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Abstract: We outline the Berlin Brain-Computer Interface (BBCI), a system which enables us
to translate brain signals from movements or movement intentions into control commands. The
main contribution of the BBCI, which is a non-invasive EEG-based BCI system, is the use of
advanced machine learning techniques that allow to adapt to the specific brain signatures of each
user with literally no training. In BBCI a calibration session of about 20min is necessary to pro-
vide a data basis from which the individualized brain signatures are inferred. This is very much
in contrast to conventional BCI approaches that rely on operand conditioning and need extensive
subject training of the order 50-100 hours. Our machine learning concept thus allows to achieve
high quality feedback already after the very first session. This work reviews a broad range of
investigations and experiments that have been performed within the BBCI project. In addition
to these general paradigmatic BCI results, this work provides a condensed outline of the under-
lying machine learning and signal processing techniques that make the BBCI succeed. In the
first experimental paradigm we analyze the predictability of limb movement long before the ac-
tual movement takes place using only the movement intention measured from the pre-movement
(readiness) EEG potentials. The experiments include both off-line studies and an online feedback
paradigm. The limits with respect to the spatial resolution of the somatotopy are explored by con-
trasting brain patterns of movements of left vs. right hand rsp. foot. In a second complementary
paradigm voluntary modulations of sensorimotor rhythms caused by motor imagery (left hand
vs. right hand vs. foot) are translated into a continuous feedback signal. Here we report results
of a recent feedback study with 6 healthy subjects with no or very little experience with BCI
control: half of the subjects achieved an information transfer rate above 35 bits per minute (bpm).
Furthermore one subject used the BBCI to operate a mental typewriter in free spelling mode. The
overall spelling speed was 4.5-8 letters per minute including the time needed for the correction
errors.
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1 Introduction

A Brain-Computer Interface (BCI) is a man-to-machine communication channel op-
erating solely on brain signatures independent from muscular output, see [Wolpaw
et al., 2002,Kübler et al., 2001,Curran and Stokes, 2003,Dornhege et al., 2006c] for a
broad overview. The Berlin Brain-Computer Interface (BBCI) is a non-invasive, EEG-
based system whose key features are (1) the use of well-established motor competences
as control paradigms, (2) high-dimensional features derived from 128-channel EEG,
(3) advanced machine learning techniques, and—as a consequence—(4) no need for
subject training.

1.1 Why Machine Learning for Brain-Computer Interfacing?

Traditional neurophysiology typically investigates the average brain. As a simple exam-
ple, an investigation of the neural correlates of motor preparation of index finger move-
ments would involve a number of subjects doing repeatedly such movements. A grand
average over all trials and all subjects will then reveal the generic result, a pronounced
cortical negativation which is focused in the corresponding (contralateral) motor area.
On the other hand comparing intra-subject averages, cf. Fig. 1, shows a huge subject-
to-subject variability, i.e., a large amount of variance in the grand average that was not
explained. (See Section 2.1 for a detailed description of the experiment.) Now let us go
one step further restricting the investigation to one subject. Comparing the session-wise
averages in two (motor imagery) tasks between the sessions recorded on different days
we encounter again a huge variability (session-to-session variability), cf. Fig. 2. (See
Section 3.1 for a detailed description of the experiment.) When it comes to real-time
feedback as in brain-computer interfaces we still have to go one step further. The sys-
tem needs to be able to identify the mental state of a subject based on one single-trial
(duration ≤ 1 s) of brain signals. Fig. 3 demonstrates the huge trial-to-trial variance in
one subject in one session (the experiment being the same as above). Nevertheless our
BBCI system was able to classify all those trials correctly. The tackling of the enormous
trial-to-trial variability is a major challenge in BCI research. Given the high subject-to-
subject variability it seems reasonable to have a system that adapts to the specific brain
signatures of each user. We believe that advanced techniques for machine learning are
an essential tool in this endeavor.

This idea contrasts with the operant conditioning variant of BCI, in which the sub-
ject learns by neurofeedback to control a specific EEG feature which is hard-wired in

582 Blankertz B., Dornhege G., Lemm S., Krauledat M., Curio G., Mueller K.-R. ...



le
ft

ri
g

h
t

1 2 3 4 5 6

Figure 1: Six subjects performed left vs. right hand index finger tapping. Even though
the kind of movement was very much the same in each subject and the task involves
a highly overlearned motor competence, the premovement potantial maps (−200 to
−100ms before keypress; blue means negative, red means positive potential) exhibit a
great diversity between subjects.
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Figure 2: One subject imagined left vs. right hand movements on different days. The
maps show spectral power in the alpha frequency band. Even though the maps represent
averages across 140 trials each, they exhibit an apparent diversity.

the BCI system, [Elbert et al., 1980, Rockstroh et al., 1984, Birbaumer et al., 2000].
According to the motto ‘let the machines learn’ our approach minimizes the need for
subject training and copes with all kinds of variabilities demonstrated above.

1.2 Overview of this paper

We present two aspects of the BBCI project. The first is based on the discriminability of
premovement potentials in voluntary movements. Our initial studies ( [Blankertz et al.,
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Figure 3: One subject imagined left (red) vs. right (green) hand movements. The to-
pographies show spectral power in the alpha frequency range during single-trials of
3.5 s duration. These patterns exhibit an extreme diversity although recorded from one
subject on one day.

2003]) show that high information transfer rates can be obtained from single-trial clas-
sification of fast-paced motor commands. Additional investigations – however beyond
the scope of this paper – point out ways of improving bit rates further, e.g., by extend-
ing the class of detectable movement related brain signals to the ones encountered, e.g.
when moving single fingers within one hand.

In a second step we established a BCI system based on motor imagery. A recent
feedback study ( [Blankertz et al., 2006]) demonstrated the power of the BBCI ap-
proach for 6 healthy subjects with no or very little experience of BCI control : 3 sub-
jects could achieve an information transfer rate above 35 bits per minute (bpm), and
further two subjects above 24 and 15 bpm, while one subject had no BCI control. These
results indicate that higher transfer rates can be achieved when comparing to classical
conditioning approaches, even though our subjects were untrained. We would like to
reiterate that the BBCI approach is non-invasive. In Section 2 we present single-trial
investigations of premovement potentials including online feedback (2.3). In Section 3
we present our BBCI feedback system based on motor imagery and the results of a
systematic feedback study (3.3). Section 3.4 gives evidence that the control is solely
dependent on central nervous system activity. Section 4 uses machine learning to not
only classify and predict but even to explain the underlying structure of the EEG data.
In Section 5 we point out lines of further improvement before the concluding discussion
6.

584 Blankertz B., Dornhege G., Lemm S., Krauledat M., Curio G., Mueller K.-R. ...



2 Premovement Potentials in Executed Movements

In our first paradigm we studied the pre-movement potentials in overlearned move-
ments, like typewriting on a computer keyboard. Our aim here was to build a classifier
based on the Bereitschaftspotential (BP, or readiness potential) which is capable of de-
tecting movement intentions and predicting the type of intended movement (e.g. left
vs. right hand) before EMG onset. The basic rationale behind letting healthy subjects
actually perform the movements in contrast to movement imagination is that the lat-
ter poses a dual task (motor command preparation plus vetoing the actual movement).
This suggests that movement imagination by healthy subjects might not guarantee an
appropriate correspondence to paralyzed patients as the latter will emit the motor com-
mand without veto (but see [Kübler et al., 2005] for a study showing that ALS patients
can indeed use modulations of sensorimotor rhythms for BCI control). In order to al-
low a safe transfer of the results in our setting to paralyzed patients it is essential to
make predictions about imminent movements prior to any EMG activity to exclude a
possible confound with afferent feedback from muscle and joint receptors contingent
upon an executed movement. Being able to predict movements in real time before the
EMG activity starts, opens interesting perspectives for assistance of action control in
time-critical behavioral contexts, an idea further pursued in [Krauledat et al., 2004].

2.1 Left vs. Right Hand Finger Movements

Our goal is to predict in single-trials the laterality of imminent left vs. right finger move-
ments at a time point prior to the start of EMG activity. The specific feature that we use
is the readiness potential (LR, or Bereitschaftspotential), which is a transient postsynap-
tic response of main pyramidal peri-central neurons, see [Kornhuber and Deecke, 1965].
It leads to a pronounced cortical negativation which is focused in the corresponding mo-
tor area, i.e., contralateral to the performing limb reflecting movement preparation, see
Fig. 4. Neurophysiologically, the RP is well investigated and described, cf. [Kornhu-
ber and Deecke, 1965, Lang et al., 1989, Cui et al., 1999]. New questions that arise in
this context are (a) can the lateralization be discriminated on a single-trial basis, and
(b) does the refractory behavior allow to observe the RP also in fast motor sequences?
Our investigations provided positive answers to both questions.

In a series of experiments healthy volunteers performed self-paced finger-
movements on a computer keyboard with approximate tap-rates of 30, 45, 60 and 120
taps per minute (tpm). EEG was recorded from 128 Ag/AgCl scalp electrodes (except
for some experiments summarized in Fig. 5 which were recorded with 32 channels). To
relate the prediction accuracy with the timing of EMG activity we recorded electromyo-
gram (EMG) from M. flexor digitorum communis from both sides. Also electrooculo-
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Figure 4: Response averaged event-related potentials (ERPs) of one right-handed sub-
ject in a left vs. right hand finger tapping experiment (N =275 resp. 283 trials per class).
Finger movements were executed self-paced, i.e., without any external cue, in an ap-
proximate inter-trial interval of 2 seconds. The two scalp plots show a topographical
mapping of scalp potentials averaged within the interval -220 to -120 ms relative to
keypress (time interval shaded in the ERP plots). Larger crosses indicate the position of
the electrodes CCP3 and CCP4 for which the time course of the ERPs is shown in the
subplots at both sides. For comparison time courses of EMG activity for left and right
finger movements are added. EMG activity starts after -120 ms and reaches a peak of
70 μV at -50 ms. The readiness potential is clearly visible, a predominantly contralat-
eral negativation starting about 600 ms before movement and raising approximately
until EMG onset.

gram (EOG) was recorded to control for the influence of eye movements, cf. Fig. 8. No
trials have been discarded from analysis.

The first step towards RP-based feedback is evaluating the predictability of the later-
ality of upcoming movements. We determined the time point of EMG onset by inspect-
ing classification performance based on EMG-signals (like in Fig. 8) and used it as end
point of the windows from which features for the EEG-based classification analysis
were extracted. For the data set shown in Fig. 4 the chosen time point is -120 ms which
is in coincidence with the onset seen in averaged EMG activity. The choice of the rel-
ative position of the classification window with respect to the keypress makes sure that
the prediction does not rely on brain signals from afferent nerves. The extraction of the
RP features and the classification techniques are described in section 2.2. The result of
EEG-based classification for all subjects is shown in Fig. 5 where the cross-validation
performance is quantified in bits per minute (according to Shannon’s formula) in order
to trade-off accuracy vs. decision speed. A discussion of the possible influence of non-
central nervous system activity on the classfication can be found in the next section 2.3,
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Figure 5: Tapping rates [taps per minute] vs. information transfer rate as calculated by
Shannon’s formula from the cross-validation error for different subjects peforming self-
paced tapping at different average tapping rates with fingers of the left and the right
hand. The results of the best subject (marked by red dots) were confirmed in several
experiments.

especially in Fig. 8.
The results indicate that the refractory period of the RP is short enough to effectively

discriminate pre-movement potentials in finger movement sequences as fast as 2 taps
per second. On the other hand it turned out that the performance of RP-based premove-
ment potential detection in a self-paced paradigm is highly subject-specific. Further
investigations have studied event-related desynchronization (ERD) effects in the μ and
β frequency range, cf. [Pfurtscheller and da Silva, 1999], compare systematically the
discriminability of different features and combined RP+ERD features, cf. [Dornhege
et al., 2004], and search for modifications in the experimental setup in order to gain
high performance for a broader range of subjects.

2.2 Preprocessing and Classification

The following feature extraction method is specifically tailored to extract information
from the readiness potential. It extracts the low frequency content with an emphasis on
the late part of the signal, where the information content can be expected to be largest
in pre-movement trials. Starting points are epochs of 128 samples (i.e. 1280 ms) of raw
EEG data as depicted in Fig. 6 (a) for one channel. To emphasize the late signal content,
the signal is convoluted with one-sided cosine window (Fig. 6 (b))

w(n) := 1− cos(nπ/128) for n = 0, . . . ,127,
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Figure 6: This example shows the feature calculation in one channel of a pre-movement
trial [−1400−120] ms with keypress at t = 0 ms. The pass-band for the FT filtering is
0.4–3.5Hz and the subsampling rate is 20 Hz. Features are extracted only from the last
200 ms (shaded) where most information on the upcoming movement is expected.

before applying a Fourier transform (FT) filtering technique: from the complex-valued
FT coefficients all are discarded but the ones in the pass-band (including the negative
frequencies, which are not shown), (Fig. 6 (c)). Transforming the selected bins back
into the time domain gives the smoothed signal of which the last 200 ms are subsam-
pled at 20 Hz resulting in 4 feature components per channel (Fig. 6 (d)). The full (RP-)
feature vector is the concatenation of those values from all channels for the given time
window. For online operation those features are calculated every 40 ms from sliding
windows.

Due to our observation that RP-features under particular movement conditions are
normally distributed with equal covariance matrices ( [Blankertz et al., 2003]), the clas-
sification problem meets the assumption of being optimally separated by a linear hy-
perplane. The data processing described above preserves gaussianity, hence we classify
with regularized linear discriminant analysis (RLDA, see [Friedman, 1989]). Regular-
ization is needed to avoid overfitting since we are dealing with a high-dimensional
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Figure 7: Projection vectors of linear classifiers are instructive. In the case RP-features
(see text) they correspond to a temporal sequence of scalp topographies. The weights on
both hemispheres get the opposite sign (red vs. green) reflecting the lateralized nature
of the readiness potential and the magnitude of the weights is increasing with time
reflecting the greater confidence of the potential distribution shortly before keypress.

dataset with only few samples available. Without regularization the estimates of covari-
ance matrices may be inacccurate leading to degraded classification results. The choice
of linear classifiers has the advantage that the learned projection vector of the classi-
fier can be visualized and neurophysiologically validated. In the case of RP-features
as calculated above the projection vector corresponds to a temporal sequence of scalp
topographies, see Fig. 7. See Section 4 for more advanced classification techniques and
a discussion of how these techniques can help to explain underlying structures of the
analyzed data.

2.3 RP-based feedback in asynchronous mode

The general setting is the following. An experimental session starts with a short period
during which the subject performs self-paced finger movements. This session is called
calibration session, and the data is used to train a classifier which is then used to make
instantaneous predictions on whether the subject intends a hand movement and what its
laterality will be.

Although the results of the preceding section demonstrate that an effective discrim-
ination of left vs. right hand finger movements is possible well before keypress, it re-
mains a challenge to build a system that predicts movement intentions from ongoing
EEG. One point that made the previous classification task easier was that the single
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trials were taken from intervals in fixed time relation to the keypress. For the imple-
mentation of a useful continuous feedback in an asynchronous mode (meaning without
externally controlled timing) we need two more things: (1) the classifier must work
reasonably well not only for one exact time point but for a broader interval of time,
and (2) the system needs to detect the build up of movement intentions such that it can
trigger BCI commands without externally controlled timing.

With respect to the first issue we found that a quite simple strategy (jittering) leads to
satisfying results: instead of taking only one window as training samples ones extracts
several with some time jitter between them. More specifically we extracted two samples
per keypress of the calibration measurement, one from a window ending at 150 ms the
other at 50 ms before keypress. This method makes the resulting classifier somewhat
invariant to time shifts of the samples to be classified, i.e., better suited for the online
application to sliding windows. Using more than two samples per keypress event did not
improve classification performance further. Extracting samples from windows ending
at 50 ms before keypress may seem critical since EMG activity starts at about 120 ms
before keypress. But what matters is that the trained classifier is able to make predictions
before EMG activity starts no matter what signals it was trained on. This can be seen
in Fig. 8 in which EEG-, EMG- and EOG-based classification is compared in relation
to the time point of classification. The left plot shows a leave-one-out validation of the
calibration measurement, while the right plot shows the accuracy of a classifer trained
on the calibration measurement applied to signals of the feedback session, both using
jittered training.

To implement the detection of upcoming movements we train a second classifier as
outlined in [Blankertz et al., 2002]. Technically, the detector of movement intentions
was implemented as a classifier that distinguishes between motor preparation intervals
(for left and right taps) and ‘rest’ intervals that were extracted from intervals between
movements. To study the interplay of the two classifiers we pursued exploratory feed-
back experiments with one subject, selected for his good offline results. Fig. 9 shows
a statistical evaluation of the two classifiers when applied in sliding windows to the
continuous EEG.

The movement discriminator in the left plot of Fig. 9 shows a pronounced separa-
tion during the movement (preparation and execution) period. In other regions there is
a considereable overlap. From this plot it becomes evident that the left/right classifier
alone does not distinguish reliably between movement intention and rest condition by
the magnitude of its output, which explains the need for a movement detector. The el-
evation for the left class is a little less pronounced (e.g., the median is −1 at t =0 ms
compared to 1.25 for right events). The movement intention detector in the right plot of
Fig. 9 brings up the movement phase while giving (mainly) negative output to the post
movement period.
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Figure 8: Comparison of EEG, EMG and EOG based classification with respect to the
endpoint of the classification interval with t = 0 ms being the time point of keypress. For
the left plot classifiers were trained in a leave-one-out fashion and applied to a window
sliding over the respective left out trials on data of the calibration measurement. For
the right plot a classifier (for each type of signal) was trained on data of the calibration
measurement and applied to a window sliding over all trials of a feedback session. Note
that the scale of the information transfer rate [bits per minute] on the right is different
due to a higher average tapping speed in the feedback session.

These two classifiers were used for an exploratory feedback in which a cross was
moving in two dimensions, see left plot of Fig. 10. The position on the x-axis was
controlled by the left/right movement discriminator and the vertical position was deter-
mined by the movement intention detector. Obviously this is not an independent control
of two dimensions. Rather the cursor was expected to stay in a middle of the lower half
during rest and it should move to the upper left or right field when a movement of the
left resp. right hand was prepared. The red and green colored fields are the decision ar-
eas which only have a symbolic meaning in this application, because no further actions
are triggered. In a case study with one subject the expected behavior was indeed found.
Although the full flavor of the feeback can only be experienced by watching it, we tried
to demonstrate its dynamics by showing the traces of the first 100 trials of the feedback
in the right plot of Fig. 10. Each trace displays an interval of the feedback signal -160
to -80 ms relative to keypress. The last 40 ms are intensified and the end point of each
trace is marked by a dot.

3 BCI Control based on Imagined Movements

The RP feature presented in the previous section allows an early distinction between
motor related mental activities since it reflects movement intent. But even in repeti-
tive movements the discrimination decays already after about 1 second, cf. [Dornhege,
2006]. Accordingly we take an alternative approach for the design of proportional BCI-
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Figure 9: Classifiers were trained in a leave-one-out fashion and applied to windows
sliding over unseen epochs yielding traces of graded classifier outputs. The tubes show
the 10, 20, 30 resp. 90, 80, and 70 percentile values of those traces. On the left the result
is shown of the left vs. right classifier with tubes calculated separately for left and right
finger tapping. The subplot on the right shows the result for the movement detection
classifier.

Figure 10: Left panel: In a BCI feedback experiment a cursor was controlled by two
classifiers. The output of a classifier trained to discriminate left vs. right hand finger
movements determined the x-coordinate, while a classifier trained to detect upcoming
finger movements determined the y-coordinate. Accordingly the cursor should stay in
the lower center area when the subject is at rest while approaching one of the target
fields upon movement intentions. This behavior was indeed achieved as can be seen
in the right panel: Traces of feedback control. Each trace displays an interval of the
feedback signal -160 to -80 ms relative to keypress. The last 40 ms are intensified and
the end point of each trace is marked by a dot. Traces are colored red or green for
subsequent left resp. right hand finger taps.
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control, like continuous cursor control. Here we focus on modulations of sensorimotor
rhythms evoked by imagined movements. The neurophysiological feature that is ex-
ploited here is the event-related desynchronization (ERD): When a subject is at rest
(sensori-) motor cortices exhibit a so-called idling rhythm typically with a fundamental
frequency at about 12 Hz and a harmonic at 24 Hz. During motor preparation, imagina-
tion or execution this rhythm is attenuated or even total blocked in the area of the cortex
that corresponds to the respective limb, an effect termed ERD, cf. [Pfurtscheller and
Lopes da Silva, 1999]. The (sensori-) motor area of the left hand is in the center of the
right hemisphere, the area of the right hand on the left hemisphere and the area of the
foot is in the middle of the vertex. The opposite effect of enhancment of brain rhythms is
called event-related synchronization and can, e.g., by observed after movement offset.

3.1 Experimental Setup

We designed a setup for a feedback study with 6 subjects who all had no or very little ex-
perience with BCI feedback. Brain signals were measured from 118 electrodes mounted
on the scalp. To exclude the possibility of influence from non central nervous system
activity, EOG and EMG were recorded additionally, see Section 3.4. Those channels
were not used to generate the feedback signal.

Each experiment began with a calibration measurement (also called training session
but note that this refers to machine training) in which labeled trials of EEG data dur-
ing motor imagery were gathered. This data is used by signal processing and machine
learning techniques to estimate parameters of a brain-signal to control-signal translation
algorithm. The learning machine can then be applied online to continuously decode in-
coming signals for producing an instantaneous feedback control signal.

In the training sessions visual stimuli indicated for 3.5s which of the following 3
motor imageries the subject should perform: (L) left hand, (R) right hand, or (F) right
foot. The presentation of target cues was interrupted by periods of random length, 1.75
to 2.25s, in which the subject could relax.

Then the experimenter investigated the data to adjust subject-specific parameters
of the data processing methods and identified the two classes that gave best discrim-
ination. See Fig. 11 for band-energy mappings of 5 successful subjects and r 2 maps
showing that discriminative activity is found over (sensori-) motor cortices only. When
the discrimination was satisfactory, a binary classifier was trained and three different
kinds of feedback applications followed. This was the case for 5 of 6 subjects who
typically performed 8 runs of 25 trials each for each type of feedback applications

During preliminary feedback experiments we realized that the initial classifier was
often performing suboptimal, such that the bias and scaling of the linear classifier had to
be adjusted. Later investigations have shown that this adaption is needed to account for
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Figure 11: The upper two rows show a topographic display of the energy in the specific
frequency band that was used for feedback (as baseline the energy in the inter-stimuli
intervals was subtracted). Darker shades indicate lower energy resp. ERD. From the
calibration measurement with three types of motor imagery, two were selected for feed-
back. Energy plots are shown only of those two selected conditions. The type of motor
imagery is indicated by the color of the scalp outline. The lower row shows the r 2 differ-
ences between the band energy values of the two classes demonstrating that distictive
information found over from (sensori-) motor cortices.

the different experimental condition of the (exciting) feedback situation as compared to
the calibration session (see e.g. [Shenoy et al., 2006]).

In the first feedback application (‘position controlled cursor’), the output of the
classifier was directly translated to a horizontal position of a cursor. Out of two target
fields at both sides, one was highlighted at the beginning of a trial. The cursor started
in a deactivated mode (in which it could move but not trigger a target field) and became
activated after the user has held the cursor in a central position for 500 ms. The trial
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Figure 12: This plots shows the single trial feedback traces from two runs for each
type of feedback with time on the vertical axis and BCI control on the horizontal axis.
Data sets were chosen from all 5 subjects. For the cursor control, green and blue code
correct trials with left resp. right target while erroneous trials are shown in red. For
the basket game feedback erroneous trials are coded by dotted lines. The upper row
shows examples of very good performance, while performance in the lower row was a
bit degraded.

ended when the activated cursor touched a target field which was then colored green or
red, depending on whether it was the correct target or not. The cursor was deactivated
and the next target appeared.

The second feedback application (‘rate controlled cursor’) was very similar, but
the control of the cursor was relative to the actual position, i.e., at each update step a
fraction of the classifier output was added to the actual cursor position. Each trial started
by setting the cursor to the middle of the screen and releasing it after 750 ms.

The last feedback application (‘basket game’) operated in a synchronous mode and
is similar to what is used in Graz, cf. [Krausz et al., 2003]. A ball fell at constant speed
while its horizontal position was controlled by the classifier output. At the bottom of
the screen there were three target fields, the outer having half the width of the middle
fields to account for the fact that outer positions were easier to hit.

Fig. 12 shows the trajetories of the selected feedback runs for each of the three
types of feedback. The upper row shows examples of very good performance, while
performance in the lower row was a bit degraded.
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3.2 Processing and Classification

A crucial point in the data processing is to extract appropriate spatial filters that op-
timize the discriminability of multi-channel brain signals based on ERD/ERS effects
of the (sensori-) motor rhythms. Once these filters have been determined, features are
extracted as the log of the variance in those surrogate channels. In our experience those
features can best be classified by linear methods; we use linear discriminant analysis
(LDA). For online operation, features are calculated every 40 ms from sliding windows
of 250 to 1000 ms (subject-specific). The spatial filters are calculated individually for
each subject on the data of the calibration measurement by Common Spatial Pattern
(CSP) analysis, see [Fukunaga, 1990, Lemm et al., 2005, Dornhege et al., 2006d]. The
objective of the CSP technique is to find spatial filters that the maximize variance of
signals of one condition and at the same time minimize variance of singals of another
condition. Since variance of band-pass filtered signals is equal to band-power, CSP fil-
ters can be used to discriminate conditions that a characterized by ERD/ERS effects.

Technically CSP analysis goes as follows. Let Σ1 and Σ2 be estimates of the covari-
ance matrices of the band-pass filtered EEG signals under the two conditions. These
two matrices are simultaneously diagonalized in a way that the eigenvalues of Σ 1 and
Σ2 sum to 1. Practically this can be done by caluclating the generalized eigenvectors V :

Σ1V = (Σ1 + Σ2)VD. (1)

Then the diagonal matrix D contains the eigenvalues of Σ 1 and the column vectors of V
are the filters of the common spatial patterns. Best contrast is provided by filters with
high eigenvalues (large variance for condition 1 and small variance for condition 2) and
by filters with low eigenvalues (vice versa).

Further details about the processing methods and the selection of parameters can be
found in [Blankertz et al., 2005].

3.3 Results

To compare the results of different feedback sessions we use the information transfer
rate (ITR, [Wolpaw et al., 2002]) measured in bits per minute (bpm). We calculated this
measure for each run according to the following formula:

ITR =
# of decisions

duration in minutes
·
(

p log2(p)+ (1− p) log(
1− p
N −1

)+ log2(N)
)

(2)

where p is the accuracy in decisions between N classes (N = 2 for cursor control and
N = 3 for the basket game). Note that the duration in minutes refers to the total duration
of the run including all inter-trial intervals. In contrast to error rates or ROC curves the
ITR takes different duration of trials and different number of classes into account. The
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Table 1: The first two columns compare the accuracy as calculated by cross-validation
on the calibration data with the accuracy obtained online in the feedback application
‘rate controlled cursor’. Columns three to eight report the information transfer rates
(ITR) measured in bits per minute as obtained by Shannon’s formula, cf. (2). For each
feedback application the first column reports the average ITR of all runs (of 25 trials
each), while the second column reports the peak ITR of all runs. Subject 2 did not
achieve BCI control (64.6% accuracy in the calibration data).

acc [%] cursor pos. ctrl cursor rate ctrl basket

cal. fb. overall peak overall peak overall peak

1 95.4 80.5 7.1 15.1 5.9 11.0 2.6 5.5

3 98.0 98.0 12.7 20.3 24.4 35.4 9.6 16.1

4 78.2 88.5 8.9 15.5 17.4 37.1 6.6 9.7

5 78.1 90.5 7.9 13.1 9.0 24.5 6.0 8.8

6 97.6 95.0 13.4 21.1 22.6 31.5 16.4 35.0

∅ 89.5 90.5 10.0 17.0 15.9 27.9 8.2 15.0

ITR of a random classifier is 0. Table 1 summarizes the information transfer rates that
were obtained by the 5 subjects in the three feedback sessions. Highest ITRs were
obtained in the ‘rate controlled cursor’ scenario which has a asynchronous protocol.

One point that is to our knowledge special about the BBCI is that it can be oper-
ated at a high decision speed, not only theoretically, but also in practice. In the absolute
cursor control the average trial length was 3 seconds, in rate controlled cursor 2.5 sec-
onds. In the basket feedback the trial length is constant (synchronous protocol) but was
individually selected for each subject, ranging from 2.1 to 3s. The fastest subject was
no. 4 which performed at an average speed of one decision every 1.7s. The most reli-
able performance was achieved by subject 3: only 2% of the total 200 trials in the rate
controlled cursor were misclassified at an average speed of one decision per 2.1s. Note
that in our notion a trial is ranging from one target presentation to the next including
the ‘non-control’ period during which the selected field was highlighted.

In a later experiment subject 3 operated a mental typewriter based the second feed-
back application. The alphabet (including a space and a deletion symbol) was split into
two parts and those groups of characters were placed on the left resp. right side of the
screen. The user selects one subgroup by moving the cursor to the respective side and
the process is iterated until a ‘group’ of one character is selected. The splitting was done
alphabetically based on the probabilities of the German alphabet, but no elaborated lan-
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guage model was used. In a free spelling mode subject 3 spelled 3 german sentences
with a total of 135 characters in 30 minutes, which is a typing speed of 4.5 letters per
minutes. Note that all erros have been corrected by using the deletion symbol. For de-
tails, see [Dornhege, 2006]. Note that with a novel mental typewriter that is based on
principles of human-computer interaction the same subject achieved a typing speed of
more than 7 letters per minute, cf. [Müller and Blankertz, 2006].

3.4 Investigating the Dependency of BCI Control

The fact that it is in principle possible to voluntarily modulate motorsensory rhythms
without concurrent EMG activity was studied in [Vaughan et al., 1998]. Nevertheless it
has to be checked for every BCI experiment involving healthy subjects. For this reason
we always record EMG signals even though they are not used in the online system. On
one hand we investigated classwise averaged spectra, their statistical significant differ-
ences and the scalp distributions and time courses of the power of the μ and β rhythm.
The results substantiated that differences of the motor imagery classes indeed were lo-
cated in sensorimotor cortices and had the typical time courses (except for subject 2 in
whom no consistent differences were found), cf. Fig. 11. On the other hand we com-
pared how much variance of the classifier output and how much variance of the EMG
signals can be explained by the target class. Much in the spirit of [Vaughan et al., 1998]
we made the following analysis using the squared bi-serial correlation coefficient r 2.
The r2-value was calculated for the classifier output and for the band-pass filtered and
rectified EMG signals of the feedback sessions. Then the maximum of those time series
was determined resulting in one r2-value per subject and feedback session for EMG
resp. for the BCI classifier signal. The r2 for EMG was in the range 0.01 to 0.08 (mean
0.04±0.03) which is very low compared to the r 2 for the BCI classifier signal which
was in the range 0.36 to 0.79 (mean 0.52±0.15).

The fact that the BBCI works without being dependent on eye movements or visual
input was additionally verified by letting two subjects control the BBCI with closed
eyes which resulted in a comparable performance as in the closed loop feedback.

4 Explaining Underlying Structures by Machine Learning Techniques

When analyzing high dimensional data it is not only important to visualize, predict or
classify with low error, but it is essential that exploratory data analysis tools allow to
explain the underlying structure in order to contribute to a better understanding of data.

The ability to generate excellent and interpretable results is a long standing problem
for general nonlinear methods. Decision trees such as CART [Breiman et al., 1984] or
MARS [Friedman, 1991] or more recent tree-algorithms offer a first reasonable com-
promise. Here the classification can be translated into a set of rules, which, however,
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due to their large number, might still not be overly illuminating. Using vanilla neural
network approaches (e.g. [Bishop, 1995]), the hidden units nonlinearly combine the
measured data and thus interpretation also becomes hard in terms of input variables.
Methods like input pruning can alleviate this problem to some extent since such prun-
ing algorithms give rise to solutions which are sparse in the number of input variables
( [Bishop, 1995]).

In contrast, linear methods reveal explanatory power. (See e.g. [Müller et al., 2003]
for a discussion of linear vs. nonlinear classification.) In the linear separating hyper-
plane formulation (w�x+b = 0), the estimated label {1, −1} of an input vector x ∈�N

is ŷ = sign(w�x+b). If no a-priori knowledge on the probability distribution of the data
is available, a typical objective is to minimize a combination of the empirical risk func-
tion and a regularization term that restrains the algorithm from overfitting to the train-
ing set {(xk,yk) |k = 1, . . . ,K}. Taking a soft margin loss function yields the empirical
risk function ∑K

k=1 max(0,1− yk (w�xk + b)). In most approaches of this type there is
a hyper-parameter that determines the trade-off between risk and regularization, which
has to be chosen by model selection on the training set, e.g. similar to [Rätsch et al.,
2001, Müller et al., 2001]. When classifying with a linear hyperplane classifier w we
can easily rank and thus quantify the contribution of every dimension x i to the classi-
fier’s decision for a given data point x. For instance, the more positive the contribution
to the scalar product w�x for a certain dimension i, the higher its relative contribution
to the overall decision to label the point x as positive.

Nonlinear kernel-based methods (e.g. [Vapnik, 1995,Müller et al., 2001,Schölkopf
et al., 1998, Rosipal and Trejo, 2001]) could in principle assess such individual contri-
butions in some appropriate high dimensional feature space F , but when projecting
back to the original input space, single feature space dimensions typically correspond
to an uninterpretable nonlinear mix of input variables ( [Schölkopf et al., 1999]), most
similar to the above discussed neural network scenario.

Thus, an ideal strategy should simultaneously construct a good classifier and select
features for explaining. This integrative approach is in contrast to common sequential
methods that first use dimensionality reduction such as PCA and later on build a clas-
sifier on the reduced space. Recently, mathematical programming machines especially
linear programs (rsp. sparse regularized fisher’s discriminant, [Mika et al., 2001, Mika
et al., 2000]) have become popular since they can exactly fulfill this integrative task,
see e.g. [Blankertz et al., 2002] for a first application of this technique in the context
of BCI data analysis.

Let us introduce some mathematical programming machines that are based on the
above linear classifier (w,b). The mathematical programming formulation of Regular-

599Blankertz B., Dornhege G., Lemm S., Krauledat M., Curio G., Mueller K.-R. ...



ized Fisher Discriminant (RFD) is [Mika et al., 2001]:

min
w,b,ξ

1/2 ||w||22 + C/K ||ξ ||22 subject to (3)

yk(w
�xk + b) = 1− ξk and ξk � 0, for k = 1, . . . ,K (4)

where ||·||2 denotes the �2-norm (||w||22 = w�w) and C is a model parameter. The con-
straint yk(w

�xk + b) = 1− ξk ensures that the class means are projected to the corre-
sponding class labels, i.e., 1 and −1. Minimizing the length of w maximizes the margin
between the projected class means relative to the intra class variance. A reformula-
tion of eqs. (4) and (4) allows to consider some interesting variants, e.g., Sparse Fisher
Discriminant (SFD), which uses the �1-norm (||w||1 = Σ |wn|) on the regularizer, i.e.,
the goal function is ||w||1 + C/K ||ξ ||22. This choice favours solutions with sparse vec-
tors w, such that it automatically also yields integrated feature selection in input space
while providing excellent classification. Our implementation of SFD uses the cplex op-
timizer [ILOG, 1999].

A further mathematical programming technique are Linear programming machines
(LPMs) that are well known for their sparseness [Bennett and Mangasarian, 1992,Vap-
nik, 1995,Müller et al., 2001]

min
w,b,ξ

1/2 ||w||1 + C/K ||ξ ||1 subject to

yk(w
�xk + b) � 1− ξk, and ξk � 0 for k = 1, . . . ,K.

Note that an interesting class of sparse mathematical programming machines are imple-
mented by minimizing partial least squares problems; also here sparsity and accuracy
can be provided in an integrative manner (e.g. [Rosipal and Trejo, 2001]).

When applied to one of our EEG measurements from an imagined movement exper-
iment as presented in Section 3.1, the LPM selects less than 4% of the feature dimen-
sions that allow for a left vs. right classification with good generalization. The outcome
of the algorithm coincides nicely with what we would expect from neurophysiology,
i.e., high loadings for electrodes close to sensorimotor cortices in the left and right
hemisphere with a strong focus at 12 Hz, i.e., the frequency range of the μ-rhythm, cf.
Fig. 13. Note that the feature selection is an integrative part of the learning process and
is automatically adapted to subject, electrode placement, etc.

Thus, the use of state-of-the-art learning machines enables us not only to achieve
high decision accuracies for BCI (e.g. [Blankertz et al., 2002, Blankertz et al., 2003,
Dornhege et al., 2004]), but also, as a by-product of the classification, the few most
prominent features that are found match nicely with neurophysiological intuition: the
most salient information can be gained in the frequency range of sensorimotor rhythms
with a focus over motor cortices, cf. Fig. 13. For the above paradigm it was clear what to
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Figure 13: This figure shows the weight vector (display as a channel × frequency ma-
trix) of a sparse classifier (absolute values) that was trained to discriminate left .vs right
hand motor imagery. The bar on the bottom shows the sum across all channels and is
displayed also in the lower right plot. The focus in the frequency range lies on the α-
band (here 11–14 Hz). The bar on the right side of the matrix show the sum across all
frequency bands and is displayed as scalp topography in the upper right plot. Note that
less than 4% of the features were assigned non-zero weights.

expect from a physiological point of view and the mathematical programming method
could match perfectly with neurophysiological intuition. More interesting and realistic
is an exploratory scenario, where (1) a new paradigm is tested that could generate also
unexpected neurophysiological signatures, (2) a hypothesis about underlying task rele-
vant brain processes is generated automatically by the learning machine, and (3) finally
the paradigm is adapted, so in principle a better understanding of the brain processes
could be inferred. In this sense a machine learning method offering explanation, can be
of great use in the semi-automatic exploration loop for testing new paradigms.

5 Lines of Further Improvement

5.1 CSSP: CSP with simultaneous spectral optimization

One drawback of the classical CSP algorithm from eqn. 1 is that its performance
strongly depends on the appropriate choice of the band-pass filter that needs to be ap-
plied to the EEG data in advance. Although [Müller-Gerking et al., 1999] found evi-
dence that a broad band filter is the best general choice, a subject-specific fine tuned
filter that is adapted to the individual spectral properties can enhance the results.
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The idea of our Common Spatio-Spectral Pattern (CSSP) algorithm ( [Lemm et al.,
2005]) is to simultaneously optimize the spatial filter in conjunction with very simple
frequency filters (one tapped delay FIR filter) for each channel.

Therefore CSSP solves the standard CSP problem in state space, given by the con-
catenation of the original signal x and its off τ ms delayed version x τ . More intuitively,
we are optimizing a spatial filter in an extended spatial domain, were the delayed sig-
nals are treated as new channels (x,xτ )�. Consequently this yields spatial projections(
w0,wτ), that correspond to vectors in this extended spatial domain. Any spatial pro-

jection in state space can be expressed as a combination of a pure spatial and spectral
filter applied to the original data x, as follow:

〈(w0,wτ )�,(x,xτ )�〉 = ∑
c=1

w(0)
c xc,· + w(τ)

c xτ
c,·

= ∑
c=1

γc

(
w(0)

c

γc
xc,· +

w(τ)
c

γc
xτ

c,·

)
, (5)

where (γc)c=1,... ,C defines a pure spatial filter, whereas ( w(0)
c
γc

,

τ−1︷ ︸︸ ︷
0, . . . ,0,

w(τ)
c
γc

) defines a
Finite Impulse Response (FIR) filter at each electrode c. This decomposition into a
spatial and a FIR filter is not unique, but there exists a very intuitive partitioning, i.e.

γc :=

√
w(0)

c
2
+ w(τ)

c
2

sĩgn
(

w(0)
c

) . (6)

The use of the signed norm as spatial filter γ enables us to examine the spatial origin
of the projected source signals. In addition it allows us a one-dimensional parameteri-
zation of the FIR filter at each electrode

φ (τ)
c := atan

(
w(0)

c

w(τ)
c

)
∈
[
−π

2
,

π
2

]
, (7)

and consequently the opportunity for easy visualization of the spatial distribution of the
utilized spectral information.

Summarizing, to solve the CSP analysis in the state space, allows us to neglect or
emphasize specific frequency bands at each electrode position. However, the perfor-
mance of a classification method using CSSP-based extracted features will explicitly
depend on the specific choice of τ which can be accomplished by some validation ap-
proach on the calibration data. More complex frequency filters can be found by con-
catenating more EEG-signals with several delays. However, as pointed out in [Lemm
et al., 2005] in typical BCI situations where only small training sets are available, the
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Figure 14: Subfigure (a) shows the differences in band energy from three feedback runs
to the data of the calibration measurement as signed r 2-values. The decrease of occipital
alpha is most likely due to the increase visual input during BCI feedback. Subfigure (b)
shows the difference in band energy of one feedback run (2 and 3) to its predecessor
run. The important obervation here is that the r 2-values for the differences between runs
is 50 times smaller compared to (a).

choice of a single delay parameter is most effective. Different approaches that imple-
ment one global but more complex spectral filter into CSP are currently under investi-
gation [Dornhege, 2006,Dornhege et al., 2006a].

5.2 Investigating the need for adaptvity

Non-stationarities are ubiquitous in EEG signals. The question that is relevant in BCI
research is (a) how much of this nonstationarity is reflected in the EEG features, that
are used for BCI control, (b) how strongly is the classifer output affected by this change
in class distributions, and (c) how this can be remedied. We quantified the shifting of
the statistical distributions in particular in view of band energy values and the features
one gets from CSP analysis. In contrast to several studies [del R. Millán, 2004,Vidaurre
et al., 2004,Wolpaw and McFarland, 2004] that found substantial nonstationarities that
need to be accounted for by adaptive classification, our investigations lead to results of
somewhat different flavor. Notably the most serious shift of the distributions of band
energy features occurred between the initial calibration measurement and online feed-
back operation of BCI. In contrast the differences during online operation from one run
to another were rather inconsequential in most subjects, see Fig. 14. In other subjects
those shifts were largely compensated by the CSP filters or the final classifier. The good
news with respect the observed shift of distributions is that a simple adaption of clas-
sification bias can successfully cure the problem. A thorough description of this study
including new techniques for visualization and a systematic comparison of different
classification methods coping with shifting distributions can be found in [Shenoy et al.,
2006] and forthcoming papers.
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6 Discussion and Outlook

The Berlin Brain-Computer Interface makes use of a machine learning approach to-
wards BCI. Working with high dimensional, complex features obtained from 128 chan-
nel EEG allows the system a distinguished flexibility for adapting to the specific in-
dividual characteristics of each user’s brain. This way the BBCI system can provide
feedback control even for untrained users typically after a 20 minutes calibration mea-
surement which is then used for the training of the machine learning algorithms.

In one line of investigation we studied the detectability of premovement potentials
in healthy subjects. It was shown that high bit rates in single-trial classifications can
be achieved by fast-paced motor commands. An analysis of motor potentials during
movements with different limbs, e.g. finger II and V within one hand, exposed a possible
way of further enhancement. A preliminary study involving patients with traumatic
amputations showed that the results can be expected to transfer to phantom movements.
Details will be published in a forthcoming paper.

In a second approach we investigate the possibility of establishing BCI control
based on motor imagery without subject training. The result from a feedback study
with six subjects impressively demonstrates that our system (1) robustly transfers the
discrimination of mental states from the calibration to the feedback sessions, (2) allows
a very fast switching between mental states, and (3) provides reliable feedback directly
after a short calibration measurement and machine training without the need that the
subject adapts to the system, all at high information transfer rates, see Table 1.

Recent BBCI activities comprise (a) mental typewriter experiments, with an inte-
grated detector for the error potential, an idea that has be investigated off-line in several
studies, cf. [Blankertz et al., 2003,Schalk et al., 2000,Parra et al., 2003,Ferrez and del
R. Millán, 2005, Müller and Blankertz, 2006], (b) the online use of combined feature
and multi-class paradigms (c) exploration of feature extraction for BCI and (d) real-
time analysis of mental workload in subjects engaged in real world cognitive tasks,
e.g., in driving situations [Dornhege et al., 2006b].

Our future studies will strive for 2D cursor control and robot arm control, still main-
taining our philosophy of minimal subject training.

Acknowledgments

We would like to thank Siamac Fazli, Florin Popescu, Christin Schäfer, Ryota Tomioka,
and Andreas Ziehe for fruitful discussions.

This work was supported in part by grants of the Bundesministerium für Bildung und
Forschung (BMBF), FKZ 01IBE01A/B and 01IGQ0414, by the Deutsche Forschungs-
gemeinschaft (DFG), FOR 375/B1, and by the IST Programme of the European Com-

604 Blankertz B., Dornhege G., Lemm S., Krauledat M., Curio G., Mueller K.-R. ...



munity, under the PASCAL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

References

[Bennett and Mangasarian, 1992] Bennett, K. and Mangasarian, O. (1992). Robust linear pro-
gramming discrimination of two linearly inseparable sets. Optimization Methods and Software,
1:23–34.

[Birbaumer et al., 2000] Birbaumer, N., Kübler, A., Ghanayim, N., Hinterberger, T., Perel-
mouter, J., Kaiser, J., Iversen, I., Kotchoubey, B., Neumann, N., and Flor, H. (2000). The
though translation device (TTD) for completly paralyzed patients. IEEE Trans. Rehab. Eng.,
8(2):190–193.

[Bishop, 1995] Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford University
Press.

[Blankertz et al., 2002] Blankertz, B., Curio, G., and Müller, K.-R. (2002). Classifying single
trial EEG: Towards brain computer interfacing. In Diettrich, T. G., Becker, S., and Ghahra-
mani, Z., editors, Advances in Neural Inf. Proc. Systems (NIPS 01), volume 14, pages 157–164.

[Blankertz et al., 2005] Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., and Curio, G.
(2005). The Berlin Brain-Computer Interface: Report from the feedback sessions. Technical
Report 1, Fraunhofer FIRST.

[Blankertz et al., 2006] Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., Kunzmann,
V., Losch, F., and Curio, G. (2006). The Berlin Brain-Computer Interface: EEG-based commu-
nication without subject training. IEEE Trans. Neural Sys. Rehab. Eng., 14(2). in press.

[Blankertz et al., 2003] Blankertz, B., Dornhege, G., Schäfer, C., Krepki, R., Kohlmorgen, J.,
Müller, K.-R., Kunzmann, V., Losch, F., and Curio, G. (2003). Boosting bit rates and error de-
tection for the classification of fast-paced motor commands based on single-trial EEG analysis.
IEEE Trans. Neural Sys. Rehab. Eng., 11(2):127–131.

[Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, J., and Stone, C. (1984). Classifica-
tion and Regression Trees. Wadsworth.

[Cui et al., 1999] Cui, R. Q., Huter, D., Lang, W., and Deecke, L. (1999). Neuroimage of vol-
untary movement: topography of the Bereitschaftspotential, a 64-channel DC current source
density study. Neuroimage, 9(1):124–134.

[Curran and Stokes, 2003] Curran, E. A. and Stokes, M. J. (2003). Learning to control brain
activity: A review of the production and control of EEG components for driving brain-computer
interface (BCI) systems. Brain Cogn., 51:326–336.

[del R. Millán, 2004] del R. Millán, J. (2004). On the need for on-line learning in brain-
computer interfaces. In Proceedings of the International Joint Conference on Neural Networks,
Budapest, Hungary. IDIAP-RR 03-30.

[Dornhege, 2006] Dornhege, G. (2006). Increasing Information Transfer Rates for Brain-
Computer Interfacing. PhD thesis, University of Potsdam.

[Dornhege et al., 2004] Dornhege, G., Blankertz, B., Curio, G., and Müller, K.-R. (2004).
Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and
multi-class paradigms. IEEE Trans. Biomed. Eng., 51(6):993–1002.

[Dornhege et al., 2006a] Dornhege, G., Blankertz, B., Krauledat, M., Losch, F., Curio, G., and
Müller, K.-R. (2006a). Combined optimization of spatial and temporal filters for improving
brain-computer interfacing. IEEE Trans. Biomed. Eng. accepted.

[Dornhege et al., 2006b] Dornhege, G., Braun, M., Kohlmorgen, J., Blankertz, B., Müller, K.-R.,
Curio, G., Hagemann, K., ns, A. B., Schrauf, M., and Kincses, W. (2006b). Improving human
performance in a real operating environment through real-time mental workload detection. In
Dornhege, G., del R. Millán, J., Hinterberger, T., McFarland, D., and Müller, K.-R., editors,
Towards Brain-Computer Interfacing. MIT press. accepted.

605Blankertz B., Dornhege G., Lemm S., Krauledat M., Curio G., Mueller K.-R. ...



[Dornhege et al., 2006c] Dornhege, G., del R. Millán, J., Hinterberger, T., McFarland, D., and
Müller, K.-R., editors (2006c). Towards Brain-Computer Interfacing. MIT Press. in prepara-
tion.

[Dornhege et al., 2006d] Dornhege, G., Krauledat, M., Müller, K.-R., and Blankertz, B. (2006d).
Towards Brain-Computer Interfacing, chapter General signal processing and machine learning
tools for BCI. MIT Press. accepted.

[Elbert et al., 1980] Elbert, T., Rockstroh, B., Lutzenberger, W., and Birbaumer, N. (1980).
Biofeedback of slow cortical potentials. I. Electroencephalogr. Clin. Neurophysiol., 48:293–
301.

[Ferrez and del R. Millán, 2005] Ferrez, P. and del R. Millán, J. (2005). You are wrong! – auto-
matic detection of interaction errors from brain waves. In 19th International Joint Conference
on Artificial Intelligence, pages 1413–1418.

[Friedman, 1991] Friedman, J. (1991). Multivariate adaptive regression splines. Annals of
Statistics, 19(1):1–141.

[Friedman, 1989] Friedman, J. H. (1989). Regularized discriminant analysis. J. Amer. Statist.
Assoc., 84(405):165–175.

[Fukunaga, 1990] Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Aca-
demic Press, San Diego, 2nd edition.

[ILOG, 1999] ILOG (1999). Ilog solver, ilog cplex 6.5 reference manual. ������������.
[Kornhuber and Deecke, 1965] Kornhuber, H. H. and Deecke, L. (1965). Hirnpotentialänderun-

gen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential
und reafferente Potentiale. Pflügers Arch., 284:1–17.

[Krauledat et al., 2004] Krauledat, M., Dornhege, G., Blankertz, B., Curio, G., and Müller, K.-R.
(2004). The Berlin brain-computer interface for rapid response. Biomed. Tech., 49(1):61–62.

[Krausz et al., 2003] Krausz, G., Scherer, R., Korisek, G., and Pfurtscheller, G. (2003). Crit-
ical decision-speed and information transfer in the "Graz Brain-Computer Interface". Appl.
Psychophysiol. Biofeedback, 28(3):233–240.

[Kübler et al., 2001] Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J., and Birbaumer, N.
(2001). Brain-computer communication: Unlocking the locked in. Psychol. Bull., 127(3):358–
375.

[Kübler et al., 2005] Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., Pawelzik, H., Schalk,
G., McFarland, D. J., Birbaumer, N., and Wolpaw, J. R. (2005). Patients with ALS can use
sensorimotor rhythms to operate a brain-computer interface. Neurology, 64(10):1775–1777.

[Lang et al., 1989] Lang, W., Lang, M., Uhl, F., Koska, C., Kornhuber, A., and Deecke, L.
(1989). Negative cortical DC shifts preceding and accompanying simultaneous and sequen-
tial movements. Exp. Brain Res., 74(1):99–104.

[Lemm et al., 2005] Lemm, S., Blankertz, B., Curio, G., and Müller, K.-R. (2005). Spatio-
spectral filters for improved classification of single trial EEG. IEEE Trans. Biomed. Eng.,
52(9):1541–1548.

[Mika et al., 2001] Mika, S., Rätsch, G., and Müller, K.-R. (2001). A mathematical program-
ming approach to the Kernel Fisher algorithm. In Leen, T., Dietterich, T., and Tresp, V., editors,
Advances in Neural Information Processing Systems, volume 13, pages 591–597. MIT Press.

[Mika et al., 2000] Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., and Müller, K.-R.
(2000). Learning discriminative and invariant nonlinear features. unpublished manuscript.

[Müller et al., 2003] Müller, K.-R., Anderson, C. W., and Birch, G. E. (2003). Linear and non-
linear methods for brain-computer interfaces. IEEE Trans. Neural Sys. Rehab. Eng., 11(2):165–
169.

[Müller and Blankertz, 2006] Müller, K.-R. and Blankertz, B. (2006). Toward non-invasive
brain-computer interfaces. IEEE Signal Proc. Magazine. accepted.

[Müller et al., 2001] Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (2001).
An introduction to kernel-based learning algorithms. IEEE Neural Networks, 12(2):181–201.

606 Blankertz B., Dornhege G., Lemm S., Krauledat M., Curio G., Mueller K.-R. ...



[Müller-Gerking et al., 1999] Müller-Gerking, J., Pfurtscheller, G., and Flyvbjerg, H. (1999).
Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin.
Neurophysiol., 110:787–798.

[Parra et al., 2003] Parra, L., Spence, C., Gerson, A., and Sajda, P. (2003). Response error cor-
rection - a demonstration of improved human-machine performance using real-time EEG mon-
itoring. IEEE Trans. Neural Sys. Rehab. Eng., 11(2):173–177.

[Pfurtscheller and da Silva, 1999] Pfurtscheller, G. and da Silva, F. H. L. (1999). Event-related
EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol.,
110(11):1842–1857.

[Pfurtscheller and Lopes da Silva, 1999] Pfurtscheller, G. and Lopes da Silva, F. (1999). Event-
related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophys-
iol., 110(11):1842–1857.

[Rätsch et al., 2001] Rätsch, G., Onoda, T., and Müller, K.-R. (2001). Soft margins for Ad-
aBoost. Machine Learning, 42(3):287–320.

[Rockstroh et al., 1984] Rockstroh, B., Birbaumer, N., Elbert, T., and Lutzenberger, W. (1984).
Operant control of EEG and event-related and slow brain potentials. Biofeedback and Self-
Regulation, 9(2):139–160.

[Rosipal and Trejo, 2001] Rosipal, R. and Trejo, L. (2001). Kernel partial least squares regres-
sion in reproducing kernel hilbert space. J. Machine Learning Res., 2:97–123.

[Schalk et al., 2000] Schalk, G., Wolpaw, J. R., McFarland, D. J., and Pfurtscheller, G. (2000).
EEG-based communication: presence of an error potential. Clin. Neurophysiol., 111:2138–
2144.

[Schölkopf et al., 1999] Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K.-R., Rätsch,
G., and Smola, A. (1999). Input space vs. feature space in kernel-based methods. IEEE Trans-
actions on Neural Networks, 10(5):1000–1017.

[Schölkopf et al., 1998] Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear compo-
nent analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319.

[Shenoy et al., 2006] Shenoy, P., Krauledat, M., Blankertz, B., Rao, R. P. N., and Müller, K.-R.
(2006). Towards adaptive classification for bci. J. Neural Eng., 3:R13–R23.

[Vapnik, 1995] Vapnik, V. (1995). The nature of statistical learning theory. Springer Verlag,
New York.

[Vaughan et al., 1998] Vaughan, T. M., Miner, L. A., McFarland, D. J., and Wolpaw, J. R.
(1998). EEG-based communication: analysis of concurrent EMG activity. Electroencephalogr.
Clin. Neurophysiol., 107:428–433.

[Vidaurre et al., 2004] Vidaurre, C., Schlögl, A., Cabeza, R., and Pfurtscheller, G. (2004). About
adaptive classifiers for brain computer interfaces. Biomed. Tech., 49(1):85–86.

[Wolpaw et al., 2002] Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and
Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clin. Neu-
rophysiol., 113:767–791.

[Wolpaw and McFarland, 2004] Wolpaw, J. R. and McFarland, D. J. (2004). Control of a two-
dimensional movement signal by a noninvasive brain-computer interface in humans. Proc.
Natl. Acad. Sci. USA, 101(51):17849–17854.

607Blankertz B., Dornhege G., Lemm S., Krauledat M., Curio G., Mueller K.-R. ...


