
An Object Model for Interoperable Systems

Alcides Calsavara

(Pontif́ıcia Universidade Católica do Paraná, Brazil

alcides@ppgia.pucpr.br)

Aron Borges

(Pontif́ıcia Universidade Católica do Paraná, Brazil

aron@ppgia.pucpr.br)

Leonardo Nunes

(Sumersoft Tecnologia, Brazil

leonardo@sumersoft.com)

Diogo Variani

(Global Village Telecom, Brazil

diogo.variani@gvt.com.br)

Carlos Kolb

(Companhia Paranaense de Energia, Brazil

kolb@copel.com)

Abstract: Most modern computer applications should run on heterogeneous plat-
forms and, moreover, objects and respective code should be easily interchangeable be-
tween distinct platforms at runtime. This paper describes a runtime platform based on
distributed and cooperating virtual machines named Virtuosi. A unified object model
permits easy inter-operation between applications written on different languages. All
applications must be compiled to a standard runtime code format so they all can run
on any platform where an implementation of the virtual machine exists. A novel code
format which is entirely based on instances of the classes that define the object model
itself is employed. A proper programming language has been defined, a corresponding
compiler implemented, a virtual machine that includes a class loader, a code inter-
preter, a single-threaded execution control and a distributed object store implemented
and tested through example applications.

Key Words: object model, interoperability, virtual machine

Category: C.2.4, D.1.5

1 Introduction

Most modern computer applications should run on heterogeneous platforms and,

moreover, their components, including objects and respective code, should be

easily interchangeable at runtime. That is even more critical for peer-to-peer

and ad hoc networks where any kind of hardware platforms and operating sys-

tems may inter-operate. Another important requirement is the absence of server-

Journal of Universal Computer Science, vol. 12, no. 7 (2006), 885-902
submitted: 28/1/06, accepted: 6/4/06, appeared: 28/7/06  J.UCS



centered services to provide for scalability, permit a flexible network configura-

tion and avoid single points of failure. A number of current research projects

are devoted to adapt standard runtime platforms, such as CORBA-based plat-

forms [Soley and Kent, 1995], DCE-based platform [DCE, 1992], and the Java

platform, to those new requirements. Also, several academic projects envisage

a high degree of portability and interoperability, such as the Virtual Virtual

Machine project [Folliot et al., 1997] [Baillarguet and Piumarta, 1999].

This paper proposes an object model and the architecture of a runtime plat-

form based on distributed and cooperating virtual machines named Virtuosi.

Differently from traditional virtual machines, such as the Java virtual machine,

where distribution mechanisms are added by means of library classes, the pro-

posed architecture intrinsicly gives distribution transparency to applications that

conform to the proposed object model. In its essence, Virtuosi is similar to the

Microsoft .NET platform, where all applications should be compiled to a stan-

dard runtime code format so they all can run on any platform where an imple-

mentation of the virtual machine exists. Yet, a unified object model permits easy

inter-operation between applications written on different languages. Neverthe-

less, Virtuosi uses a novel code format which is entirely based on objects that are

instances of the classes that define the object model itself. That permits to build

and maintain references to classes and methods across machines, thus making it

easy to implement a code mobility mechanism. Another important difference is

the way Virtuosi stores objects and maintains references to them: each object is

indexed within the virtual machine where it is stored, so any reference to an ob-

ject is always indirect, that is, through its corresponding index; when an object

happens to be remote, a proxy entry is used to refer to the corresponding remote

machine and object index. Such feature permits a simple implementation of a

mechanism for object mobility. Thus, only each virtual machine needs a unique

identification in order to allow any object to be accessed anywhere, like in a

distributed shared memory where there is a single address space.

A prototype implementation of Virtuosi has been developed in order to assess

the proposed object model, its code format performance and its ability to deal

with distribution and heterogeneity. For that, a proper programming language

has been defined, a corresponding compiler implemented, a virtual machine that

includes a class loader, a code interpreter, a multi-threaded execution control

and a distributed object store implemented. Moreover, a mechanism for object

and code mobility and a mechanism for transparent remote method invocation

were defined, implemented and tested through example applications.

The remainder of this paper is structured as follows: [Section 2] gives an

overview of the Virtuosi runtime platform; [Section 3] describes the proposed

core object model; [Section 4] describes – through examples – a programming

language fully compatible with the proposed object model; [Section 5] describes

886 Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



a distributed virtual machine architecture that fully supports the proposed ob-

ject model and gives transparency to distribution and platform heterogeneity;

[Section 6] discusses the implementation status of Virtuosi; and, finally, [Section

7] gives some conclusions about the developed research work and discusses some

future work.

2 Runtime Platform Overview

The Virtuosi runtime platform, initially defined in [Calsavara, 2000], is com-

posed of a collection of communicating virtual machines. Each virtual machine is

a user-level process that emulates a real-world computer, including its hardware

components and corresponding operating system. Thus, each virtual machine is

able to host any typical software systems that store and process data and, as

well, communicate with peripherals. Virtual machines are grouped in collections

where each virtual machine can be unambiguously addressed and can exchange

messages with any other in the collection; dynamically, objects are created and

they interact with each other through method invocation. That allows a software

system running on a certain machine to communicate with a software system run-

ning on a different machine, i.e., a collection of communicating virtual machines

is a runtime platform for distributed software systems. In fact, this runtime

platform can be seen as a middle-ware, similar to systems based on the CORBA

Standard [Soley and Kent, 1995], since a distributed software system can run

atop a heterogeneous computer network. The difference, in this case, is that, in

CORBA, distribution is accomplished by standard services which applications

have to aware and make the necessary operation calls at the right moment, while,

in Virtuosi, such services and calls are done automatically. Also, Virtuosi can

be compared with object systems such as Oberon [Wirth and Gutknecht, 1992]

and Amoeba [Mullender et al., 1990], where the object-oriented programming

paradigm is fully supported through a programming languague, corresponding

compiler and operating system. Now, the difference is that these are real oper-

ating systems, while Virtuosi is based on virtual machines which can run atop

any operating systems.

2.1 Portability and Mobility

A virtual machine sits between applications and the actual operating system;

applications interact with the virtual machine which, in turn, interacts with the

operating system. As a consequence, there must be a specific implementation

of the virtual machine for each operating system. Another consequence is that

a software system that runs on a specific virtual machine implementation runs

on any other. In other words, Virtuosi applications are portable: they run on

887Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



heterogeneous computers, as long as there is proper implementation of the virtual

machine for each different platform.

2.2 Controlled Execution

Because a virtual machine is a software system that controls the execution of

other software systems, it can fully assist in debugging applications; a virtual

machine can keep very precise data about execution context, thus providing

programmers with more accurate information when some bug happens. This is

an essential feature to improve productivity because programmers can use de-

bugging to better understand software systems behavior. The solution found

in Virtuosi for the purpose of having full application semantics at runtime is

to represent and store program code in the form of a program tree: a graph of

objects that represents all elements of a given source code, including their re-

lationships [Kistler and Franz, 1996, Franz and Kistler, 1997]. Thus, the virtual

machine loads and interprets program trees which represent classes. Many ex-

amples of program trees and a detailed discussion on how they are loaded and

interpreted by a virtual machine can be found in [Kolb, 2004]. Since there is a

direct mapping between a program tree and a source code, the rules for building

a program tree are the same for writing an object-oriented program. Such rules

are established by an object model formalized by means of a class diagram, as

discussed in [Section 3]; the objects of a program tree are instances of the those

classes. For each user class, our compiler creates a graph of objects, a program

tree. Thus, for a given application class, there will be an object to represent the

whole class, so there will be an object to represent each method that belongs to

the class, an object to represent each formal parameter of a method, an object

to represent a method call, and so on.

3 Object Model

The Virtuosi object model formalizes basic concepts of the object-oriented pro-

gramming paradigm which are supported by the virtual machine. It is a core

object model because, except for actions and data blocks, described below, it just

comprises concepts which are rigourously object oriented and normally present

in most traditional programming languages, such as C++, Java, Smalltalk and

Eiffel. The object model is formalized through a class diagram composed of about

50 classes, with many associations between them. A complete description of the

object model, including a class diagram in UML [Rumbaugh et al., 1997] can be

found in [Kolb, 2004]. Here, its main classes and associations are discussed.

888 Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



3.1 Class

Every application class is represented by an instance of Class. Each application

class has a unique name and defines a scope that may contain:

datablock references References to instances of Datablock (described below).

index references References to instances of Index (described below).

object references References to instances of application classes. Each object

reference corresponds to an attribute which represents either object associ-

ation or object composition.

constructors Operations which are invoked to construct new instances of the

class.

methods Operations which are invoked for a certain instance of the class to

either read or change object state.

actions Operations which are invoked for a certain instance of the class specif-

ically to test object state, according to some criteria.

3.2 Literal

A literal is a constant string corresponding to the textual representation of some

primitive value, such as an integer number, a real number, a character, a string,

a boolean value, a bit value, and so on. Literals are necessary for programmers to

express data directly on the source code and for the virtual machine to exchange

data with the real world through computer peripherals.

3.3 Datablock and Index

A datablock is an array of bits. The semantics of a sequence of bits is given by the

implementation of its container class, i.e., by the methods that access the bits.

For example, a sequence of bits may represent an integer value, so its container

class should have methods to set the bits to store a certain integer value, to

change the bits to represent the result value of an arithmetic operation, and so

on. Each bit of a datablock may be addressed in order to call write (either set or

clear) and read operations. A bit of a datablock must be addressed through an

index associated to the datablock. An index is a sequential iterator that defines

operations to set its value to a certain address of the associated datablock and to

change its value forwards as well as backwards. If an attempt to change the value

of an index beyond the limits of the associated datablock is made, an exception

is raised by the virtual machine. There are no other primitive data types in

889Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



Virtuosi. Standard primitive types, such as integer, real, char, string and boolean

are available through a separate class library. All those types and any other a

user may wish to define are built on top of datablock and index. Although such

design brings some performance penalties, all data is independent of machine

representation and, moreover, any data is uniformly handled as objects, so they

can migrate (move) and can be remotely accessed in a transparent way.

3.4 Constructor

A constructor of an application class is an operation called to create a new

instance of the class. Each class may have a set of constructors. Each constructor

of a class is uniquely identified through its signature, which is composed of its

name and an ordered list of formal parameter types (the name of a constructor

does not need to be identical to the name of the container class).

3.5 Method

A method of an application class is an operation called to perform a sequence of

statements on an existing instance of the class. Such statements have full access

to object state, so they can either read or modify it. A method may return an

object reference as a result. Each method of a class is uniquely identified through

its signature, similar to a constructor.

3.6 Action

An action of an application class is an operation called to perform a test on an

existing instance of the class. They correspond to methods that return a boolean

value in traditional programming languages. Here, the real difference is that

calling an action is restricted to the context of a conditional branch expression,

i.e., an expression which must be evaluated to decide whether a statement should

be executed or skipped. A typical use of actions is in if statements, where an

expression must be evaluated to decide whether or not a certain statement should

be executed. Thus, the result of an action must be either execute or skip, and

such result is not directly handled by user programs; instead, it is handled by

the virtual machine to select the next statement to execute. An action is also

implemented by a sequence of statements which have full access to object state,

but they are restricted to perform read operations. The execution of an action

finishes when either a execute or a skip statement is performed.

3.7 Formal Parameter

A parameter of a class operation (constructor, method or action) must be either

an object reference or a literal; datablock and index references are not allowed

as parameters because they must be always encapsulated by an object.

890 Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



3.8 Exportation List

Every class operation has an associated exportation list: a list of classes (be-

sides the container class itself) which have permission to call that method. This

solution, adapted from the Eiffel programming language, is more general than

specific qualifiers, such as private and public, normally found in traditional lan-

guages.

3.9 Local Variable

Every class operation may define a set of local variables. A local variable can be

an object reference, a datablock reference or an index reference. Object refer-

ences can be passed as parameters in operation calls, while datablock and index

references have their use restricted within the scope of their definition.

3.10 Statement

Every class operation has an associated sequence of statements. The kinds of

statements are the following:

variable declaration A local variable is declared within a class operation.

datablock creation A datablock of a given length is created (which implies

memory allocation by the virtual machine) and its address is assigned to an

existing datablock reference.

index creation An index is created, its address assigned to an existing index

reference and it is associated to an existing datablock.

constructor invocation A constructor of a given class is called and, as a con-

sequence, a new object (instance of that class) is created (which implies

memory allocation by the virtual machine) and its address is assigned to an

existing object reference.

method invocation A method of a given class is called for an existing in-

stance of that class. If the method returns an object reference, then such

a reference is assigned to an existing object reference. Methods can be in-

voked in two different modes: synchronous or asynchronous, like in the SR

language [Andrews and Olsson, 1993]. Differently from typical programming

languages, such mode is not fixed per method: the caller must choose the

mode it desires. Thus, a certain method can be called synchronously at one

moment, while asynchronously later.

reference bind An object, datablock or index reference is assigned to another.

(There is no copy of contents; only an address is copied.)

891Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



return It may only occur within methods which have a return class specified.

It returns a copy of an object reference of the specified class to the caller of

the method.

execute It may only occur within actions. When performed finishes the action

and returns a signal to the caller to indicate that the test succeeded.

skip It may only occur within actions. When performed finishes the action and

returns a signal to the caller to indicate that the test failed.

unconditional branch A given statement is immediately executed.

conditional branch An expression containing only testable elements (action

invocation, comparison of two object references, comparison of two datablock

references and comparison of two index references) structured as a logical

expression (with and and or operators) is evaluated. If the final result is

execute then a given statement is executed, otherwise it is skipped.

4 Programming Language

We have designed a new programming language named Aram for the purposes

of validating the object model and the distributed virtual machine architecture.

Although there were good candidates for this purpose, such as Smalltalk, Eiffel,

C++, Java and Common Lisp, the proposed object model merges concepts from

several programming languages and, as a consequence, none of them alone fully

supports the object model and, conversely, they all have features which are not

supported the object model. Since our initial purpose is to validate the object

model and the distributed virtual machine architecture at the same time, for a

while, we found it simpler to define a new language, rather than adapting an

existing one, which we left as a future work. It should be noted, though, that

Aram is very similar to Java and, in fact, it can be seen as a first step to adapt

Java to Virtuosi. A detailed description of Aram is out of the scope of this paper;

its use is exemplified in the sequel.

4.1 Example 1

The code below shows two application classes: Agent and Boss. The code at line 3

says that every instance of Agent references an instance of String (a library class)

which represents its name; the keyword composition implies that the object of

class String is conceptually part of the object of class Agent. The code at lines

4 and 5 defines a constructor named make for Agent which takes a literal n as

argument and can be exported to Boss, i.e., invoked by methods of class Boss.

The constructor’s body (line 5) invokes the constructor make of class String and

892 Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



assigns the resulting reference to the object reference name. The code at lines

6 and 7 defines a method named work, also exported to class Boss. The class

Boss has a constructor named start (line 12), which is exported to all classes.

Such a constructor is the entry point of this application. So, firstly, an instance

of Boss is created. During its construction, an instance of Agent named “James”

(a literal given as a constructor’s argument) is created (line 14), next its method

work is invoked (line 15), next the object and its inner object of class String are

migrated to a virtual machine named “Japan” (line 16) and, finally, the method

work is invoked again, but this time it is a remote invocation since the object

migrated (line 17).

.01 class Agent

.02 {

.03 composition String name;

.04 constructor make( literal n ) export { Boss }

.05 { name = String.make( n ); }

.06 method void work( ) export { Boss }

.07 { // do something useful }

.08 }

.09

.10 class Boss

.11 {

.12 constructor start( ) export all

.13 {

.14 Agent james = Agent.make(’’James’’ );

.15 james.work( );

.16 james.migrate( ’’Japan’’ );

.17 james.work( );

.18 }

.19 }

4.2 Example 2

The code below shows four application classes: Patient, Filter and Doctor. There

are also classes named Hospital and Nurse which are not shown. Each class is

described separately, as follows.

An instance of Patient contains an attribute weight (line 3) and an attribute

height (line 4), both of class Integer, a library class. Those attributes are ini-

tiated by the constructor instantiate (line 5) and may be updated through the

methods SetWeight (line 8) and SetHeight (line 11); the constructor can be in-

voked by class Hospital, while the two update methods can be invoked by class

Nurse. The action named NonStandardWeight (line 14) implements a criteria

to test whether a patient’s weight is out of a certain range; if that is the case,

the action answers execute (line 16), otherwise it answers skip (line 17). Sim-

ilarly, the action named NonStandardHeight (line 18) implements a criteria to

test whether a patient’s height is out of a certain range. Those two actions can

be invoked by class Filter.

893Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



.01 class Patient

.02 {

.03 composition Integer weight;

.04 composition Integer height;

.05 constructor instantiate( Integer weight, Integer height )

.06 export {Hospital}

.07 { this.weight = weight; this.height = height; }

.08 method void SetWeight( Integer weight )

.09 export {Nurse}

.10 { this.weight = weight; }

.11 method void SetHeight( Integer height )

.12 export {Nurse}

.13 { this.height = height; }

.14 action NonStandardWeight( Integer min, Integer max )

.15 export {Filter}

.16 { if ( weight.lt( min ) || weight.gt( max ) ) execute;

.17 else skip; }

.18 action NonStandardHeight( Integer min, Integer max )

.19 export {Filter}

.20 { if ( weight.lt( min ) || weight.gt( max ) ) execute;

.21 else skip; }

.22 }

An instance of Filter contains attributes LowerWeight (line 2), UpperWeight

(line 3), LowerHeight (line 4) and UpperHeight (line 5). They are initiated by

the constructor instantiate (line 6), which can be invoked by class Hospital (line

8). The action accept (line 13), which can be invoked by class Nurse, takes

a reference to an instance of Patient as an argument and invokes its actions

NonStandardWeight (line 15) and NonStandardHeight (line 16); if one of them

answers execute, then the action answers execute as well (line 17); otherwise,

it answers skip (line 18).

.01 class Filter {

.02 composition Integer LowerWeight;

.03 composition Integer UpperWeight;

.04 composition Integer LowerHeight;

.05 composition Integer UpperHeight;

.06 constructor instantiate( Integer LW, Integer UW,

.07 Integer LH, Integer UW )

.08 export {Hospital}

.09 {

.10 LowerWeight = LW; UpperWeight = UW;

.11 LowerHeight = LH; UpperHeight = UH;

.12 }

.13 action accept( Patient patient ) export {Nurse}

.14 {

.15 if ( patient.NonStandardWeight(LowerWeight, UpperWeight) ||

.16 patient.NonStandardHeight(LowerHeight, UpperHeight) )

.17 execute;

.18 else skip;

.19 }

.20 }

An instance of Doctor has an associated instance of Patient (line 3). The

constructor instantiate (line 4), which can be invoked by Hospital, initializes

such attribute as null (line 5). The method treat (line 6), which can be invoked

894 Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



by Nurse, takes a reference to an instance of Patient as an argument and assigns

it as the currently associated patient (line 7). The action CurrentPatient (line

8), which can be invoked by Hospital, checks whether a certain patient is the

patient currently associated to the doctor; the test at line 10 compares two object

references: the method’s argument and the class’ attribute, both named patient.

.01 class Doctor

.02 {

.03 association Patient patient;

.04 constructor instantiate( ) export {Hospital}

.05 { patient = null; }

.06 method void treat( Patient patient ) export {Nurse}

.07 { this.patient = patient; }

.08 action CurrentPatient( Patient patient ) export {Hospital}

.09 {

.10 if ( patient == this.patient ) execute;

.11 else skip;

.12 }

.13 }

4.3 Example 3

The code below shows an application class named Image2D whose purpose is

to illustrate the use of data blocks and how they serve to create new classes.

An instance of Image2D encapsulates a data block referenced by bitmap (line

3). The two dimensions of the image stored by the data block is defined by

the attributes width (line 4) and height (line 5). The constructor make (line 6),

which can be invoked by all classes, takes two references to instances of Integer

and, if their values are greater than zero (line 8), use them to set the stored

image’s width (line 10) and height (line 11) and to allocate memory space for

the datablock (line 12). The method set (line 15), which can be invoked by all

classes, set a specific bit of the data block, according to the coordinates x and y

given as arguments. If they are valid coordinates (lines 17 and 18), the position

of the corresponding bit is calculated, so that the resulting instance of Integer

is assigned to the local variable p (line 20). An index, referenced as i, is created

by invoking the method makeIndex through reference p (line 21); that is, the

index value is set as the same integer value stored by the Integer object. The

newly created index referenced as i is then bound to the data block referenced

as bitmap. Finally, the bit of the data block indexed by i is set (line 23) and

the method returns an instance of Boolean, a library class, containing the value

true.

.01 class Image2D

.02 {

.03 datablock bitmap;

.04 composition Integer width;

.05 composition Integer height;

.06 constructor make( Integer width, Integer height ) export all

.07 {

895Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



.08 if ( width.gt( 0 ) && height.gt( 0 ) )

.09 {

.10 this.width = width;

.11 this.height = height;

.12 bitmap = datablock.make( width.multiply( height ) );

.13 }

.14 }

.15 method Boolean set( Integer x, Integer y ) export all

.16 {

.17 if ( x.geq( 0 ) && x.lt( width ) &&

.18 y.geq( 0 ) && y.lt( height ) )

.19 {

.20 Integer p = x.multiply( height ).add( y);

.21 index i = p.makeIndex( );

.22 i.bind( bitmap );

.23 bitmap.set( i );

.24 return Boolean.make( true );

.25 }

.26 else

.27 return Boolean.make( false );

.28 }

.29 }

5 Distributed Virtual Machine Architecture

The proposed architecture described here makes it possible to run code which

conforms to the described object model and gives support to code and object

mobility and to remote method invocation. Every virtual machine is composed

of a Class Space, an Object Space and an Activity Space, detailed in the sequel.

5.1 Object Space

A collection of objects which are instances of application classes available at the

local Class Space. All objects are referenced through a structure called object

table, similarly to the handle table implemented by DOSA (Distributed Object

System Architecture) [Hu et al., 2003]. [Figure 1] illustrates how objects are ref-

erenced both within a virtual machine and between virtual machines. The virtual

machine named Alpha stores objects identified as 12 and 17, while the virtual

machine named Beta stores objects identified as 45 and 67. An object table is an

array of entries of two types: entry for local object and entry for remote object;

this allows to distinguish local operation calls from remote ones. Thus, for each

object there is an entry in the object table of the machine where the object

resides. For instance, the object 12 is referenced by entry 0 of Alpha. An object

cannot directly reference another; an object can only reference an object table

entry in the same machine. For example, object 12 references entry 1 of Alpha,

which, in turn, references object 17; conceptually, object 12 references object 17.

An object may also conceptually reference an object that resides remotely. For

example, object 17 – that resides in Alpha – references object 45 – that resides in

Beta. This is implemented through the entry 2 of Alpha, which references entry

896 Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



0 of Beta. Therefore, an entry for local object must contain an object reference,

while an entry for remote object must contain a virtual machine name and an

object table entry index.

17 67

1

45

0 2

VM Beta

Object

Reference to local object

Entry for local object

Entry for remote object

Reference to local entry

Reference to remote entry

12

0 1 2

VM Alpha Key:

Figure 1: Example of object table

5.2 Class Space

A collection of application classes, a class table and a method table. Each class

has a corresponding entry within the class table, and each method of each class

has a corresponding entry within the method table. A class A references a class

B when it contains an object reference of type B. According to the object model,

that may happen in the following situations: (i) A has an attribute of type B;

(ii) some method of A has either a formal parameter of type B or a return

of type B; (iii) some method of A defines a local variable which is an object

reference of type B. Anyway, a class references another through the class table.

If class A references class B, it does not matter whether or not A and B are

located in the same machine because de class table makes it transparent to

refer to remote classes. Similarly, everywhere there is a method call, the object

that represents such a call references an entry of the method table, instead of

referencing the (object that represents the) method directly. Again, this gives

transparency to code distribution because it does not matter whether a method

call has as its target a local method or a remote method (with respect to code,

which is independent of object placement). An object may exist within a certain

machine as long as its corresponding class is also there. Thus, it may happen

that a class gets replicated everywhere its instances exist.

897Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



5.3 Activity Space

An activity is the execution of a method. Virtuosi runtime system employees

the traditional stack-based execution scheme to control activities: each element

of the stack is an activity and each stack of activities correspond to a thread.

Thus, the Activity Space is a collection of threads. There are two important

details, though. Firstly, activities can be either synchronous or asynchronous,

thus requiring specific management: every time a synchronous method invocation

occurs, a new activity is pushed onto the caller activity stack, while every time

an asynchronous activity is initiated, a new stack of activities (a new thread) is

created. Secondly, Virtuosi aims at giving total transparency to remote method

invocation, so an activity on one machine can start a new activity (actually, a

new stack of activities) on a remote machine. Again, the runtime system must

take care of the dependencies between such activities, including the necessary

message exchange and fault tolerance measures.

5.4 Object and Code Mobility

Objects can migrate (move) from one virtual machine to another. Typically, an

object migrates for efficiency and accessibility purposes, such as in applications

where mobile devices carry some software. In Virtuosi, object migration can be

programmed by using a set of operations defined according to [Jul et al., 1988],

as follows.

move Moves an object to a certain machine.

fix Fixes an object on the machine where it resides, so it cannot migrate until

it is unfixed.

unfix Undoes a previous fix operation, so that the object can migrate again.

refix Atomically, moves an object to a certain machine and fixes it there.

locate Returns the identity of the virtual machine where a given object resides.

When an object migrates, the object table of the source machine and the

object table of the destination machine must be updated. In the destination ma-

chine, a new entry must be inserted: an entry for a local object. In the source

object table, the existing entry for local object must be replaced for an entry

for a remote object that references the newly created entry in the destination

machine. As an object migrates to a different machine, it may be possible to

perform some optimizations on the object table: if the object is referenced by an

entry for remote object, then such entry is replaced by an entry for local object.

For the moment, it is not possible to migrate an object while it is active. Thus,

898 Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



the migration mechanism brings some constraints to object behavior: an object

cannot migrate while it performs any activity and, conversely, an object cannot

initiate a new activity while migrating. Composed objects must migrate all to-

gether, that is, the whole and its parts. As a consequence, the move operation

may be not applied to an object that is part of another. Also, an object cannot

migrate if it contains any object that is fixed.

Finally, when an object migrates to a certain machine, the migration mecha-

nism must check whether or not the corresponding class is already there. If not,

the class itself must be replicated (copied) to the target machine, thereby re-

quiring update on class table and method table: a new entry for local class must

be inserted in the class table of the new machine; a new entry for local method

must be inserted in the method table of the new machine for every operation

of the class; all references the class used to make to other classes (due to ob-

ject references that represent attributes, local variables and formal parameters)

and operations (constructor, method and action invocations) have to have new

entries for remote class and remote operation in the tables of the new machine.

5.5 Remote Method Invocation

The remote method invocation mechanism is totally transparent in Virtuosi.

Like any Remote Procedure Call (RPC) mechanism [Birrel and Nelson, 1984],

there must be parameter marshalling, message exchange and some level of fault

tolerance. The object table helps identifying whether a method invocation is

either local or remote, thus providing access transparency: a programmer does

not need to concern about distinguishing local and remote calls. Also, the object

table helps finding an object when it happens to be remote, thus providing

location transparency. The marshalling process is automatically done by using

the information provided by program trees, which are available at runtime. In

other words, there is no need to prepare stub code in advance. Some typical faults

that may happen include: remote machine disconnection from the network and

message loss. Such faults are properly handled by the mechanism.

6 Implementation Status

We have implemented a single-threaded version of the Virtuosi virtual machine,

a compiler for the Aram language and a debugger. The compiler transforms

classes coded in the Aram language into program trees which can be loaded and

interpreted by the virtual machine. The debugger is a graphical tool that permits

users to execute code step-by-step and watch the state of the virtual machine,

i.e., it is possible to set breakpoints, step into methods, examine variables (object

space), as well as the activity stack. All the implementation has been done in

Java, just to easy the portability of the virtual machine implementation itself.

899Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



As a consequence, a simple strategy to represent program trees in intermediary

format (between the compiler and the virtual machine) was to employ Java’s

object serialization scheme. Only a few concepts defined by the object model are

not implemented by Aram yet, including class inheritance. The virtual machine

implementation has been tested through a series of about 70 applications classes

which fully verifies the proposed object model.

Object state and code migration is also implemented by the virtual machine,

while object activity migration is under development [da Costa Cesar Filho, 2004].

The implementation has been done as a natural extension to the virtual machine

kernel, since its structure (Object Space and Class Space) is intrinsically pre-

pared for distribution. However, the migration primitives (move, fix, unfix, refix

and locate), though supported by the virtual machine implementation, needs to

be implemented by the Aram language and compiler yet.

Remote method invocation has been implemented separately from the virtual

machine kernel, by employing the TCP/IP protocol to exchange messages be-

tween virtual machines [Noda, 2005]. Our experiments have shown that a remote

method invocation takes about 340ms in average in the case where the invoked

code is present at the same machine as the caller code; otherwise this time can

reach about 2,300ms. The mechanism is currently being re-implemented by em-

ploying the Sun Microsystems JXTA peer-to-peer protocol and, then, integrated

to virtual machine kernel. The purpose is to evolve Virtuosi as a platform for

developing peer-to-peer applications.

7 Conclusion

We have introduced a new runtime platform named Virtuosi for building dis-

tributed object systems. It is based on virtual machine and object-oriented pro-

gramming concepts. A previous work [Calsavara and Nunes, 2001] has shown

that the main design principles of Virtuosi are feasible. Currently, a full-fledged

version of the platform is under development. To date, we have developed a

programming language and corresponding compiler, a prototype version of the

virtual machine kernel, a mechanism for transparent remote method invocation

and a mechanism for object and code mobility. That showed that our object

model and our design of distributed virtual machine architecture work well. The

main contribution of our research work, so far, is to show that is possible to

build a virtual machines which are intrinsicly distributed and cooperate to pro-

vide for transparency to such distribution, including interoperability between

applications which run atop heterogeneous systems.

In the near future, we expect to implement a mechanism for multi-threaded

execution and respective concurrency control proposed in [Nunes, 2005]. That

is going to allow building complex applications and further validate our ob-

ject model and distributed virtual machine architecture. Also, a mechanism for

900 Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



event-based distributed programming is under development, as an alternative to

remote method invocation for communication between objects. That is, actually,

a firm step towards evolving Virtuosi into a platform for developing peer-to-peer

applications. Another critical work to do is to implement compilers for differ-

ent programming languages in order to further assess the object model and also

verify how applications developed by using distinct programming language in-

teroperate.

References

[Andrews and Olsson, 1993] Andrews, G. R. and Olsson, R. A. (1993). The SR Pro-
gramming Language: Concurrency in Practice. Benjamin/Cummings.

[Baillarguet and Piumarta, 1999] Baillarguet, C. and Piumarta, I. (1999). An highly-
configurable, modular system for mobility, interoperability, specialization, and reuse.
In 2nd ECOOP Workshop on Object-Orientation and Operating Systems (ECOOP-
OOOSWS’99).

[Birrel and Nelson, 1984] Birrel, A. D. and Nelson, B. J. (1984). Implementing remote
procedure calls. ACM Transactions and Computer Systems, 2(1):39–59.

[Calsavara, 2000] Calsavara, A. (2000). Virtuosi: Máquinas virtuais para objetos dis-
tribúıdos. Technical report approved on internal examination for career ascencionx,
Pontif́ıcia Universidade Católica do Paraná, Curitiba, Brazil. 99 pages in Portuguese.

[Calsavara and Nunes, 2001] Calsavara, A. and Nunes, L. (2001). Estudos sobre a
concepção de uma linguagem de programação reflexiva e correspondente ambiente de
execução. In V Simpósio Brasileiro de Linguagens de Programação, pages 193–204.
In Portuguese.

[da Costa Cesar Filho, 2004] da Costa Cesar Filho, J. (2004). Mecanismo de mobili-
dade de objetos para a virtuosi. Master’s thesis, Pontif́ıcia Universidade Católica do
Paraná.

[DCE, 1992] DCE (1992). Introduction to OSF DCE. Prentice Hall, Englewood Cliffs,
NJ.

[Folliot et al., 1997] Folliot, B., Piumarta, I., and Riccardi, F. (1997). Virtual virtual
machines. In Proceedings of the 4th Cabernet Radical Workshop.

[Franz and Kistler, 1997] Franz, M. and Kistler, T. (1997). Does java have alterna-
tives? In Proceedings of the California Software Symposium CSS ’97, pages 5–10.

[Hu et al., 2003] Hu, Y. C., Yu, W., Cox, A., Wallach, D., and Zwaenepoel, W. (2003).
Run-time support for distributed sharing in safe languages. ACM Transactions on
Computer Systems (TOCS), 21(1):1–35.

[Jul et al., 1988] Jul, E., Levy, H., Hutchinson, N., and Black, A. (1988). Fine-grained
mobility in the Emerald system. ACM Transactions on Computer Systems, 6:109–
133.

[Kistler and Franz, 1996] Kistler, T. and Franz, M. (1996). A tree-based alternative
to java byte-codes. In Proceedings of the International Workshop on Security and
Efficiency Aspects of Java ’97. Also published as Technical Report No. 96-58, De-
partment of Information and Computer Science, University of California, Irvine, De-
cember 1996.

[Kolb, 2004] Kolb, C. J. J. (2004). Um sistema de execução para software orientado

a objeto baseado em Árvores de programa. Master’s thesis, Pontif́ıcia Universidade
Católica do Paraná.

[Mullender et al., 1990] Mullender, S. J., Rossum, G. v., Tanenbaum, A. S., Renesse,
R. v., and Staveren, H. v. (1990). Amoeba: A distributed operating system for the
1990s. IEEE Computer, 23:44–53.

901Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...



[Noda, 2005] Noda, A. K. (2005). Mecanismo de invocação remota de métodos em
máquinas virtuais. Master’s thesis, Pontif́ıcia Universidade Católica do Paraná.

[Nunes, 2005] Nunes, L. R. (2005). Um mecanismo de controle de concorrência para
jogos. Master’s thesis, Pontif́ıcia Universidade Católica do Paraná.

[Rumbaugh et al., 1997] Rumbaugh, J., Jacobson, I., and Booch, G. (1997). Unified
Modeling Language Reference Manual. Addison-Wesley, Reading, MA.

[Soley and Kent, 1995] Soley, R. M. and Kent, W. (1995). The OMG object model. In
Kim, W., editor, Modern Database Systems, chapter 2, pages 18–41. Addison-Wesley.

[Wirth and Gutknecht, 1992] Wirth, N. and Gutknecht, J. (1992). Project Oberon -
The Design of an Operating System and Compiler. Addison-Wesley, Reading, MA.

902 Calsavara A., Borges A., Nunes L., Variani D., Kolb C.: An Object Model ...


