
Reversible Karatsuba’s Algorithm

L. A. B. Kowada
Universidade Federal do Rio de Janeiro - UFRJ

Rio de Janeiro, RJ, 20550-900, Brazil
kowada@cos.ufrj.br

R. Portugal
Laboratório Nacional de Computação Cient́ıfica - LNCC

Getúlio Vargas 333, Petrópolis, RJ, 25651-075, Brazil
portugal@lncc.br

C. M. H. Figueiredo
Universidade Federal do Rio de Janeiro - UFRJ

Rio de Janeiro, RJ, 20550-900, Brazil
celina@cos.ufrj.br

Abstract: Karatsuba discovered the first algorithm that accomplishes multiprecision
integer multiplication with complexity below that of the grade-school method. This al-
gorithm is implemented nowadays in computer algebra systems using irreversible logic.
In this paper we describe reversible circuits for the Karatsuba’s algorithm and analyze
their computational complexity. We discuss garbage disposal methods and compare
with the well known Bennett’s schemes. These circuits can be used in reversible com-
puters which have the advantage of being very efficient in terms of energy consumption.
The algorithm can also be used in quantum computers and is an improvement of pre-
vious circuits for the same purpose described in the literature.

Key Words: Reversible computing, reversible circuit, arithmetic operations, multi-
plier

Category: B.2, B.6, F.1, F.2

1 Introduction

Parallel versions of the Karatsuba’s multiplication algorithm [12] have been an-
alyzed in the last years [7, 11, 5]. All these versions are to be implemented in
irreversible devices. It is known that Moore’s law is becoming weaker and will
break down in the most pessimistic forecast in the year 2020. It is interesting, at
least from the theoretical point of view, to analyze alternative versions of Karat-
suba’s algorithm which could be implemented in reversible devices. Such devices
do not suffer many drawbacks of miniaturization of computer components, such
as heat production. Besides, they can be very efficient in terms of power usage.
In principle they can perform calculation with zero energy expenditure. Such
devices may be useful in extreme situations such as deep space exploration.

Journal of Universal Computer Science, vol. 12, no. 5 (2006), 499-511
submitted: 26/8/05, accepted: 24/5/06, appeared: 28/5/06 © J.UCS



Reversible computing is a growing area of Computer Science which provides
a way to go beyond the physical limits to computation given by the Landauer
limit [13] of kT ln 2 energy dissipated per bit operation, where k is the Boltz-
mann’s constant and T is the temperature of the computer environment. The
initial motivation to endeavor in this area was the desire to match the prin-
ciples of computation with the principles of physics, which limit the underly-
ing processes of any computing device made of matter. This approach reached
the peak in the work of Fredkin and Toffoli on conservative logic published in
1982 [10].

The goal of this paper is to describe reversible circuits for the Karatsuba’s
algorithm and discuss their role in the general analysis performed by Bennett
among others on reversible simulation of irreversible circuits [2, 3]. Existing
analyses of reversible computing use a very general point of view mainly to
establish generic results on the efficiency of reversible simulation of irreversible
algorithms [3, 15, 16]. A general method to convert irreversible circuits into re-
versible ones is known as we discuss in the sequel, but it does not necessarily
generate the best reversible simulation. An example of the inefficiency of the
general method is provided by Fredkin and Toffoli (see pp. 232 and 233 of [10]).
So, it is important to analyze each particular case to achieve the most efficient
circuit. In general, the efficiency and the garbage disposal scheme are the main
issues in the reversible simulation of irreversible circuits. We stress these issues
throughout the paper.

The attempt to develop a garbage disposal scheme for Karatsuba’s algorithm
raises the following question: Is there a generic efficient algorithm to dispose of
the garbage of recursive algorithms that follows their recursive structure? We
point out that Bennett’s schemes do not take into account the recursive structure
of the original circuit.

A secondary motivation for developing reversible circuits for integer mul-
tiplication comes from their possible implementation in quantum computers.
Quantum Computing has attracted a lot of attention in the last years, due to
the possibility of building quantum devices for performing useful calculations
that are exponentially faster than classical computers. The celebrated Shor’s al-
gorithm [19] is the best candidate for proving this exponential gap. Regarding
integer multiplication, the algorithms developed so far for quantum computers
are still based basically on the grade-school method [1, 20]. In an unpublished
work, Zalka [23] discusses the Schönhage-Strassen’s algorithm [18]. He also an-
alyzes briefly the space usage of quantum Karatsuba’s algorithms, and argues
that it uses O(nlog2 3) of space, where n is the number of digits of the integers
that are being multiplied. Based on assumptions, Zalka argues that Karatsuba’s
algorithm uses too much space to be useful in quantum computation. This is
not what is usually expected since the crossover point (where the Schönhage-

500 Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



Strassen’s beats the Karatsuba’s algorithm) is currently 215 bits (approximately
10000 decimal digits). The crossover usually depends on the implementation
details.1

The structure of this paper is as follows. In section 2, we outline the main
results of the theory of reversible computation, stressing the garbage disposal
schemes. In section 3, we discuss a garbage disposal scheme for recursive algo-
rithms. In section 4, we review the classical version of Karatsuba’s algorithm.
In section 5, we present the reversible circuits for this algorithm. In the appen-
dix we describe a detailed calculation of the steps of the reversible version of
Karatsuba’s algorithm for the multiplication of n-digit integers.

2 Reversible Computation

Landauer [13] showed that the removal of one bit of information at temperature
T is performed by dissipating at least kT ln 2 in form of heat. He employed the
well-known thermodynamical formulas δS = δQ

T
and S = k ln W , where S is

the thermodynamical entropy, δQ is the heat introduced in the system by the
environment which is kept at temperature T, k is the Boltzmann constant, and
W is the number of macrostates (equal to 2 for one bit).

On the other hand, reversible computation does not erase a bit of information,
and so requires no expenditure of energy in principle. Fredkin and Toffoli [10]
provided an insightful example of a reversible computer using billiard balls that
are reflected by pieces of wall. The presence or the absence of a ball as input
represents the bits 0 and 1, respectively. The balls are shot simultaneously (with
some energy expenditure, which is recovered at the end). They are reflected by
the walls properly placed and may collide with each other. The output is read by
observing the final positions of the balls. Supposing that the collisions are perfect
elastic, there is no dissipation of energy and the whole process is reversible.
Fredkin and Toffoli showed how to build the Fredkin gate using their device. The
Fredkin gate is universal, so the billiard ball computer can compute any partial
recursive function reversibly, provided that an arbitrary large number of billiard
balls and space are available. The catch is that collisions are not perfect elastic
and there are extra interactions that cannot be totally disregarded. Errors would
accumulate destroying the desired computation unless some correction code is
used. Error correction codes destroy undesired information irreversibly.

The set of one and two-bit reversible gates is not universal [17]. On the other
hand, the Toffoli gate is universal for reversible computation. Recall that the
Toffoli gate has three bits, the first two are control bits, the outputs of which
1 See http://magma.maths.usyd.edu.au/magma/Features/node86.html of Magma on-

line help for crossover estimates and Zuras [24] for comparisons with other multipli-
cation algorithms. Zuras states that Schönhage-Strassen’s algorithm may never be
best for any reasonably sized numbers.

501Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



are the same of the inputs, and third bit is the target that is flipped iff both
control bits are set to 1. The usual proof for the universality of the Toffoli gate is
indirect. The Toffoli gate simulates the irreversible gates FANOUT and NAND,
if one disregards some outputs and keeps fixed some inputs. {FANOUT, NAND}
is a universal set for irreversible computation; therefore the Toffoli gate alone is a
universal set for reversible computation (ignoring some outputs and fixing some
inputs). To build a reversible circuit, the procedure is the following: One builds
beforehand an irreversible circuit, then replaces all occurrences of the FANOUT
and NAND gates by the corresponding simulation in terms of the Toffoli gate.
This is not a clean procedure because there are unwanted outputs that can be
considered as some sort of information garbage. It is there simply to make the
whole process reversible. The size of the garbage is O(n), where n is the number
of Toffoli gates, since for each Toffoli gate there are at most two bits of garbage.
The garbage can be disposed of by erasing it, which produces at least kT ln 2 of
heat per bit erased.

A generic method to dispose of the garbage with no expenditure of energy
was initially proposed by Lecerf [14] and rediscovered by Bennett [2]. The dia-
gram of figure 1 describes this method. Suppose one has built a reversible circuit
to compute function f , which has the arguments INPUT, ZEROS, FIXED AN-
CILLA BITS and image INPUT, OUTPUT, GARBAGE. The desired output
is copied using CNOT gates to some extra register. Recall that the CNOT gate
has two bits, a control and a target. The target bit flips iff the control bit is
set to 1. After copying the desired output with a CNOT for each bit, one can
uncompute (or compute f−1) by taking the arguments INPUT, OUTPUT, and
GARBAGE. The output of the whole circuit has no garbage. The whole process
is reversible and does not change the complexity of the original reversible circuit.

Bennett’s schemes do not work for quantum computing algorithms, due to

INPUT INPUT

OUTPUTZEROS

FIXED
ANCILLA

BITS

computation

circuit

INPUT INPUT

OUTPUT ZEROS

GARBAGE

uncomputation

circuit

GARBAGE

FIXED
ANCILLA
BITS

inverse

ZEROS
COPY OF
OUTPUT

f f
-1

Figure 1: Outline of Bennett’s scheme to dispose of the garbage with no energy expen-
diture. The “inverse circuit” is obtained by inverting the first “circuit”.

502 Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



the no-cloning theorem [22]. The CNOTs do not produce a copy of OUTPUT
when it is in a superposition state.

Bennett’s first scheme (figure 1) runs in time Θ(T ) and space Θ(T + S),
where T and S are the time and space bounds of the irreversible circuit which is
being simulated reversibly. The space bound is troublesome when one simulates
an irreversible circuit which is exponential in time but polynomial in space.
The simulation will be exponential both in time and space. This problem was
addressed again by Bennett [3], who improved his earlier scheme, proposing a
new generic scheme which runs in time O(T 1+ε) and space O(T log S) given
any ε > 0. Levine and Sherman[15] showed that there is a hidden factor in
the space bound of the form ε21/ε, which diverges as ε approaches 0. Using
recurrence equations, they proved that Bennett’s second scheme actually runs
in time Θ(T 1+ε/Sε) and space Θ(S(1 + log T

S )).
Bennett’s second scheme is ingenious. The irreversible circuit is split into

m blocks of length S approximately so that mS ≈ T . The goal is to use less
space than the first scheme. If one runs n consecutive blocks, the space usage
is nS. The idea is to run these steps backward disposing of the garbage and
reusing the same space for the next blocks. The major problem is that to run
the i-th block one needs to know the output of (i − 1)-th block, and vice-versa,
to run the (i − 1)-th block backwards, one needs the output of the i-th block.
Some checkpoint blocks must be left to proceed with the reversible simulation.
After running another set of blocks, one wants to remove the previous checkpoint,
which requires to rerun the simulation from the beginning up to that checkpoint.
This leads to a hierarchical recursive scheme. The details can be found in [3, 16].

3 Garbage Disposal in Recursive Algorithms

Bennett’s second scheme does not consider any recursive structure that the orig-
inal algorithm might have. In the scheme, the algorithm is split in roughly equal
segments of size S (the space bound of the original algorithm) and the segments
are run forward and backward in a hierarchical manner having no relation to any
recursive structure of the original algorithm. We pose the following question: Can
one simulate reversibly and efficiently an irreversible recursive circuit such that
the garbage disposal follows the recursive structure of the original algorithm?

Now we discuss a scheme to dispose of the garbage at each level of the re-
cursion. Such scheme is much simpler to employ for recursive algorithms than
Bennett’s second scheme. Unfortunately, a general analysis shows that this re-
cursive scheme may have greater space complexity. To analyze the complexity,
we employ the Master method [8]. If the recursive algorithm divides a problem
of size n into a instances, each of size n

b , where a and b are positive constants,

503Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



then the running time is

T (n) = aT
(n

b

)
+ f(n),

where f(n) is a positive function that can be explicitly bounded. According to
the Master theorem, there are three cases depending on the asymptotic behavior
of f(n):

1. T (n) = Θ(nlogb a), if f(n) = O(nlogb a−ε) for some ε > 0.

2. T (n) = Θ(nlogb a log n), if f(n) = Θ(nlogb a).

3. T (n) = Θ(f(n)), if f(n) = Ω(nlogb a−ε) for some ε > 0, and if af(n
b ) ≤ cf(n)

for some c < 1 and all sufficiently large n.

The recursive garbage removal scheme is as follows. One employs Bennett’s first
scheme in each level of the recursion. One simply describes the garbage removal
when the input is n. It is recursively used in the recursive calls. A concrete exam-
ple is provided in figure 4 for the Karatsuba’s algorithm. The drawback of this
scheme is that it doubles the number of gates per recursive level, therefore T (n

b )
goes to 2T (n

b ). Using the Master theorem and replacing a by 2a, we conclude
that the complexity of the simulation would be Θ(T (n) nlogb a) for the cases 1
and 2. In case 3, the complexity would not change, since it is determined by
the behavior of f(n). Usually b ≥ 2; therefore for important classes of recursive
algorithms, the running time of this simulation would be polynomially greater
than the corresponding one using Bennett’s usual scheme.

4 Karatsuba’s Algorithm

Karatsuba [12] discovered the first algorithm that accomplishes the multiplica-
tion of multiprecision integers of size n digits with complexity below that of the
usual O(n2). The complexity of the Karatsuba’s algorithm is O(nlog2 3), which
can be proved easily by using a recurrence relation, as described below.

Consider two n-bit integers f and g. Suppose that n = 2m for some positive
integer m. We can split f into two equal parts f1 and f0, and g into g1 and g0

such that
f = f12

n
2 + f0,

g = g12
n
2 + g0.

Karatsuba’s method uses the following identity

fg = f1g12n + ((f1 + f0)(g1 + g0) − f1g1 − f0g0)2
n
2 + f0g0. (1)

There are more additions in this identity than in the usual multiplication, but the
number of recurrent multiplications is lesser. If T (n) is the number of operations,

504 Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



then the cost to multiply two n-digit integers using equation (1) is

T (n) = 3T
(n

2

)
+ αn,

where α is some constant. The solution of this recurrence equation is T (n) =
α′nlog2 3. The constant α′ is larger than the corresponding one in the usual
quadratic multiplication algorithm (see [24] for estimates of the value of α′).
This implies that the crossover between these algorithms occurs for integers with
large number of digits (between 27 and 28 bits depending on the implementation
details). Algorithms for integer multiplication used nowadays in computer alge-
bra systems such as Maple are based on Karatsuba’s algorithm. See references
[4, 6, 21] for reviews and recent improvements on this algorithm.

5 Reversible Karatsuba’s Algorithm

Figure 2 describes an intermediate circuit called KARATSUBA. It is a recursive
reversible version of the Karatsuba’s algorithm. The gates KARATSUBA �n

2 �
and KARATSUBA �n

2 �+ 1 must be replaced by a circuit similar to the original
one, but the input size is half or half plus one of the original. As soon as the
number of digits in the recursive call is less than the crossover point, the usual
reversible multiplication algorithm is issued, halting the recursive loop. In this
case we use some multiplication gate already known, such as those described in
[1, 20]. We also employ the reversible addition gate as described in [1, 9, 20].
In figure 2 this gate is called ADD n, where n is the number of bits of the
integers that are being added. As usual, the black stripe shows the direction of
the gate. The usual direction computes the addition, while the opposite direction
computes the subtraction if the first operand is greater than the second (first
means the rightmost line). One can check in figure 2 that the first operand of
the inverted ADD is (f1 +f0)(g1 +g0) and the second is f1g1 +f0g0. Eq. (1) tells
us that (f1 + f0)(g1 + g0) ≥ f1g1 + f0g0, therefore the inverted ADD performs
the usual subtraction. We call this version parallel because there are 3 recursive
calls that can be performed simultaneously.

Note the presence of garbage bits in KARATSUBA. To dispose of this garbage,
we employ Bennett’s first scheme, copying the result to an extra register and
running the algorithm KARATSUBA backward. Figure 3 shows the circuit of
this algorithm, which we call KARATSUBA(1). Its complexity is described in
the upper left box of table 1. Note that there are three parallel recursive calls
of the KARATSUBA gate. This is a strategy to decrease the time complexity
to O(n), paying the price of increasing the space complexity to O(nlog2 3). This
trade-off seems optimal if one compares to the complexity of the usual implemen-
tation of the irreversible version, which is T (n) = O(nlog2 3) and S(n) = O(n).
This strategy guarantees that Bennett’s first scheme is worthwhile in this case.

505Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



0 00 0 00000000

2n

ADD

ADD

ADD

ADDADD

n

n+2

KARATSUBAKARATSUBAKARATSUBA

�n
2 �

�n
2 �

�n
2 �

�n
2 �

�n
2 �+1

f0

f0

f1

f1

g0

g0

g1

g1

fg

Figure 2: The KARATSUBA circuit. It is a parallel version of the reversible circuit
for the Karatsuba’s multiplication algorithm. The circuit is defined recursively. Note
the KARATSUBA gates running in parallel with the inputs strictly smaller than the
original inputs, which are the n-bit integers g = g1g0 and f = f1f0. There is garbage in
the output. The lowermost ADD gate has 3 inputs because the 2 inputs on the left join
to form the second operand. These 2 inputs are the first and third terms in the right
hand side of equation (1). Dotted lines refer to the work bits in the recursive calls.

Figure 4 shows an example of recursive garbage disposal scheme discussed
in section 3. This circuit uses a slight variation of the Bennett’s first scheme
at each recursive level. Note that figures 2 and 4 are different in the following
points: in figure 2, the multiplication is performed up to the end with no garbage
removal and in figure 4, the garbage is removed while the multiplication is being
performed. The complexity of KARATSUBA(2) described in figure 4 is given
in the lower left box of table 1. As discussed in section 3, this garbage removal
scheme is very elegant but unfortunately it almost doubles the number of gates
in each recursive level, increasing significantly the complexity of the reversible
simulation. Note that KARATSUBA(2) also uses parallel recursive calls. This
means that the three recursive calls can be run simultaneously decreasing the
complexity in time. Being rigorous, the garbage removal scheme is a slight varia-

506 Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



0

0
00

0

0

f

f f

f f

g

g g

g g

f g

f gf g

garbage ≡

K
A

R
A
T

S
U

B
A

(1
)

K
A

R
A

T
S
U

B
A

K
A

R
A

T
S
U

B
A

Figure 3: The KARATSUBA(1) circuit. It is the garbage-free version of the reversible
recursive KARATSUBA circuit described in figure 2. It uses Bennett’s first scheme to
dispose of the garbage. Its complexity is given in table 1. The output 0 is not shown
in KARATSUBA(1).

garbage position of multiplication gates
disposal scheme parallel sequential

KARATSUBA(1) KARATSUBA(3)
Bennett’s T (n) = O(n) T (n) = O(nlog2 3)

first scheme S(n) = O(nlog2 3) S(n) = O(nlog2 3)
N(n) = O(nlog2 3) N(n) = O(nlog2 3)
KARATSUBA(2) KARATSUBA(4)

recursive T (n) = O(n log n) T (n) = O(nlog2 6)
scheme S(n) = O(nlog2 3) S(n) = O(n)

N(n) = O(nlog2 6) N(n) = O(nlog2 6)

Table 1: Complexity of the reversible simulations of the Karatsuba’s algorithm. T and
S are time and space bounds respectively. N is the number of universal gates (Toffoli
gates).

tion of Bennett’s first scheme, because the gate ADD 2n in the center of figure 4
was not duplicated. In this case we need not to use CNOT gates to make a copy
of the output.

Table 1 shows the complexity of two other versions that we have analyzed but
have not displayed the circuits. These versions (KARATSUBA(3) and KARAT-
SUBA(4)) can be obtained respectively from figures 2 and 4 by changing the
positions of the recursive calls in such way that they are run in sequence. In
this case, the circuit uses less space, S(n) = O(nlog 3) for KARATSUBA(3) and
S(n) = O(n) for KARATSUBA(4). They use less space because the work bits
used by first gate KARATSUBA �n

2 � are reused by the second KARATSUBA
�n

2 �, and reused again by KARATSUBA �n
2 � + 1.

507Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



0 000000

0 00000000

2n

ADD

ADD

ADD

ADD

ADD

ADDADD

ADDADD

n

n

n + 2

n + 2

KARATSUBA(2)KARATSUBA(2)KARATSUBA(2)

KARATSUBA(2)KARATSUBA(2)KARATSUBA(2)

�n
2 �

�n
2 �

�n
2 �

�n
2 �

�n
2 �

�n
2 �

�n
2 �

�n
2 �

�n
2 �+1

�n
2 �+1

f0

f0

f1

f1

g0

g0

g1

g1

fg

Figure 4: The KARATSUBA(2) circuit. It uses a recursive garbage disposal scheme.
The gate KARATSUBA(2) �n

2
� must be replaced by a circuit similar to the one de-

scribed in the figure, but the input size is half of the original. Note that this replacement
has almost twice more gates than the one which is performed in figure 2.

6 Conclusions

We have analyzed the computational complexity of four recursive versions of the
Karatsuba’s algorithm. KARATSUBA(4) is the worst in complexity, worse than
the grade-school method. It is the best candidate to employ Bennett’s second
scheme instead of the recursive scheme. KARATSUBA(2) and KARATSUBA(3)
use the same space but KARATSUBA(2) is a little better than KARATSUBA(3)

508 Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



in time. KARATSUBA(1) is the best one even using Bennett’s first scheme
(instead of the second) because the complexity in time is O(n). The overhead
introduced by the first scheme is not relevant compared to the complexity in
space, which is S(n) = O(nlog 3).

An important issue in reversible simulations is the garbage removal scheme,
as Bennett pointed out. We have not used Bennett’s second scheme because it
does not match the recursive structure of the Karatsuba’s algorithm. It would
be cumbersome to describe the circuit details in this case, because some lower
level circuitry would be required. Besides, the overall complexity would not be
better than the complexity of KARATSUBA(1).

Acknowledgements

We thank Valmir Barbosa, Raul Donangelo, and Carlile Lavor for useful discus-
sions. We also thank the financial support of CNPq.

References

1. D. Bechman, A. N. Chari, S. Devabhaktuni, and J. Preskill. Efficient networks for
quantum factoring. Phys. Rev. A, 54:1034–1063, 1996.

2. C. H. Bennett. The logical reversibility of computation. IBM J. Res. Develop.,
17:525–532, 1973.

3. C. H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Com-
put., 18(4):766–776, 1989.

4. D.J. Bernstein. Fast multiplication and its applications.
http://cr.yp.to/papers.html, 2003.

5. G. Cesari and R. Maeder. Performance analysis of the parallel Karatsuba mul-
tiplication algorithm for distributed memory architectures. J. Symb. Comput.,
21(4-6):467–473, 1996.

6. N.S. Chang, C.H. Kim, Y.-H. Park, and J. Lim. A non-redundant and efficient
architecture for Karatsuba-Ofman algorithm. In ISC, pages 288–299, 2005.

7. L.S. Cheng, A. Miri, and T.H. Yeap. Improved FPGA implementations of par-
allel Karatsuba multiplication over GF(2n). In In 23rd Biennial Symposium on
Communications, 2006.

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algo-
rithms. MIT Press, 2nd edition, 2001.

9. T. G. Draper. Addition on a quantum computer. www.arxiv.org, 2000. quant-
ph/0008033.

10. E. Fredkin and T. Toffoli. Conservative Logic. Internat. J. Theoret. Phys., 21:219–
253, 1982.

11. T. Jebelean. Using the parallel Karatsuba algorithm for long integer multiplication
and division. In European Conference on Parallel Processing, pages 1169–1172,
1997.

12. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.
Soviet Physics – Doklady, 7(7):595–596, 1963.

13. R. Landauer. Irreversibility and heat generation in the computing process. IBM
J. Res. Develop., 5:183–191, 1961.

14. M.Y. Lecerf. Machines de Turing réversibles. Récursive insolubilité en n ∈ N
de l’équation u = θnu, où θ est un “isomorphisme de codes”. Comptes Rendus,
257:2597–2600, 1963.

509Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



15. R.Y. Levine and A. T. Sherman. A note on Bennett’s time-space tradeoff for
reversible computation. SIAM J. Comput., 19(4):673–677, 1990.

16. M. Li, J. Tromp, and P. Vitnyi. Reversible simulation of irreversible computation.
Physica D, 120:168–176, 1998.

17. J. Preskill. Lecture Notes for Physics 229: Quantum Information and Computa-
tion. California Institute of Technology, September 1998.

18. A. Schönhage and V. Strassen. Schnelle multiplikation großer Zahlen. Computing,
7:281–292, 1971.

19. P. Shor. Algorithms of quantum computation: Discrete logarithm and factoring.
In Proceedings of 35th Annual Symposium on Foundations of Computer Science,
pages 124–134, 1994.

20. V. Vedral, A. Barenco, and A. Ekert. Quantum networks for elementary arith-
metic operations. Physical Review A, 54(1):147–153, 1996.

21. A. Weimerskirch and C. Paar. Generalizations of the Karatsuba algorithm for
efficient implementations. Technical report, 2003.

22. W. K. Wooters and W. H. Zurek. A single quantum cannot be cloned. Nature,
299:802–803, 1982.

23. C. Zalka. Fast version of Shor’s quantum factoring algorithm. 1998. quant-
ph/9806084.

24. D. Zuras. More on squaring and multiplying large integers. IEEE Transactions on
computers, 43(8):899–908, 1994.

Appendix A

IN 0 0 0 0 0 0 g1 0 0 f1 0 g0 f0

1 0 g1 f1 0 0 0 g1 g0 0 f1 f0 g0 f0

2 0 g1 f1 0 0 0 g1+g0 g0 0 f1+f0 f0 g0 f0

3 g1f1 g1 f1 0 0 0 g1+g0 g0 (g1 + g0)· f1+f0 f0 g0 f0
(f1 + f0)

4 g1f1 g1 f1 g1f1 g0f0 0 g1+g0 g0 (g1 + g0)· f1+f0 f0 g0 f0
(f1 + f0)

5 g1f1 + g0f0 g1 f1 g1f1 g0f0 0 g1+g0 g0 (g1 + g0)· f1+f0 f0 g0 f0
(f1 + f0)

6 (g1 + g0)(f1 + f0) g1 f1 g1f1 g0f0 0 g1+g0 g0 (g1 + g0)· f1+f0 f0 g0 f0
−(g1f1 + g0f0) (f1 + f0)

f1g12n+
7 (g1 + g0)(f1 + f0) g1 f1 ((f1 + f0)(g1 + g0) 0 g1+g0 g0 (g1 + g0)· f1+f0 f0 g0 f0

−(g1f1 + g0f0) −f1g1 − f0g0)2
n
2 (f1 + f0)

+f0g0

OUT garbage g1 f1 fg garbage g0 f0

Table 2: Detailed evolution of all registers of the KARATSUBA circuit outlined in
figure 2, with the exception of the ones represented by dotted lines.

Table 2 describes the detailed evolution of all registers of the KARATSUBA
circuit outlined in figure 2. There are 7 steps. Gates that can be applied si-
multaneously are counted as one step. In table 2, we have not interchanged the

510 Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...



position of the registers. The input are the integers f and g which are split into
f0, f1 and g0, g1 respectively. We are supposing that the number of digits of f1

and g1 is �n
2 � and the number of digits of f0 and g0 is �n

2 	. Care must be taken
in order to read the input of the lowermost ADD gate. This gate performs the
addition of the terms of equation (1). The output fg is displayed at the bottom
of the fifth column of table 2.

511Kowada L.A.B., Portugal R., Figueiredo C.M.H.: Reversible Karatsuba’s ...


