issue on longer applications.

Garbage collection time is most often negligible, except for Hsqldb, where it

is about the same for the diverse versions. This benchmark is one example where

Server compiler does well. The other example where Server compiler performs

really well is Jython. Server compiler performs badly for Antlr, Batik, Bloat,

Fop, Pmd, and Xalan, though.

Again, the optimizations matter. They result in improved performance for

Client compiler over almost every application. On the other hand, the results for

Server compiler are mixed. We see a substantial improvement on Jython, and a

significant slowdown on Antlr.

In a nutshell, application runtime is most often better for Server compiler

(except for Antlr, Bloat, Batik, and Fop), but compilation time is an issue for

Server compiler in these applications, and can leave to major slowdowns.

Table 2 shows a low-level comparison between Server compiler and Client

compiler. We show in both cases the number of hardware instructions executed,

read and write memory accesses, number of cache misses, and IPC. It is inter-

esting to compare the number of instructions executed and the IPC on both

compilers. Server compiler usually executes less instructions and has a similar

IPC for the majority applications, with best results for LU and Jython. There

are a few surprises: Sparse runs less instructions in Client compiler. On the other

hand, Sparse also has worse IPC for Client compiler, resulting in similar per-

formance. MonteCarlo has the strangest result: Server compiler actually runs

less instructions, but has a much worse IPC, partly caused by cache misses. The

DaCapo benchmarks show the cost of extra compilation: Antlr and Fop show

substantial increases in number of instructions executed.

Server compiler is usually very good at reducing the total number of read

memory accesses. LU is very impressive: number of reads goes down by a factor

of five. This also holds true for memory writes, although usually less so. Server

compiler does perform really well on FFT, MolDyn, RayTracer, and Jython.

Again, Sparse is the exception. Server compiler does perform significantly less
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Client Compiler Server Compiler

Memory Cache Memory Cache
Benchmark Inst

Read Write Miss
IPC Inst

Read Write Miss
IPC

(109)
(106) (109) (109)

(109)
(106) (109) (109)

Crypt 81.29 24.16 28.36 4.91 0.86 69.82 22.10 25.04 6.39 0.80

FFT 21.86 6.67 2.68 1465.68 0.24 11.17 3.89 1.14 1482.04 0.15

LU 62.14 32.13 2.72 1536.04 0.85 13.63 5.44 2.70 3988.50 0.40

Heap Sort 35.39 16.88 3.15 122.89 0.89 19.98 4.89 1.64 148.21 0.87

Sparse 16.50 9.00 0.50 2148.55 0.08 19.50 10.50 1.50 2154.82 0.09

Euler 20.91 9.62 2.41 388.77 0.67 14.86 7.19 2.12 498.74 0.62

MolDyn 204.26 55.78 9.70 5796.12 0.79 109.39 32.59 2.23 4721.97 0.78

MonteCarlo 57.84 21.79 15.45 234.77 0.42 50.93 18.43 11.82 427.26 0.16

RayTracer 151.20 58.88 23.75 438.66 0.72 89.49 31.91 10.39 197.80 0.91

Antlr 16.23 5.96 2.64 92.62 0.95 24.14 3.28 1.53 87.27 1.92

Batik 17.34 9.06 2.39 239.74 0.89 18.23 8.74 2.30 228.02 0.95

Bloat 35.29 11.48 7.47 492.87 0.55 29.26 8.19 5.41 445.37 0.53

Chart 78.95 37.24 14.98 993.51 0.77 60.43 26.83 9.99 947.45 0.76

Fop 2.68 0.53 0.33 19.67 1.24 3.21 0.39 0.19 20.60 1.67

Hsqldb 46.15 17.92 8.48 397.19 0.97 30.00 9.11 3.85 252.11 1.07

Jython 73.79 21.28 12.43 210.26 1.14 29.68 8.70 4.75 172.94 1.09

Pmd 18.79 6.69 3.96 270.18 0.69 16.34 4.72 2.32 269.19 0.71

Xalan 17.47 7.46 2.95 196.61 0.87 15.74 5.53 2.49 164.43 0.94

Table 2: Behavior of the hardware.

memory accesses at Fop and Antlr, although it executes more instructions than

Client compiler.

Both compilers inherit the same data structures from the interpreter, so

they should have similar cache performance. This is mostly the case for the

DaCapo benchmarks, but Server compiler often generates more cache misses

in the Java Grande applications. Good examples are LU and MonteCarlo. This

partly explains why both benchmarks have a much worse IPC in Server compiler.

There are also examples where Server compiler is effective at reducing cache

misses. Server compiler does very well on RayTracer and on Jython.

4.2 Impact of the some Optimizations

In this section we wanted to show only the difference in application time, not

total running time. In the next figures, the leftmost column for each application

refers to Client compiler, and the rightmost to Server compiler.
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4.2.1 Inlining

Inlining is the most important optimization we study. Figure 3 shows the impact

of using inlining switched on. Inlining is very effective for Client compiler, with

up to 35% speedups in Hsqldb. Inlining works best for the DaCapo benchmarks,

as they are written in a more object-oriented style: almost every application

gains over 15%. The Java Grande applications benefit less. Only MonteCarlo,

RayTracer, and to a lesser extent Euler have major speedups.
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Figure 3: Impact of Inlining on Application Time.

Figure 3 shows a more complex picture for Server compiler. Whereas every

DaCapo application benefited in Client compiler, Antlr and Bloat now have

a slowdown. On the other hand, Jython benefits 40%, up from 20% in Client

compiler. The Java Grande applications tell a similar story. Euler now has a

significant slowdown, and MonteCarlo shows no benefit. Only RayTracer benefits

from inlining.

We believe that the problem is that Server compiler can be too aggressive at

performing inlining. This causes two problems. First, an increase in compilation

time, which is also counted in. Second, excessive inlining may increase memory

footprint and result in worse performance. A low-level analysis for Euler and

MonteCarlo indicates this to be indeed the case (as indicated in table 2).

Inlining in Server compiler is controlled by several parameters. We experi-

mented with tuning the variable MaxInlineSize, which gives the maximum size

for inlining a method. The default value on our version is 35. We experimented

with reducing this parameter, down to 5. This had a major impact on several ap-

plications. Namely, on Euler we obtained a speedup of 15% , for Antlr 21%, and

for Bloat 13%. Unfortunately, this adjustment can worsen performance for other

applications, such as Batik, where performance decreased from 9% to 2%. This

800 da Silva A.F., Costa V.S.: Our Experience with Optimizations ...



suggests that we would like to tune the amount of inlining to the characteristics

of individual applications.

4.2.2 Value Numbering

The impact of using value numbering with Client compiler is shown in Figure 4.

Value numbering works best for numerical applications: Euler, Fft And Heapsort.

It also works well for Fop. This optimization can improve the performance up

to around 30% in Euler. Euler indeed seems particularly suited for this style

of optimizations: it performs complex computations reusing the same value at

several points. Non-numerical applications tend to benefit much less from value

numbering. Note also that value numbering tends to reduce code size, so it

interacts well with inlining.
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Figure 4: The impact of Value Numbering on Application Time.

4.3 Conditional Expression Elimination

We only measured conditional expression elimination on the Client compiler.

The impact is shown in figure 5. Conditional expression elimination performs

impressively well for Fop, where it achieves an over 20% speedup. It also benefits

Xalan and Euler, but by much less. It is also interesting to remark that Hsqldb

and Jython have somewhat performance. Otherwise, the optimization has a small

effects on performance. We also found that quite often conditional expression

elimination decreases the number of cache misses (probably by reducing code

size).
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Figure 5: The impact of Conditional Expression Elimination on Application

Time.

4.3.1 Range Check Elimination

Figure 6 shows the impact of range ckeck elimination. RCE has little impact on

most benchmarks. Exceptions are Fop and FFT for Client compiler, and LU and

Batik for Server compiler. Both FFT and LU can benefit from RCE. The Client

compiler does well for FFT but not for LU, and Server compiler the other way

round. This suggests that both algorithms can be improved.

The range check elimination can cause very significant slowdowns on Server

compiler, namely for Euler. This seems to be caused by an interaction with

inlining: both inlining and RCE increase code size, the combination of two seems

to have even worse performance, both due to increased compilation time and to

worse locality.
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Figure 6: Impact of Range Check Elimination on Application Time.
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4.3.2 ADL-based Spill

ADL-based Spilling is an server-only optimization. The impact of using ADL-

based spill is shown in figure 7. Spilling is controlled by the ADL, Architecture

Design Language, in this case written for a CISC platform. ADL-based spilling

improves the performance up to 25%. In many cases the performance improve-

ment is due to reducing the number of instructions executed. Antlr is a excellent

case. This optimization, decreases the number of instructions executed in 15%,

and also decreases both the memory accesses and cache misses. Spilling can have

the usual problem of increasing compilation time, reducing overall performance.
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Figure 7: The impact of Spilling on Application Time.

4.3.3 Coalescing

Register coalescing is one server-only optimization. Its impact is shown in figure

8. Four applications benefit from conservative copy coalescing in the register

allocator, with improvements ranging from 1.11% to 6.28%. In the cases, the

optimization decreases the number of instructions executed and the number

of cache misses. Unfortunately, coalescing can also work badly, again for the

applications where code size and compilation time are a problem.

4.3.4 Peepholing

Server compiler and Client compiler implement very different forms of peephol-

ing. In Client compiler peepholing works best for Fop and FFT, up to a factor

of 6%. On the other hand, peepholing works in different ways for different appli-

cations. We found out that peepholing decreases IPC for Fop, while in improves
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Figure 8: The impact of Coalescing on Application Time.
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Figure 9: The impact of Peepholing on Application Time.

IPC on FFT. In both cases peepholing tends to increase the number of cache

misses, even if it decreases the number of hardware instructions executed.

The results of peepholing for Server compiler are not very impressive. Again,

the problem seems to be the interaction between peepholing and inlining. Both

optimizations result in more code, so their effect is compounded when they are

run together.

4.3.5 On-Stack Replacement

On-stack replacement is a JIT specific optimization, and as the results show, the

second most effective optimization, with close up to 80% improvements on both

compilers. Figure 10 shows the impact of on-stack replacement.

On-stack replacement is critical if the application spends most of the time

in a single method, as it should have beeen made clear by Figure 2. This is

indeed the case for applications such as Crypt, FFT, Sparse and Jython. It
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requires that more variables be kept a live, thus this can increase register pressure

and pontentially decrease performance. This is not indeed the case for Client

compiler, but for Server compiler, where Bloat and Pmd have worse performance.

In these cases, the worse performance corresponds to a significant increase in

compilation time.
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Figure 10: The impact of On-Stack Replacement on Application Time.

4.4 The Impact on the Code Size

We next discuss the variation in code size for the DaCapo applications. We do

not discuss the variation in code size for the Java Grande applications, because

code size tends to be stable.

Table 3 shows the variation in the code size in Client compiler. Applying on-

stack replacement results in a very significant impact on code size, up to almost

30% in Xalan, which does not seem to benefit much from the optimization.

Range check elimination substantially increases code size for Pmd, even though

it does not affect performance much. Otherwise, it has a limited impact on code

size. Last, inlining actually reduces code size in Client compiler. This is because

inlining is not applied extensively, so the benefit from eliminating the instructions

for frame manipulation dominates. The other applications have negligible effect

on code size.

The table 4 confirms the results we discussed previously. The variation is

much wider than for Client compiler. In the case of on-stack replacement the

code can grow in up to 46% (Fop) and in the case of inlining the code size can

more than double (Antlr). Notice that range check elimination now results in

significant code compacting. Peephole compacts the code in up to 5%, coalescing

up 3% and spilling in 4%. The exception is Antlr, where both coalescing and

spilling increase code size.
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Conditional

Inline
Value

Expression
Range Check

Peephole
On-Stack

Numbering
Elimination

Elimination Replacement

Antlr -1.66 -0.76 -0.04 0.91 -0.15 1.69

Batik -2.17 0 0 0 -0.02 5.39

Bloat -3.02 0.08 0.08 0.08 0.08 0.20

Chart -2.90 -1.81 -1.81 0.02 0.01 7.20

Fop -3.48 0 0 0 0 12.01

Hsqldb -0.75 -0.08 0.07 0 0 14.41

Jython -0.60 0 0.63 0 0 4.66

Pmd -2.66 0 0 9.71 0 0

Xalan -2.23 0 0 0 0 29.80

Table 3: Percentage of growth of the Client compiler’s code size.

Inline Range Check CISC Spill Coalesce PeepHole On-Stack

Elimination Replacement

Antlr 121.50 -7.99 12.46 41.95 -5.46 0.62

Batik 13.10 -1.68 -1.91 -3.10 -0.92 28.42

Bloat 16.99 3.47 0.85 -3.02 -5.14 -5.39

Chart 3.02 2.51 2.19 2.35 2.20 14.07

Fop 12.28 -1.99 -0.54 -0.96 -1.14 46.71

Hsqldb 0.99 -4.42 -4.42 -2.08 -1.08 9.05

Jython 6.74 -3.06 -3.06 -2.78 -3.06 13.71

Pmd -7.12 0.91 -4.40 -3.05 -0.03 47.32

Xalan 2.21 0.24 0.40 0.40 -0.28 79.12

Table 4: Percentage of growth of the Server compiler’s code size.

5 Related Works

The work that presents the Sun HotSpot Server Compiler [Palecnz et al. 2001]

presents improvement for individual optimizations in a different context. Their

work evaluated inlining, memory alias analysis and global value numbering.

They show results for two target platform, namely: SPARC and IA32. For

SPECjvm98 [SPEC 2005], in IA32 plataform, the improvement varied from 1%

to 20% for the majority of the applications, except one that it possess an im-

provement of 60% when applying inlining. The same optimizations when applied

in SPARC platform for the same benchmark improve the performance from 8%

to 40% in the majority of the cases. However, as in IA32 the performance can be

806 da Silva A.F., Costa V.S.: Our Experience with Optimizations ...



improved up to 72%. Their work suggests that inlining is the optimization that

causes more impact in performance, and that the optimizations are more effec-

tive in SPARC machines. Unfortunately, their work does not discuss in detail

the impact of each optimization.

The IBM compiler [Suganuma 2000, Ishizaki et al. 1999] implements adap-

tive optimization in a fashion similar to the HotSpot compiler. This work presents

improvement for individual optimizations, it evaluates the effectiveness of some

optimizations such as exception check elimination, simple type inclusion test,

common sub-expression elimination, inlining of static method call, and resolu-

tion of dynamic method call. Experimental results have been shown that this

optimizations are very effective for several types of programs. For SPECjvm98,

one individual optimization improves the performance from 8% to 20% depend

on the application. The results shown that inlining of static method call and

resolution of dynamic method call are the best optimizations, while that simple

type inclusion has the least benefit. Overall, the IBM JIT compiler combined

with IBM’s enhanced Java Virtual Machine is widely regarded as one of the top

performing Java execution environments.

JUDO [Cierniak et al. 2000] is a high-performance VM that features multi-

ple JITs compilers, and implements a dynamic recompilation mechanism. JUDO

differs from the IBM and Sun compilers because it does not emulate bytecodes,

but they are compiled to native code. It evaluates the impact of checkcast op-

timization, bounds checking elimination and inlining in SPECjvm98. In JUDO

checkcast and bounds checking possess a low impact. Checkcast optimization

improve in 3.4% the performance for one application, and it has negligible im-

pact for the rest. Bounds checking elimination has only impact of 3.0% for on

application. Inlining is the best optimization, it improves the performance from

4.2% to 26.70%.

It is clearly in these three works that inlining is the optimization that cause

more impact in the performance, and that the architecture of the execution

environment and the implementation of the optimization limits the impact of

the optimization.

Other works that also describe a JIT Java platform, but they only present

a comparison of its work with other existing ones, without detailing the im-

pact of individual optimizations. This is the case of the works: Jalapeno

[Alpern 2000, Jikes RVM 205], CACAO [Krall 1997], and LaTTe [Yang 1999].

Other interesting work [Suganuma et al 2003] presents an analysis of the im-

pact of techniques used for a JIT compiler, however in a different context. The

point is that although it has been assumed that methods are the units for com-

pilation, this may not always be the best decision. The authors point that we

should eliminate from the compilation target those portions that are rarely or

never executed, focusing our efforts only on non-rare portions. Based on this
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strategy, their work implements a region-based compilation approach, which we

would like to study.

6 Conclusions

We study the impact of compiler optimizations in two state of art JIT compilers

for the Java language. We used the Java Grande and DaCapo benchmark suites,

as they survey a large and diverse number of real-life Java applications. Studying

the performance of JIT compilers is hard: we have all the issues in traditional

compilers, plus the issues of choosing the best methods to compile, and the opti-

mizations that give the best performance improvement, with the least overhead.

Fortunately, the two Sun JIT compilers give us the chance to compare two very

different compilers that both start from the same virtual machine code.

Our study was applied directed: we were interested in seeing in how different

applications can benefit from optimizations. As expected, even reasonably small

applications can have very significant performance benefits. On the other hand,

our study shows a number of problems. First, optimizations can significantly

result in a slowdown. Second, they can increase code size and memory footprint,

generating sub-optimal performance. Inlining is a major example.

This work suggests several directions of research. First, fine control of the

JIT is required. A case in point is on-stack replacement. It can bring significant

benefits, but can also slow down applications which run short methods. It should

be easy to control the compiler to only apply on-stack-replacement for methods

which have very long running time. Manual control could be allowed (the user

will often know whether on-stack-replacement is useful), but automatic discovery

would be ideal. A more complex but important example is inlining. Clearly,

inlining can be very useful. However, inlining can hurt performance, even for

applications with long running times. Our work suggests that research is needed

on how to best tune performance of inlining in a JIT environment.

Another research is to use profiling for feedback-directed optimizations

[Smith 2000, Agesen et al. 1995] for allowing the compiler to compile (and opti-

mize) only the executed path based on information extracted from the runtime

system. Dynamic compilation take advantage of type feedback, because with this

technique the compiler can determine which parts of an application should be

optimized at all.

Dynamic compilation and feedback-directed optimizations improve both bet-

ter runtime performance and interactive behavior. Using these techniques, object-

oriented programs can execute efficiently without special hardware support,

given the right compiler technology. Dynamic compilation is often regarded as

complicated and hard to implement, but once the underlying mechanisms are in

place, new functionality based on dynamic compilation can be added relatively
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easily. For example, a runtime profiler system could be implemented with rela-

tively little effort because the system already supported dynamic compilation.

Our ongoing research is dynamically setting compilation parameters accord-

ing to profiling input. This allow us to change method compilation strategies

as we go along, given full execution data. Ideally, it should be possible to re-

recompile methods, as execution goes along.
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