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Abstract: In this paper, we propose a methodology based on genetic programming to 
automatically generate hardware designs of substitution boxes necessary for many 
cryptosystems such as DES encryption system. We aim at evolving minimal hardware 
specifications, which minimise both space (i.e. required gate number), response time (i.e. 
encryption and decryption time) and dissipated power. We compare our results against existing 
and well-known designs, which were produced by human designers using conventional 
methods. 
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1 Introduction 

In cryptography, confusion and diffusion are two important properties of a secure 
cipher as identified in [Shanon, 49]. Confusion allows one to make the relationship 
between the encryption key and ciphertext as complex as possible while diffusion 
allows one to reduce as much as possible the dependency between the plaintext and 
the corresponding ciphertext. Substituting a symbol in the plaintext by another has 
been used as a technique of confusion and rearranging the order of the symbols has 
been used as a mechanism of diffusion. Here we concentrate on confusion using 
substitution boxes or simply S-boxes. Here, we concentrate on evolutionary design of 
hardware for s-boxes. 

Designing a hardware that fulfils a certain function consists of deriving from 
specific input/output behaviours, an architecture that is operational (i.e. produces all 
the expected outputs from the given inputs) within a specified set of constraints. 
Besides the input/output behaviour of the hardware, conventional designs are 
essentially based on knowledge and creativity, which are two human characteristics 
and too hard to be automated. Evolutionary hardware is a design that is generated 
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using simulated evolution as an alternative to conventional-based electronic circuit 
design. Genetic evolution [Haupt, 98] is a process that evolves a set of genotypes, i.e. 
population, producing a new population at each iteration process. Here, individuals 
are hardware designs. The more the design obeys the constraints, the more it is used 
in the reproduction process. The design constraints can be expressed in terms of 
hardware area and/or response time requirements. The freshly produced population is 
yield using some genetic operators such as crossover and mutation that attempt to 
simulate the natural breeding process in the hope of generating new design that are 
fitter, i.e. respect more the design constraints. Genetic evolution is usually 
implemented using genetic algorithms. 

The remainder of this paper is organised in five parts. In Section 2, we introduce 
symmetric cryptography and the use of substitution boxes. In Section 3, we describe 
the principles of evolvable hardware. In Section 4, we describe the methodology we 
employed to evolve new compact, fast and less demanding s-boxes. In Section 5, we 
compare the discovered novel hardware against existing most popular ones. Finally, 
in Section 6, we draw some conclusions. 

2 Substitution Boxes 

S-Boxes play a basic and fundamental role in many modern block ciphers such as 
DES [Des, 93]. In block ciphers, they are typically used to obscure the relationship 
between the plaintext and the ciphertext. Perhaps the most notorious S-boxes are 
those used in data encryption standard (DES). S-boxes are also used in advanced 
encryption standard (AES) and Kasumi. All three are Feistel [Menezes, 96] 
cryptographic algorithms and have the simplified structure depicted in Figure 1. 

An S-box can simply be seen as a Boolean function of n inputs and m outputs, 
often with n > m. Considerable research effort has been invested in order to design 
resilient S-boxes that can resist the continuous cryptanalyst’s attacks. In order to resist 
linear and differential cryptanalysis [Matsui, 94a, Matsui, 94b], S-boxes need to be 
confusing i.e. non-linear and diffusing, i.e. non-differential or non auto-correlated.   

Due to the high non-linearity and low auto-correlation of substitution functions, 
the conventional methods for algebraic expression [Rhyne, 73] have small 
simplification impact. The corresponding digital circuit is of thus large, slow and 
power-demanding.  

In the rest of the paper, we design efficient design using evolutionary 
computations. The design are compact, i.e. requires minimal hardware area, efficient, 
i.e. propagates the output signal within minimal time and easy, i.e. dissipates minimal 
power.  
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Figure 1: The simplified structure of Feistel cryptographic algorithm 

3 Principles of Evolutionary Computation 

Starting form random set of solutions, which is generally called initial population, 
evolutionary computation breeds a population of chromosomes through a series of 
steps, called generations, using the Darwinian principle of natural selection, 
recombination also called crossover, and mutation. Individuals are selected based on 
how much they adhere to the specified constraints. Each evolved solution is assigned 
a value, generally called its fitness, which mirrors how good it is in solving the 
problem in question. Evolutionary computation proceeds by first, randomly creating 
an initial population of individuals; then, iteratively performing a generation, which 
consists of going through two main steps, as far as the constraints are not met. The 
first step in a generation assigns for each chromosome in the current population a 
fitness value that measures its adherence to the constraints while the second step 
creates a new population by applying the three genetic operators, which are selection, 
crossover and mutation to some selected individuals. Selection is performed on the 
basis of the individual fitness. The fitter the individual is, the more probable it is 
selected to contribute to the new generational population. Crossover recombines two 
chosen solutions to create two new ones using single-point crossover or double-point 
crossover [Haupt, 98]. Mutation yields a new individual by changing some randomly 
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chosen genes in the selected one. The number of genes to be mutated is called 
mutation degree and how many individuals should suffer mutation is called mutation 
rate. 

4 Pareto-Optimal Evolvable Hardware 

In the context of this paper, an individual is a circuit design of an S-box, which is 
specified using its truth table form. In the rest of this section, we present the circuit 
design encoding used, the genetic operators and last but not least, the fitness 
evaluation of an evolved solution.   

4.1 Circuit encoding 

We encode circuit schematics using a matrix of cells that may be interconnected. A 
cell may or may not be involved in the circuit schematics. A cell consists of two 
inputs or three in case of a MUX, a logical gate and a single output. A cell may draw 
its input signals from the output signals of gates of previous rows. The gates includes 
in the first row draw their inputs from the circuit global input signal or their 
complements. The circuit global output signals are the output signals of the gates in 
the last raw of the matrix. A chromosome with respect to this encoding is given in 
Figure 2. 

 

 

Figure 2: Encoded circuit 

4.2 Circuit specification reproduction 

Crossover of circuit specification is implemented using a variable four-point 
crossover [Haupt, 98] as described in Figure 3. 

A gene is a circuit gate together with its inputs. So, mutation may occur by 
changing the gate or one of its input signals, as depicted in Figure 4. In the former 
case, the gate may be mutated to another of smaller (e.g. AND to NOT), the same (e.g. 
AND to XOR) or bigger arity (e.g. AND to MUX). In the last case, a new signal is 
randomized to fill in for the new input signal. 
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Figure 3: Four-point crossover of circuit schematics 

 
Figure 4: Operand node mutation for circuit specification 
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4.3 Circuit evaluation 

Each circuit within the population is assigned a value, generally called fitness. A 
circuit design is fit if and only if it satisfies the imposed input/output behaviour. In 
single objective optimisation, a circuit design is considered fitter than another if and 
only if it has a smaller size, shorter response or consumes less power, depending of 
the optimisation objective size, time or power consumption minimisation respectively. 
In multi-objective optimisation, however, the concept of fitness is not that obvious. It 
is extremely rare that a single design optimises all objectives simultaneously. Instead, 
there normally exist several designs that provide the same balance, compromise or 
trade-off with respect to the problem objectives. We consider three objectives 
hardware area (objective A), response time (objective T) and power dissipation 
(objective P). Of course, the circuit evolved need to be sound (mandatory objective 
S). 

Objective A is estimated by the total number of gate equivalent required to 
implement the evolved circuit and objective T by the maximum delay occasioned by 
it. Objective P is evaluated by approximating the switching activity of each gate and 
the respective fanout [Monteiro, 97]. 
 

Name Gate Equivalent Delay 
NOT 1 0.0625 
AND 2 0.2090 
OR 2 0.2160 

XOR 3 0.2120 
NAND 1 0.1300 
NOR 1 0.1560 

XNOR 3 0.2110 
MUX 3 0.2120 

Table 1: Gates, size and delay 
 

Let C be a digital circuit that uses a subset (or the complete set) of the gates given 
in Table 1. Let gates(C) be a function that returns the set of all gates of circuit C and 
levels(C) be a function that returns the set of all the gates of C grouped by level. 
Notice that the number of levels of a circuit coincides with the cardinality of the set 
expected from function levels. On the other hand, let B(X) be the Boolean value that 
the considered circuit C propagates for the input Boolean vector X assuming that the 
size of X coincides with the number of input signal required for circuit C. The fitness 
function, which allows us to determine how much an evolved circuit adheres to the 
specified constraints, is given as in (1), wherein S(C) evaluates the soundness of the 
evolved circuit C and is defined in (2), A(C) is the occupied hardware area by circuit 
C as defined in (3), T(C) gives the response time of circuit C as defined in (4), and 
P(C) evaluates the power dissipated by circuit C, which is defined in (5).  
 

F(C) = S(C) + ω1A(C) + ω2T(C) + ω3P(C)         (1) 
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In (1), x represents the input values of the input signals while y represents the 
expected output values of the output signals of circuit C, n denotes the number of 
output signals that circuit C has. For a gate g, functions GE, DE, SW and FN return 
the number of gate equivalent, propagation delay, number of switches and fanout 
respectively. For each error in the evolved circuit, the individual pays penalty ξ.  
Constants ω1, ω2 and ω3 are the weighting coefficients that allow us to consider area, 
response time and power dissipation to evaluate the performance of an evolved 
circuit, with ω1 + ω2 + ω3 = 1. For implementation issue, we minimised the fitness 
function below for different values of ω1, ω2 and ω3. 

5 Evolutionary vs. Conventional Designs for S-Boxes 

For comparison purposes, we evolved the S-boxes of the data encryption standard 
(DES) and obtained the characteristics (area, time and power) of the evolved circuit. 
However, for existing work on designing hardware for DES S-boxes, we could only 
obtain the size in terms of gate equivalent. In Table 2, we give the characteristics of 
the S-boxes of the fastest implementation of DES known as bitslice DES [Kwan, 00]. 
In Table 3, we present the characteristics of the evolved DES S-boxes. 
 

 area time power 
S1 167 2.2010 981 
S2 149 3,8290 761 
S3 153 2.4675 992 
S4 119 1.5505 571 
S5 161 2.1170 884 
S6 162 2.2395 831 
S7 148 2.6180 716 
S8 152 2.7915 1009 

Table 2: Characteristics of the bitslice DES S-boxes 
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The parameters used in the evolutionary algorithms were 0.9 as mutation rate, 16 as 
mutation degree and a population of 100 circuits. It took us about a couple of hours to 
evolve the designs of DES S-Boxes S1, S2, S3 and S4, given in the appendix. 
However, we believe that given time, the circuit designs for the S-Boxes will much 
more efficient in all of the three aspects: hardware area, response time and power 
consumption (switching activity only). 

 
 area time power 

S1 124 1.2880 1071 
S2 117 1.1005 981 
S3 102 1.7145 412 
S4 92 0.7660 771 
S5 126 1.2760 514 
S6 111 1.9115 959 
S7 108 1.2220 801 
S8 137 0.9895 897 

Table 3: Characteristics of the evolved DES S-boxes 

The chart of Figure 5 relates the performance factor of the bitslice DES S-Boxes 
versus those obtained by the evolutionary process described. The performance factor 
is the product area×time×power. It is clear that the evolutionary S-boxes designs are 
far better than those designed using conventional methods. 

 

 

Figure 5: Performance factor of DES S-boxes:  bitslice DES S-boxes vs. evolutionary 
S-boxes 
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6 Conclusion 

In this paper, we proposed a methodology based on evolutionary computation to 
automatically generate data-flow based specifications for hardware designs of 
substitution boxes usually used in modern cryptography such as data encryption 
system (DES) and advanced encryption system (AES). Our aim was evolving 
minimal hardware specifications, i.e. hardware that minimises the three main 
characteristics of a digital circuit, which are space (i.e. required gate number), time 
(i.e. encryption and decryption time) and power dissipation. We compared our results 
against the fastest existing design. The S-boxes hardware evolved is more compact in 
terms of the required hardware area.   
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Appendix   

The evolved DES S-boxes (S1, S2, S3 and S4) specifications are given below. The 6-
bit input signal is X = 〈x5x4x3x2x1x0〉 and the 4-bit output signal is  
Y = 〈y3y2y1y0〉.The most significant two bits x5 and x4 are used as the row indices.  
 
S-box S1 specification 
 
t0 ⇐  XOR(NOR(NOR( 1x , x0),XOR( 0x , x2)),NAND(OR(XOR( 2x , 3x ), x1), x3)) 

t1 ⇐  MUX(XNOR(x1, x3),NAND(OR(XOR( 2x , 3x ), x1),NAND(NOR( 1x , x0), 

  XOR( 0x , x2))),NAND(NAND(NOR( 1x , x3), x0), x0)) 

t2 ⇐  MUX(AND(OR(XOR( 2x , 3x ), x1),NAND(NOR( 1x , x0),XOR( 0x ,x2))),NAND(NAND(NAND( 

  NOR( 1x , x3), x0), XOR( 0x , x2)), NAND( 1x ,OR(XOR( 2x , 3x ), x1))), NAND(XOR(x1, x3),  

  NAND(NOR( 1x , x3), x0))) 

t3 ⇐  XOR(NOR(XOR( 0x , x2), 0x ),NAND(NAND(NAND(NOR( 1x , x3), x0), x0), 

  NAND(XOR(x1, x3),NAND(NOR( 1x , x3), x0)))) 

t4 ⇐  AND(MUX( 2x ,NAND( 2x , 3x ),XOR(NAND(x1, x3), x0)),OR(XOR(NAND(x1, x3), x0),MUX( 3x , 

  NOR( 1x ,AND( 2x , 3x )), x1))) 

t5 ⇐  NAND(OR(XOR(NAND(x1, x3), x0),MUX( 3x ,NOR( 1x ,AND( 2x , 3x )), x1)),MUX(MUX( 3x , 

  NOR( 1x ,AND( 2x , 3x )), x1),MUX(x3, 1x ,MUX( 0x , x1, 3x )),MUX( 2x ,NAND( 2x , 3x ), 
XOR(NAND(x1, x3), x0)))) 

t6 ⇐  XNOR(MUX(XOR(MUX( 0x , x1, 3x ),NOR( 0x , x2)), 3x , x2), 

  NAND(NOR( 1x ,AND( 2x , 3x )),MUX( 0x , x1, 3x ))) 

t7 ⇐  MUX(XOR(MUX( 0x , x1, 3x ),NOR( 0x , x2)), x2,MUX(x3, 1x ,MUX(x3, 1x , 

  MUX( 0x , x1, 3x )))) 

t8 ⇐  MUX(MUX( 1x , x1, 3x ),XNOR( 2x ,NAND(XOR(x0, 1x ), 3x )), 0x ) 

t9 ⇐  XOR(NOR( 1x , x0),MUX( 2x ,MUX(x2, 1x ,XOR(x0, 1x )), 3x )) 

t10⇐  NAND(NAND(MUX(OR( 0x , x1), x2, 3x ),NOR(NOR( 3x , 2x ), 0x )), 

  OR(NOR(NOR( 3x , 2x ), 0x ),MUX(x1, 1x , 3x ))) 

t11⇐  MUX(AND(MUX(OR( 0x ,x1), x2, 3x ),XOR(x0, 1x )),XNOR(MUX(x2, 1x ,XOR(x0, 1x )), 

  NOR(NOR(NOR( 3x , 2x ), 0x ), 2x )),MUX(x1, 1x , 3x )) 

t12⇐  XNOR( 1x ,MUX(OR(XNOR(NOR( 3x , 1x ), 0x ),XOR(NOR( 3x , 1x ), 0x )),NOR( 0x ,AND( 3x , 

  XNOR( 2x , 1x ))),OR(MUX(x3,XNOR( 2x , 3x ), 1x ), AND( 3x ,XNOR( 2x , 1x ))))) 

t13⇐  XNOR(XNOR(NOR( 3x , 1x ), 0x ),MUX(AND( 3x ,XNOR( 2x , 1x )), 

  NAND( 1x ,XNOR( 2x , 1x )),NOR(x0,XOR( 2x , 3x )))) 

t14⇐  MUX(MUX( 2x , x2,AND( 3x ,XNOR( 2x , 1x ))),MUX(x3,XNOR( 2x , 3x ), 1x ), 0x ) 

t15⇐  MUX(XOR( 2x , 3x ),XNOR( 2x , 1x ),NOR(XNOR(NOR( 3x , 1x ), 0x ), 

  XNOR(NOR( 3x , 1x ), 0x ))) 
y0 ⇐  MUX(MUX(t 0, t 4, x4),MUX(t9, t 13, x4), x5) 
y1 ⇐  MUX(MUX(t 1, t 5, x4),MUX(t 10, t 14, x4), x5) 
y2 ⇐  MUX(MUX(t 2, t 6, x4),MUX(t 11, t 15, x4), x5) 
y3 ⇐  MUX(MUX(t 3, t 7, x4),MUX(t 12, t 16, x4), x5) 
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S-box S2 specification 
 
t0 ⇐  XOR(XNOR(NOR(MUX(x0,NOR(x0,x2),x3),MUX( 2x , 1x , 0x )),  

  OR(NOR(MUX(X0,NOR(x0,x2), x3),MUX(x0,x3, 1x )),NOR(x0,x2))), XOR( 2x ,x1)) 

t1 ⇐   MUX(x0,NOR(MUX(x0,NOR(x0,x2),x3),AND(x0,MUX(MUX(x2,x1, 0x ), 

  AND(x1, 3x ), 3x ))),NAND(x1, 3x ))    

t2 ⇐   XOR(MUX(x0, x3, 1x ),NAND(OR(x0, x1),XNOR(NAND(x1, 3x ),XOR( 2x ,x1)))) 

t3 ⇐   NOR(NOR(x0,XOR( 2x ,x1)),AND(x0,MUX(MUX(x2, x1, 0x ),AND(x1, 3x ), 3x ))) 

t4 ⇐  MUX(XNOR( 2x , x0),MUX(NOR(x2, 3x ),XOR( 2x , x0),NAND(x1, x3)),MUX(x0, x3, 1x )) 

t5 ⇐  XNOR(XNOR( 0x , 1x ),NAND( 2x ,MUX( 3x ,AND(x1, x3),MUX(x0, x3, 1x )))) 
t6 ⇐   AND(x1, x3) 
t7 ⇐  MUX(MUX( 3x , x3, x2),MUX(x1, 1x , 3x ), 0x ) 

t8  ⇐   XNOR(XNOR( 1x ,x0),NAND(OR( 1x ,XOR( 3x ,x2)),NAND( 2x , 1x )))  

t9 ⇐  XOR(XNOR( 1x ,x0),NOR( 3x ,NOR(XNOR(x2, x1), x0)))  

t10⇐  MUX(NAND( 1x ,x3),AND(NAND( 2x , 1x ),XOR( 3x ,x2)),NAND(XNOR( 0x ,x2),NAND( 3x ,x1))) 

t11 ⇐  NAND(NAND(NAND(XNOR( 0x ,x2),NAND( 3x ,x1)),AND(NAND( 2x , 1x ), 

XOR( 3x ,x2))),MUX(NAND( 1x ,x3),NAND( 3x ,x1),NAND( 1x , 0x ))) 

t12 ⇐  MUX(MUX(x0,MUX(x1, 1x , 3x ),MUX(x2,x1, 3x )), NAND(XNOR( 0x ,x1),NAND( 3x , 2x )), 

  NOR(x2,NOR( 1x , 0x )))  

t13 ⇐  OR(AND(MUX(x1, 1x , 3x ),NOR(XNOR( 0x ,x1),x2)),AND(XNOR( 0x ,x1),NAND( 3x , 2x ))) 

t14 ⇐  NAND(XNOR(AND(x2, 3x ),NOR( 1x ,x0)),NAND(x3,NOR(x2,NOR( 1x , 0x ))))  

t15 ⇐  XNOR(x0,MUX(MUX(x2, x1, 3x ),AND(XNOR( 0x ,x1),NAND( 3x , 2x )),AND(x2, 3x ))) 
y0 ⇐  MUX(MUX(t 0, t 4, x4),MUX(t9, t 13, x4), x5) 
y1 ⇐  MUX(MUX(t 1, t 5, x4),MUX(t 10, t 14, x4), x5) 
y2 ⇐  MUX(MUX(t 2, t 6, x4),MUX(t 11, t 15, x4), x5) 
y3 ⇐  MUX(MUX(t 3, t 7, x4),MUX(t 12, t 16, x4), x5) 
 
S-box S3 specification 
 
t0 ⇐  MUX( 0x ,MUX( 2x , x0, x3),XNOR( 3x ,XNOR(x1, 2x ))) 

t1 ⇐  MUX(x3,MUX(MUX(MUX( 2x , x0, x3), x2,XOR( 3x , x1)),NOR( 0x , x1), 3x ), 

  OR(NAND( 0x , 2x ),MUX(MUX(x2, 0x , x3), 2x ,XOR( 3x , x1)))) 

t2 ⇐  AND(MUX(x2,OR( 0x , x1),MUX( 2x , x0, x3)),NAND(XNOR( 0x , 2x ), x1)) 

t3 ⇐  XOR(XOR( 3x , x1),NAND(XNOR(x1, 2x ), x0)) 

t4 ⇐  AND(NAND(OR( 1x , 0x ),XOR(NOR(x2, x0), 3x )), NAND(XNOR(XNOR(NAND( 3x , x0), 2x ), 

  XNOR(x3, 1x )), XOR(OR( 1x , 0x ), x3))) 

t5 ⇐  XOR( 3x ,NOR(MUX(x0,NOR(XNOR(x1, x0),XNOR(NAND( 3x , x0), 2x )), 

  OR( 2x ,XNOR(x3, 1x ))),AND( 2x , 1x ))) 

t6 ⇐   MUX(MUX(XNOR(NAND( 3x , x0), 2x ),NOR(XNOR(x1, x0),XNOR( 

   NAND( 3x , x0), 2x )),OR( 1x , 0x )),AND(OR( 1x , 0x ), XOR(NOR(x2, x0), 3x )),NOR(x0, x1)) 

t7 ⇐   MUX(XOR(NAND( 3x , x0), 2x ),XOR(x3, 1x ), 0x ) 

t8 ⇐  XOR(NOR(NOR(NOR(XOR(x2, x3), x0), 2x ), x0),XNOR( 2x , x1)) 

t9 ⇐  MUX(MUX(x1, 1x ,NOR(x3, 0x )),NOR(XOR(x2, x3), x0), 0x ) 
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t10 ⇐  AND(NAND(NOR(XOR(x2, x3), x0),XNOR( 2x , x1)), MUX(MUX(x1, 1x ,NOR(x3, 0x )), 

  NAND( 2x , x0), x3)) 

t11 ⇐  XNOR(MUX(x1, 1x ,NOR(x3, 0x )),NOR(NOR(XOR(x2, x3), x0), 2x )) 

t12 ⇐  MUX(XOR( 1x , 0x ),XNOR(x2,XNOR( 1x , 0x )), x3) 

t13 ⇐  XNOR(NAND( 3x , 1x ),XOR(NAND(NAND( 1x , 2x ), x0), x2)) 

t14 ⇐  XOR(NOR(NOR(x1,NAND( 1x , 2x )),XOR( 1x ,NAND( 3x , 0x ))),NAND(XOR( 2x , 

  AND(NAND( 1x , 2x ), x3)),XNOR( 1x , 0x ))) 

t15 ⇐  XNOR(x0,MUX(NAND(XNOR( 1x , 0x ), x3), x3, 2x )) 
y0 ⇐  MUX(MUX(t 0, t 4, x4),MUX(t9, t 13, x4), x5) 
y1 ⇐  MUX(MUX(t 1, t 5, x4),MUX(t 10, t 14, x4), x5) 
y2 ⇐  MUX(MUX(t 2, t 6, x4),MUX(t 11, t 15, x4), x5) 
y3 ⇐  MUX(MUX(t 3, t 7, x4),MUX(t 12, t 16, x4), x5) 
 
S-box S4 specification 
 
t0 ⇐  OR(NOR( 1x ,MUX( 0x , x0, 2x )),NOR(XNOR(MUX(x0, x3, x2), x1),AND( 2x , x3))) 

t1 ⇐  MUX(NAND(NAND( 2x , 1x ),MUX( 0x , x0, 2x )), 

  AND(XNOR(MUX(x0, x3, x2), x1),NAND( 2x , 1x )),OR(AND( 2x , x3),NOR( 2x , 1x ))) 

t2 ⇐  XNOR(MUX(MUX( 0x , 3x , x2),NAND( 0x ,AND(x2, 3x )),OR( 3x ,NOR( 2x , 1x ))), 

  MUX(OR(x1, x2), 3x , 0x )) 

t3 ⇐  MUX(XOR(x0,NAND(XNOR(MUX(x0, x3, x2), x1),NAND( 2x , 1x ))), 

  NOR(AND( 0x ,x1),AND(x2, 3x )),MUX(MUX( 0x , 3x , x2), NAND( 0x ,AND(x2, 3x )), 

  OR( 3x ,NOR( 2x , 1x )))) 

t4 ⇐  MUX(x0,XNOR(NOR(OR( 1x , 0x ), x2),MUX( 3x , x3, 2x )),NAND(x2, 1x )) 

t5 ⇐  XOR(NAND(x2, 1x ),MUX(OR(XNOR(x1, 0x ),NOR( 2x , x3)), 

  MUX(x2, 3x ,OR( 1x , 0x )),NAND( 0x , 2x ))) 

t6 ⇐  AND(OR(MUX(AND( 0x , 2x ), x0,XOR(NOR(OR( 1x , 0x ), x2), 

  MUX( 3x , x3, 2x ))),NAND( 3x ,NAND(x2, 1x ))),OR(XNOR(x1, 0x ), NOR( 2x , x3))) 

t7 ⇐  OR(MUX(AND( 0x , 2x ), x0,XOR(NOR(OR( 1x , 0x ), x2),MUX( 3x , x3, 2x ))), 

  NOR(XNOR(x1, 0x ),MUX( 3x , x3, 2x ))) 

t8 ⇐  XNOR(MUX(NOR( 3x , 1x ), 3x , x2),NAND( 0x ,NAND( 1x , x2))) 

t9 ⇐  XNOR(MUX(x2, 1x , x3),NAND(x0,OR( 1x , x3))) 

t10 ⇐ NAND(NAND(NOR( 2x ,OR( 1x , x3)), 0x ),MUX(MUX(NOR( 1x , x3), 1x , 

  NOR( 0x , 3x )),OR( 0x ,NAND( 1x , x2)), x2)) 

t11 ⇐ MUX(x3,MUX( 0x , 3x , x2),OR(NOR( 0x ,NAND( 1x , x2)), x1)) 

t12 ⇐ XOR(MUX( 2x ,AND( 0x , x1), x3),NAND( 1x , x0)) 

t13 ⇐ MUX(OR(NOR( 1x , x3),XNOR(NAND( 1x , x0),MUX(x0, 

  NOR( 1x , x3), 2x ))), x3,XNOR( 2x ,AND( 0x , x1))) 

t14 ⇐ XOR(NOR( 1x ,XNOR( 2x ,AND( 0x , x1))),XOR( 3x ,MUX(x0,NOR( 1x , x3), 2x ))) 

t15 ⇐ XOR(NOR(NOR( 1x , x3),NOR( 3x ,NOR(NOR( 1x , x3),XNOR(NAND( 1x , x0), 

  MUX(x0,NOR( 1x , x3), 2x ))))),NOR( 2x , x0)) 
y0 ⇐ MUX(MUX(t 0, t 4, x4),MUX(t9, t 13, x4), x5) 
y1 ⇐ MUX(MUX(t 1, t 5, x4),MUX(t 10, t 14, x4), x5) 
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y2 ⇐ MUX(MUX(t 2, t 6, x4),MUX(t 11, t 15, x4), x5) 
y3 ⇐ MUX(MUX(t 3, t 7, x4),MUX(t 12, t 16, x4), x5) 
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