
Secure Service Discovery based on Trust Management for

ad-hoc Networks1

Celeste Campo, Florina Almenárez, Daniel Dı́az, Carlos Garćıa-Rubio, Andrés
Maŕın López

(Dept. Telematic Engineering - University Carlos III of Madrid, Spain
{celeste, florina, dds, cgr, amarin}@it.uc3m.es)

Abstract: In ad-hoc networks, mobile devices communicate via wireless links with-
out the aid of any fixed networking infrastructure. These devices must be able to
discover services dynamically and share them safely, taking into account ad-hoc net-
works requirements such as limited processing and communication power, decentralised
management, and dynamic network topology, among others. Legacy solutions fail in
addressing these requirements.

In this paper, we propose a service discovery protocol with security features, the Secure
Pervasive Discovery Protocol. SPDP is a fully distributed protocol in which services
offered by devices can be discovered by others, without a central server. It is based on an
anarchy trust model, which provides location of trusted services, as well as protection
of confidential information, secure communications, or access control.

Key Words: ad-hoc networks, service discovery protocol, security, trust

Category: C.2.2, C.4

1 Introduction

Recent advances in microelectronic and wireless technologies have fostered the
proliferation of small devices with limited communication and processing power.
They are what are known as “pervasive systems”. Personal Digital Assistants
(PDAs) and mobile phones are the more “visible” of these kinds of devices,
but there are many others that surround us, unobserved. For example, today
most household appliances have embedded microprocessors. Each one of these
small devices offers a specific service to the user, but thanks to their capacity
for communication, in the near future they will be able to collaborate with each
other to build up more complex services. In order to achieve this, devices in such
“ad-hoc” networks should dynamically discover and share services between them
when they are close enough.

In ad-hoc networks composed of limited devices, it is very important to min-
imise the total number of transmissions, in order to reduce battery consumption
of the devices. It is also important to implement mechanisms to detect, as soon
as possible, both the availability and unavailability of services produced when
1 This work has been partially supported by the UBISEC (Sixth Framework Program,

Contract no. 506929), Everyware (MCyT TIC2003-08995-C02-01) and Easy Wireless
(ITEA ip03008) projects.

Journal of Universal Computer Science, vol. 12, no. 3 (2006), 340-356
submitted: 30/10/05, accepted: 15/1/06, appeared: 28/3/06 © J.UCS

a device joins or leaves the network. Security in these networks is also critical
because there are many chances of misuse both from fraudulent servers and from
misbehaving clients.

In this paper, we propose a service discovery protocol with security features,
the Secure Pervasive Discovery Protocol (SPDP). SPDP is a fully distributed
protocol in which services offered by devices can be discovered by others, without
a central server. It provides location of trusted services, as well as protection of
confidential information, secure communications, identification between devices,
or access control, by forming a reliable ad-hoc network.

The paper is organised as follows: section 2 enumerates the main service
discovery protocols proposed so far in the literature, we will see that none of
them adapts well to ad-hoc networks. Section 3 presents our secure pervasive
discovery protocol, SPDP, with its application scenario, and description of the
algorithm. In section 4 we describe the underlying trust model as security sup-
port. In section 5 we present the simulation results comparing SPDP with other
services discovery protocols. Finally, we conclude with some conclusions and
future work.

2 Related Works

Dynamic service discovery is not a new problem. There are several solu-
tions proposed for fixed networks, with different levels of acceptance, like
SLP [RFC2608, 1999], Jini [Sun, 1999] and Salutation [Miller and Pascoe, 2000].
More recently, other service discovery protocols, specifically designed for
ad-hoc networks, have been defined, some tied to a wireless technology
(SDP for Bluetooth [SDP, 2001], IAS for IrDA [IrDA, 1996]), others that
jointly deal with the problems of ad-hoc routing and service discovery (GSD
[Chakraborty et al., 2002], HSID [Oh et al., 2004]), and others that work at
the application layer of the protocol stack (DEAPspace [Nidd, 2001], Konark
[Helal et al., 2003], and the post-query strategies
[Barbeau and Kranakis, 2003]). Only a few protocols have built-in secu-
rity, the most important are SSDS [Czerwinski et al., 1999] and Splendor
[Zhu et al., 2003].

However, these solutions can not be directly applied to an ad-hoc network,
because they were designed for and are more suitable for (fixed) wired networks.
We see three main problems in the solutions enumerated:

– First, many of them use a central server, such as SLP2, Jini and Salutation.
It maintains the directory of services in the network and it is also a reliable
entity upon which the security of the system is based.

2 SLP supports a distributed mode, but usually the implementations use centralised
mode

341Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

An ad-hoc network cannot rely upon having any single device permanently
present in order to act as central server, and furthermore, maybe none of the
devices present at any moment may be suitable to act as the server.

– Secondly, the solutions that may work without a central server, like SSDP,
are designed without considering the power constraints typical in wireless
networks. They make an extensive use of multicast or broadcast transmis-
sions which are almost costless in wired networks but are power hungry in
wireless networks.

– Thirdly, security issues are not well covered. SSDS provides security in en-
terprise environments but may not work in ad-hoc networks with mobile
services. Splendor does not provide certificate revocation and trust models
of PKIs. They both depend on trustworthy servers and they propose solu-
tions which are provided at the IP level.

Accepting that alternatives to the centralised approach are required, we con-
sider two alternative approaches for distributing service announcements:

– The “Push” solution, in which a device that offers a service sends unsolicited
advertisements, and the other devices listen to these advertisements selecting
those services they are interested in.

– The “Pull” solution, in which a device requests a service when it needs it,
and devices that offer that service answer the request, perhaps with third
devices taking note of the reply for future use.

In ad-hoc networks, it is very important to minimise the total number of
transmissions, in order to reduce battery consumption. It is also important to
implement mechanisms to detect as soon as possible both the availability and
unavailability of services produced when a device joins or leaves the network.
These factors must be taken into account when selecting between a push solution
and a pull solution.

The DEAPspace algorithm is the only service discovery protocol, listed
above, that tries to minimise the total number of transmissions. It uses a pure
“push” solution and each device periodically broadcast its “world view” although
none of them has to request a service.

3 SPDP: Secure Pervasive Discovery Protocol

In this paper we propose a new service discovery protocol, the Secure Pervasive
Discovery Protocol (SPDP), which merges characteristics of both pull and push
solutions to improve the performance of the protocol. Also, SPDP provides se-
curity based on an anarchy trust management model. Such trust management

342 Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

model does not require neither a central trusted server nor a hierarchical archi-
tecture, so it is suitable to overcome the challenges imposed by ad-hoc networks
such as no central management, no strict security policies and highly dynamic
nature (see section 4).

The Secure Pervasive Discovery Protocol (SPDP) is intended to solve the
problem of enumerating the services available in ad-hoc networks, composed of
devices with limited transmission power, memory, processing power, etc. Legacy
service discovery protocols use a centralised server that listens for broadcast
or multicast announcements of available services at a known port address, and
lists the relevant services in response to enquiries. The protocol we propose does
away with the need for the central server. Ad-hoc networks cannot rely upon
having any single device permanently present in order to act as central server,
and further, none of the devices present at any moment may be suitable to act
as the server.

One of the key objectives of the SPDP is to minimise battery use in all
devices. This means that the number of transmissions necessary to discover ser-
vices should be reduced as much as possible. A device announces its services only
when other devices request the service. Service announcements are broadcasted
to all the devices in the network, all of which will get to know about the new
service simultaneously at that moment, without having to actively query for it.

In addition, SPDP allows sharing services safely, through an underlying trust
management model between devices, which allows us to store service informa-
tion from other “alleged” trusted service agents and later to use them if such
information is really authentic and upright.

Currently, the security support provided by service discovery protocols
are focused on authentication, integrity, and confidentiality [RFC2608, 1999]
[Czerwinski et al., 1999] [Zhu et al., 2003]. Even more, some of them include au-
thorisation services as part of the discovery [Zhu et al., 2003]. Such support is
based on IPSec [Kent and Atkinson, 1998] or traditional PKI in the last case.
However, these security services could be not necessary for the discovery, but
they could cause energy and processing consumption. Protecting both energy
and processing consumption is a very essential issue for devices with limited
capabilities. So we have considered providing basic security services to prevent
certain attacks (i.e. DoS, false announcements, and false services) and to avoid
the sending of unnecessary messages.

In the remainder of this section, we present the application scenario for SPDP
and some considerations to be taken into account. Then, we will formally describe
the algorithm used to implement it.

343Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

3.1 Application scenario

Let’s assume that there is an ad-hoc network, composed of D devices, each device
offers S services, and expects to remain available in this network for T seconds.
This time T is previously configured in the device, depending on its mobility
characteristics.

Each device has an SPDP User Agent (SPDP UA) and an SPDP Service
Agent (SPDP SA). The SPDP UA is a process working on the user’s behalf
to search information about services offered in the network. The Service Agent
SPDP (SPDP SA) is a process working to advertise services offered by the de-
vice. The SPDP SA always includes the availability time T of its device in its
announcements.

Each device has a cache associated which contains a list of the services that
have been heard from the network. Each element e of the cache associated to the
SPDP UA has three fields: the service description, the service lifetime and the
service expiration time. The service expiration time is the time it is estimated
the service will remain available. This time is calculated as the minimum of two
values: the time the device has promised to remain available, and the time the
server announced that the service would remain available.

Entries remove themselves from the cache when their timeout elapses. With
regard to security, each device handles a list of reliable devices and the trust
degree associated with them. Trust helps devices to limit their cache size; services
from untrusted devices are not stored in the cache. Depending on the trust
degree, a device decides to store the service offered by a device on its cache.
When the devices access services, devices with biggest trust degree are selected
in the first place.

3.2 Algorithm description

The SPDP has two mandatory messages: SPDP Service Request, which is used
to send service announcements and SPDP Service Reply, which is used to an-
swer a SPDP Service Request, announcing available services. SPDP has one
optional message: SPDP Service Deregister, which is used to inform that a
service is no longer available.

Now, we will explain in detail how SPDP UA and SPDP SA use these prim-
itives.

3.2.1 SPDP User Agent

When an application or the final user of the device needs a service of a certain
type, it calls its SPDP UA. In order to support different application needs, in
SPDP we have defined two kinds of queries:

344 Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

– one query–one response (1/1): the application is interested in the service,
not in which device offers it.

– one query–multiple responses (1/n): the application wants to discover all
devices in the network offering the service. In this kind of query, we introduce
a special type of service, named ALL, in order to allow an application to
discover all available services of all types in the network.

Both types of query use the same message, SPDP Service Request. A flag
in the header of the message indicates if it is 1/1 or 1/n.

In one query–one response queries (see Figure 1 searchAny), the
SPDP UA searches for a service type in the list of local services and in
its cache. If it is found, the SPDP UA gives the application the correspond-
ing service description, without any network transmission. If it is not found,
the SPDP UA broadcasts a SPDP Service Request for that service, waiting
CONFIG WAIT RPLY seconds for replies. If no reply arrives, the SPDP UA answers
to the application that the service is not available in the network. If some reply
arrives, the SPDP UA gives the application the service description received.

In one query–multiple responses queries (see Figure 1 search), the
SPDP UA makes a list of known services of the type specified, that is, a list
of the ones offered locally or stored in its cache (all the services if the service
type is ALL). Then, it sends a SPDP Service Request including this list. It waits
CONFIG WAIT RPLY seconds for replies and returns to the application the list of
known services plus, if any replies arrived, the service descriptions received.

SPDP UAs in all devices are continually listening on the network for all types
of messages (requests and replies) and updating their caches with the services
announced in them. Moreover, the device’s cache has a limited size. Whenever a
SPDP Service Reply announcing a service is received, the SPDP UA updates
its cache accordingly.

It is not necessary to sign SPDP Service Requestmessages. There is another
mechanism within the trust management model to protect from multiple false
SPDP Service Request messages (see section 4.2), provoking a denial of service
attack. Nevertheless, SPDP Service Reply messages are signed. The signatures
are verified if the user requires to use the service announced by a specific peer.
However, taking the dynamic nature of ad-hoc networks into account, users can
define different policies to specify when the signature verification is needed. For
instance, in a hostile environment, the user could verify the messages each time
that they are received, whereas in a secure environment, message verifications
would take place only when false announcements are detected. If the message is
not authentic or upright, then the user removes of his/her cache the announce-
ments from such peer and warns the presence of a malicious user. In addition to
this, service descriptions can also be signed for integrity guarantee.

345Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

searchAny(service type) {
foreach (s ∈ Local)

if (s.type==service type) return(s);
foreach (e ∈ Cache)

if (e.type==service type) return(e);
broadcast(SPDP Service Request(service type, 1/1));
set timer(CONFIG WAIT RPLY, EXPIRED);
service remote = hear network(SPDP Service Reply);
update cache(service remote);
return(service remote);

EXPIRED:
return(NULL);

}

search(service type) {
foreach (s ∈ Local)

if (s.type==service type) OR (service type==ALL) known services+=s;
foreach (e ∈ Cache)

if (e.type==service type) OR (service type==ALL) known services+= e;
broadcast(SPDP Service Request(service type, 1/n, known services));
set timer(CONFIG WAIT RPLY,EXPIRED);
loop (forever)

service list+= hear network(SPDP Service Reply);
EXPIRED:

update cache(service list);
return(service list + known services);

}

update cache(list) {
foreach (l ∈ list)

if (trust degree(l.IP) ≥ 0.5)
Cache += l;

}

trust degree(ip) {
if ∃ trust degree of l.IP return this
else

goto trust formation
}

Figure 1: SPDP UA pseudocode implementation

Moreover, the device’s cache has a limited size. When an SPDP UA hears a
new announcement but the cache is full, it deletes the service entry offered by
the device with less trust degree or less expiration time.

3.2.2 SPDP Service Agent

The SPDP SA advertises services offered by the device. It has to process SPDP

Service Request messages and to generate the corresponding SPDP Service

Reply, if necessary.
In order to minimise the number of transmissions, the SPDP SA takes into

account the type of query made by the remote SPDP UA. When a SPDP SA
receives a SPDP Service Request 1/1 (see Figure 2), it checks whether the

346 Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

requested service is one of its local services. In that case, a SPDP Service Reply

is scheduled for a random time, inversely proportional to the availability time of
the device. During this time, if another reply to the same SPDP request is heard,
the reply is aborted as the remote SPDP UA will just pass the first service to
the application and discard any others. If the timer expires and no reply has
been heard, the reply is sent.

The algorithm awards the more static devices with more opportunities for
answering requests. Therefore the algorithm gives higher priority to answers
coming from devices with longer estimated availability.

receive(SPDP Service Request(service type, 1/1)) {
foreach (s ∈ Local)

if (s.type==service type) new services list+= s;
if (new services != NULL) {

set timer(generate random time(1
T),EXPIRED);

loop (forever) {
hear network(SPDP Service Reply);
exit;

}
EXPIRED:

broadcast(SPDP Service Reply(new services list));
}

}

receive(SPDP Service Request(service type, 1/n, known services)) {
foreach (s ∈ Local)

if (s.type==service type) OR (service type==ALL) new services list+= s;
foreach (e ∈ Cache)

if (e.type==service type) OR (service type==ALL) new services list+= e;
new services= new services - (new services ∩ known services);
if (new services list != NULL) {

set timer(generate random time(1
T∗new services list.length),EXPIRED);

loop (forever)
service list+= hear network(SPDP Service Reply);

update cache(service list);
EXPIRED:

if not (new services list ⊆ service list) {
new services list= new services list - (service list ∩ new services list);
broadcast(SPDP Service Reply(new services list));

}
}

}

Figure 2: SPDP SA pseudocode implementation

When a SPDP SA receives a SPDP Service Request 1/n, (see Figure 2),
it checks whether the requested service is one of its local services, or if it is in
the cache. If so, it generates a random waiting time, inversely proportional to
the availability time of the device and the number of known services. During
this time, the SPDP SA listens the network for any SPDP Service Reply of the
same request and it updates its cache accordingly. When the timer expires, if
the SPDP SA knows about some additional devices offering this type of service

347Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

that have not been announced yet, it sends its SPDP Service Reply.
So, the more time the device is able to offer the service and the bigger the

cache, the higher the probability of answering first. We suppose the device with
the highest availability time and the bigger cache is the one with the most
accurate view of the world.

In certain cases, it is possible to detect when a device is switched off or
it roams to other network. If so, the SPDP SA of the device has to send a
SPDP Service Deregister, listing all its local services, before switching off or
roaming. When a SPDP UA hears this message, it must remove the services
listed from its cache if the user is trusted. For this, SPDP Service Deregister

messages should be signed.
When a device tries to access a service listed in its cache and the service is

down, it may also use the SPDP Service Deregistermessage to inform the rest
of the network that this service is no longer available. The device that receives
the message may delete the entry from the cache, depending on the trust degree
of the device that send this message.

4 Decentralised Trust Management Model

As we before mentioned, ad hoc networks imposed several challenges: a) they
do not require the existence of any fixed infrastructure, b) they may operate in
a standalone fashion, c) they can be very dynamic (changing topology), and d)
the nodes have limited processing power and battery lifetime. In addition, such
nodes can belong to different trust domain, that is, they can be unknown and
do not have any previous configuration about each other. We based on these
requirements, we will see how to provide a secure ad hoc network in a dynamic
way, through degrees of trust associated with every device.

In the last decades, some trust management models such as
those proposed in [Marsh, 1994], [Beth et al., 1994], [Blaze et al., 1996],
[Abdul-Rahman and Hailes, 1997], [Jøsang and Knapskog, 1998] have been
defined, in order to establish trust relationships between peers. Other models
have been defined for public key infrastructures such as [Zimmermann, 95]
and [Maurer, 1996]. These models present characteristics that are not suitable
for ad-hoc networks, which can be summarised so: (a) they do not take the
dynamicity of the user into account, therefore, they do not consider that the
entities interacting are autonomous and mobile (b) they could present scalability
problems because they define trust for each specific situation (or service) (c)
they do not define a dynamic trust model over time, and finally (d) they have
a complex management system to be deployed in limited devices. For these
reasons, we have defined our own decentralised trust management model.

In our model devices are autonomous entities which act on behalf of a user,
organization, etc. This way, the trust relationships are established, implicitly,

348 Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

between them, for instance, between a user agent A and a service agent B.
This model is very simple indeed since, unlike SSDS and Splendor, the trust
relationships are established only between two components and do not require
manual configuration.

A trust relationship is not associated with a specific service, it means in-
stead a belief that one entity has about another one based on past experiences,
knowledge about entity’s nature, or recommendation from trusted third peers.
This belief represents how an entity will behave, implying a potential hazard;
therefore, it is fully subjective. Each device handles a list of trustworthy users
and untrustworthy users. These users are identified using a unique identifier,
for instance their public key. The user’s public key is also used to verify digital
signatures.

The trust relationships are expressed using fuzzy logic rather than the usual
Boolean logic or deterministic values. 0 and 1 are extreme cases, but intermediate
values are also possible, for instance, 0.5 could be considered as an ignorance
value. These trust relationships fulfil four properties: (1) reflexive, every devices
trust on itself, (2) asymmetric, a trust relationships established between A and B

is different from one established between B and A, (3) conditionally transitive,
if A trusts on B and B trusts on C, then A conditionally trusts on C, and
(4) dynamic, trust changes over time according to the user’s behaviour. User’s
behaviour includes to send authentic and upright requests, to answer requests
in a right way, to announce true services, to cooperate in order to maintain the
security in the environment, etc.

4.1 Starting a trust relationship

At the beginning, new devices have no evidence of past experiences to establish
an initial trust relationship. They could establish a new trust relationships based
on: knowledge about entity’s nature, recommendations, or applying trust rules.
The first and third options belong to a personal opinion (direct trust) and the
second one belongs to opinions from trusted third parties (indirect trust).

– Two entities can establish a new trust relationship in a direct way, because
the user previously knows another user from the physical world, so he/she
could manually configure the new relationship and associated it a new trust
value. Otherwise, if the users are unknown and there are no recommen-
dations, then a decision is taken based on trust rules, for instance, in an
average environment the trust rule allows to assign the ignorance value (0.5)
to unknown users.

– When the users willing to communicate with each other are unknown, rec-
ommendation requests are sent to nearby peers. In this way, we benefit from

349Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

existent common knowledge in the environment. Recommendation replies
are sent when there already exist trust relationships between some devices.
Such replies are only accepted if they come from trusted peers. We con-
sider trusted peers those who have a trust value greater than a configurable
threshold.

With the recommendations, we calculate an initial trust value, applying the
weighted average operator. This operator is simple, effective, and takes also
the source’s trustworthiness into account.

In order to facilitate off-line recommendations, because the presence of
trusted peers is not always possible, we assume that certificates issued by
third trusted parties are a recommendation mechanism, too. In this case,
the recommendation value would be α multiplied by an uncertainty factor.
Such uncertainty factor tries to capture our ignorance since the certificate
was issued to the certificate is verified.

4.2 Sharing trust information

Trust information or recommendations are shared between trustworthy de-
vices through a recommendation protocol, which has been designed for ad-
hoc environments. This protocol has three messages: Recommendation Request,
Recommendation Reply and Recommendation Alert.

Recommendation Request is used to request recommendations about other
devices. By using Recommendation Reply we answer to this request. When we
detect an attack from other device, then we use Recommendation Alert in order
to warn all devices within the network about it. For example, when a device sends
us multiple SPDP Service Request messages during a very short period of time.
In this case, the device is considered untrustworthy, because it is attempting to
perform a denial of service attack.

Figure 3 shows the algorithm to request and reply recommendations. When
we detect an unknown device (target) we broadcast a Recommendation Request

to other devices. Then, we wait a time x for the replies. When recommendations
are received, we recalculate the trust value taking into account only the replies
from trusted devices (recommenders).

Figure 4 shows how alerts are sent and received when the presence of a ma-
licious peer is detected. For that, the trust model includes an action monitor,
which identified anomalous behaviour in accordance with certain patterns. As
Recommendation Request, we broadcast Recommendation Alert to other de-
vices. If we receive it, then we perform an action depending on our trust on the
sender.

350 Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

recommendation request(trgtId) {
broadcast(RecommendationRequest(rqstId, type, rqstrId, trgtId, nstamp));
Totalrec = 0;
timeout (x, EXPIRED);
loop {

R = hear network(RecommendationReply(rqstId, rcdrId, trustInf, nstamp);
if Trecommender ≥ α {

if isTrustValue(Type) {
Trust += trustInf*Trcdr;

}
else {
Trust += calculateRecommendationValue(trustInf,Trcdr);

}
Totalrec ++;

}
if (expired x) exit;

}
EXPIRED:
if (Totalrec == 0) Trust = ignorance value;
else Trust = 1

T otalrec
*Trust;

return Trust;
}
}

send recommendation reply() {
A = hear network(RecommendationRequest(rqstId, type, rqstrId, trgtId, nstamp));
if known(trgtId) {

if isTrustValue(type) {
TrustInf = search trust value(trgtId);

}
else {

TrustInf = search trust information(trgtId);
}

unicast(RecommendationReply(rqstId, rcdrId, trustInf, nstamp);
}

}

Figure 3: Recommendation Protocol pseudocode implementation

4.3 Evolving trust values

As we mentioned previously, trust learning is gradual and dynamic, since the
trust degree changes over time. In fact, it is often a consequence of a complex
set of beliefs, perceptions and interpretations. Trust value changes according to
positive and negative experiences in an specific context, therefore, we calculate
a new trust value Ti taking into account both past and present, that is, the
previous trust value Ti−1 and the value of the interaction Vai that represents
device’s behaviour. Both the previous trust value and the interaction value are
weighted by a disposition factor, which allows assigning a weight to the past with
respect to the present. Such disposition factor (ω) is within the interval [0, 1],
but it must be an intermediate value if we want to be a pragmatic or realistic
peer.

Vai is calculated in accordance with the action’s weight affected by the his-
torical behaviour. The historical behaviour allows us to build our evidence space
that represents facts in the knowledge base of each device. These facts are useful

351Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

send alert() {
broadcast(RecommendationAlert(sdrId, trgtId, nstamp));

}

receive alert() {
A = hear network(RecommendationAlert(sdrId, trgtId, nstamp));
if unknown(sdrId) ignore(message);
else if TsdrId < TtrgtId ignore(message);

else if TsdrId ≥ TtrgtId decrease(TtrgtId);
}

Figure 4: Alert Recommendation Protocol pseudocode implementation

to identify trustworthy and untrustworthy devices. It is important to identify
untrustworthy devices because mistrust is different from a simple absence of
trust (ignorance).

The Figure 5 depicts the evolution of the trust value according to a vari-
able behaviour, that means, the user begins with positive interactions, but later
he/she performs some negative actions, then positive actions and negatives again,
and finally he/she performs a few positive actions. In this figure, we can see that
the trust is hard to gain and very easy to lose. The trust increase is inversely
proportional to the number of negative interactions.

Finally, the growth in the trust assessment is each time bigger as much as
the positive interactions increase.

Figure 5: Trust Evolution

In this way, we establish a reliable ad-hoc network within which peers might
discover trusted services minimizing the risk of deceit.

352 Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

5 Evaluating the SPDP protocol

In this section we present a performance evaluation study of SPDP in a ubiq-
uitous computing environment. We compare our protocol with the theoretical
distributed approaches, push and pull; because all the service discovery proto-
cols defined in the literature are based on one of these approaches; and also
we compare PDP with the service discovery protocol standard in Internet,
SLP, and with UPnP’s SSDP. This study was carried out through simulation
using the well-known network simulator, NS-2. Our simulator is available in
[Campo and Perea, 2004].

During the simulation, devices join the ubiquitous environment at random
times, request and offer random services, and leave the network after a random
time. The number of devices in the network varies over time, but its mean re-
mains stationary. Random times follow exponential distributions, while random
services follow uniform distributions. For simplicity we assume that each device
offers just one service.

The parameters of the simulation are: the mean number of devices, the mean
time they remain available in the network, the size of the caches, the mean time
between service requests, and the total number of service types. The results of
interests are: the number of messages (the number of messages transmitted in
the network normalised to the number of service request), the service discovery
ratio (the ratio of services discovered to the total number of services available in
the network) and the error ratio (the ratio of services discovered that were not
available in the network to the total number of services discovered).

Figure 6 shows the number of messages transmitted, the service discovery
ratio and the error ratio, in a scenario with 20 devices, an average device life
time ranging from 600 to 19200 seconds, a cache size of 100 entries, 5 different
types of services, and each device requesting a random service every 60 seconds.
The SPDP number of messages is quite under those obtained for SLP and for
pull solutions, while keeping the same service discovery ratio and error rate of
them.

6 Conclusions and Future Work

Ad-hoc networks are becoming increasingly common thanks to the development
of mobile device technology. When a device connects to an ad-hoc network, it
wants to know the services offered by the network and in turn it may offer its own
services. Client applications in the device want to discover trustworthy services
automatically, while server applications want to be used by trustworthy clients
that will not misuse or attack them. Additionally, secure network communication
is also an important issue. These goals are carried out by SPDP.

SPDP is a suitable service discovery protocol for ad-hoc networks since:

353Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

0

1

2

3

4

5

6

7

100 1000 10000 100000

M
E

S
S

A
G

E
S

 P
E

R
 S

E
R

V
IC

E
 R

E
Q

U
E

S
T

 −
>

AVAILABILITY TIME −>

SPDP
PULL

PUSH 12 s
PUSH 60 s

SLP

80

85

90

95

100

100 1000 10000 100000

%
 S

E
R

V
IC

E
S

 D
IS

C
O

V
E

R
E

D
 −

>

AVAILABILTY TIME −>

SPDP
PULL

PUSH 12 s
PUSH 60 s

SLP

0

5

10

15

20

25

30

35

40

100 1000 10000 100000

%
 F

A
LS

E
 S

E
R

V
IC

E
S

 D
IS

C
O

V
E

R
E

D
 −

>

AVAILABILITY TIME −>

SPDP
PULL

PUSH 12 s
PUSH 60 s

SLP

Figure 6: Comparison of SPDP with others protocols.

354 Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

– It is based on a distributed open architecture, therefore, it does not require
central servers;

– It has a simple architecture which contains only two type of components,
user agents and service agents;

– It provides autonomous and mobile agents with a simple method for discov-
ering services that are available;

– It minimises battery use in all devices since the number of transmissions
necessary to discover services is reduced as much as possible;

– It integrates a security model in order to guarantee the security level required
by devices. Security issues include authenticity, and data integrity based on
a decentralised trust management model.

Thus, we fulfil the challenges imposed by ad-hoc networks.
We have built the SPDP protocol and software that uses it to discover the

services offered in its surroundings in Java 2 Micro Edition (J2ME), using the
Personal Profile of the Connected Device Configuration (CDC). This implemen-
tation has been tested successfully in Pocket PC Windows Mobile 2003 devices.

The security support of SPDP has been developed as an independent module,
in order to provide security services to other kind of applications. The main
component is the “Trust Manager”, which implements the basic functions of the
model. This component is supported by the “Recommendation Manager”, which
implements the recommendation protocol and the “Monitor”, which keeps watch
over anomalous actions.

As future works, we are currently working on the implementation of SPDP
in other devices without support of Java Virtual Machine, such as web-cams, to
be integrated in a test-bed to obtain results based on real experiments.

References

[Abdul-Rahman and Hailes, 1997] Abdul-Rahman, A. and Hailes, S. (1997). A dis-
tributed trust model. In Proceedings of the ACM Workshop on New Security
Paradigms, pages 48–60, Cumbria, United Kingdom. ACM SIGSAC, ACM Press.

[Barbeau and Kranakis, 2003] Barbeau, M. and Kranakis, E. (2003). Modeling and
Performance Analysis of Service Discovery Strategies in Ad Hoc Networks. In Inter-
national Conference on Wireless Networks. ICWN 2003, Nevada. Canada.

[Beth et al., 1994] Beth, T., Borcherding, M., and Klein, B. (1994). Valuation of trust
in open networks. In Proceedings of the European Symposium on Research in Com-
puter Security (ESORICS ’94, Brighton, UK), number 875 in Lecture Notes in Com-
puter Science, pages 3–18, Heidelberg, Germany. Springer-Verlag.

[Blaze et al., 1996] Blaze, M., Feigenbaum, J., and Lacy, J. (1996). Decentralized trust
management. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, number 96-17, Oakland, CA. IEEE Computer Society, Technical Committee
on Security and Privacy, IEEE Computer Society Press.

355Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

[Campo and Perea, 2004] Campo, C. and Perea, J. C. (2004). Implementation of per-
vasive discovery protocol. http://www.it.uc3m.es/celeste/pdp/.

[Chakraborty et al., 2002] Chakraborty, D., Joshi, A., Yesha, Y., and Fini, T. (2002).
GSD: A Novel Group-based Service Discovery Protocol for MANETS. In 4th
IEEE Conference on Mobile and Wireless Communications Networks (MWCN 2002),
Stockholm. Sweden.

[Czerwinski et al., 1999] Czerwinski, S. E., Zhao, B. Y., Hodes, T. D., Joseph, A. D.,
and Katz, R. H. (1999). An architecture for a secure service discovery service. In
Mobicom’99.

[Helal et al., 2003] Helal, S., Desai, N., Verma, V., and Arslan, B. (2003). Konark: A
System and Protocols for Device Independent, Peer-to-Peer Discovery and Delivery of
Mobile Services. IEEE Transactions on Systems, Man, and Cybernetics, 33(6):682–
696.

[IrDA, 1996] IrDA (1996). Infrared data association link management 1.1.
[Jøsang and Knapskog, 1998] Jøsang, A. and Knapskog, S. J. (1998). A metric for

trusted systems. In Proc. 21st NIST-NCSC National Information Systems Security
Conference, pages 16–29.

[Kent and Atkinson, 1998] Kent, S. and Atkinson, R. (1998). Security architecture for
the internet protocol (IPSec).

[Marsh, 1994] Marsh, S. (1994). Formalising Trust as a Computational Concept. PhD
thesis, Department of Mathematics and Computer Science, University of Stirling.
citeseer.ist.psu.edu/marsh94formalising.html.

[Maurer, 1996] Maurer, U. (1996). Modelling a public-key infrastructure. In Bertino,
E., editor, European Symposium on Research in Computer Security (ESORICS’ 96),
volume 1146 of Lecture Notes in Computer Science, pages 325–350. Springer-Verlag.

[Miller and Pascoe, 2000] Miller, B. A. and Pascoe, R. A. (2000). Salutation service
discovery in pervasive computing environments. Technical report, IBM.

[Nidd, 2001] Nidd, M. (2001). Service Discovery in DEAPspace. IEEE Personal Com-
munications, 8:39–45.

[Oh et al., 2004] Oh, C.-S., Ko, Y.-B., and Kim, J.-H. (2004). A Hybrid Service Dis-
covery for Improving Robustness in Mobile Ad Hoc Networks. In The International
Conference on Dependable Systems and Networks. DSN-2004, Florence, Italy.

[RFC2608, 1999] RFC2608 (1999). Service location protocol, version 2 (RFC 2608).
[SDP, 2001] SDP (2001). Bluetooth Specification v1.1, Part E: Service Discovery Pro-

tocol (SDP).
[Sun, 1999] Sun (1999). Jini Architectural Overview. White Paper.
[Zhu et al., 2003] Zhu, F., Mutka, M., and Ni, L. (2003). Splendor: A secure, private,

and location-aware service discovery protocol supporting mobile services. In Pro-
ceedings of the First IEEE International Conference on Pervasive Computing and
Communications (Percom’03), pages 235–242. IEEE Computer Society.

[Zimmermann, 95] Zimmermann, P. R. (95). The Official PGP User’s Guide. MIT
Press, Cambridge, MA, USA.

356 Campo C., Almenarez F., Diaz D., Garcia-Rubio C., Lopez A.M.: Secure ...

