
Development of Ambient Intelligence Applications using
Components and Aspects

Lidia Fuentes
(Universidad de Málaga, Spain

lff@lcc.uma.es)

Daniel Jiménez
(Universidad de Málaga, Spain

priego@lcc.uma.es)

Mónica Pinto
(Universidad de Málaga, Spain

pinto@lcc.uma.es)

Abstract: In recent times, interest in Ambient Intelligence (or AmI) has increased
considerably. One of the main challenges in the development of these systems is to improve
their modularization in order to achieve a high degree of reusability, adaptability and
extensibility. This will help us to deal with the heterogeneity and evolution of the environments
in which AmI devices exit. An example would be to easily adapt existing applications when
new communication technologies appear. Current approaches apply component technologies to
achieve these goals, but more should be done. Our research focuses on applying aspect
technologies to components in order to improve AmI application modularization. We present
the benefits of aspect technologies with regard to reusability and adaptability, by showing the
limitations of PCOM, a component-based AmI middleware platform. We will show a study
comparing DAOPAmI, our own component and aspect-based AmI middleware platform and
PCOM.

Keywords: Aspects, Middleware, Components, Ambient Intelligence, Pervasive Computing
Categories: D 2, D 2.2, D 2.4, D 2.6, D 2.11, D 2.12, D 2.13

1 Introduction

The term Ambient Intelligence has been adopted by the European ISTAG [ISTAG]
(Information Societies Technology Advisory Group) to refer to unattended
applications that are executed on devices placed in the environment, and which
collaborate among themselves to perform complex tasks. According to the definition
of AmI by the ISTAG, every AmI device must fulfil at least three properties. The first
of these is the ubiquitous computing property, which means that all devices must have
computing capabilities. The second is the property of ubiquitous communication,
which is defined as the ability of AmI devices to communicate with other devices
everywhere. Finally, the third property is the provision of natural user interfaces,
which implies that user interfaces must be non-intrusive and user friendly as in they
must be capable of gesture or speech recognition.

Journal of Universal Computer Science, vol. 12, no. 3 (2006), 236-251
submitted: 30/10/05, accepted: 15/1/06, appeared: 28/3/06 © J.UCS

In addition to these properties it is important to observe that the software and
hardware technology of AmI devices is constantly evolving. In order to reflect the
importance of this feature in AmI systems, AmI applications are characterized by an
additional property, which we name dynamic evolution. This property forces the
applications developed for these devices to be highly evolvable and adaptable, in
order for them to be executed in several kinds of devices with different resource
capabilities. In our opinion, this property can only be achieved if the appropriate
software technologies are used, which support the dynamic evolution of the hardware
by improving system modularization which increases reusability, adaptability and
extensibility.

Unfortunately, nowadays most of the effort in AmI applications concentrates
itself on developing the most sophisticated applications in order to corner the market,
and the profits. Consequently, very complex applications are created, but little effort
is put into assuring the compatibility between these applications and future versions,
that is, in adequately managing application evolution.

Some platforms like PCOM [Becker, 04], Aura [Sousa, 03] or Gaia [Georgantas,
04] try to overcome this limitation by using advanced software technologies like the
CBSD (Component-Based Software Development) [Szypersky, 02]. However CBSD
alone is not enough to achieve the appropriate modularity necessary for minimizing
the impact of evolution on already developed applications. This is due to the presence
of extra-functional properties that usually crosscut several components which makes
it difficult for them to be reused in different contexts. In this sense, the AOSD (Aspect
Oriented Software Development) [AOSD] paradigm aims to improve system
modularization by extracting these crosscutting properties in a new entity called an
aspect. An aspect is a property that crosscuts several components. Moreover, it is
advisable to model any property that is evolvable over time as an aspect. AOSD
proposes that the evolution issues should be managed inside aspects independently of
the component or components that are affected by the property. Some examples of
properties which we think may be modelled as aspects in AmI applications are: device
and service discovery, communication and persistence.

With the aim of studying the benefits that the AOSD approach can provide to
AmI applications, our starting point has been the study of the PCOM platform. We
have selected this platform since it is one of the most referenced platforms in the AmI
community, and because its authors have provided us with its source code, making
our study possible. In previous work [Fuentes, 05], we refactored this platform
identifying some aspects that were detachable, and also some new aspects that were
not considered by the current release of the PCOM platform. We arrived at the
conclusion that by applying aspects it was possible to alleviate some of the platform
limitations facing both the management of application evolution and the platform
adaptation to new technologies.

Consequently, we have defined a new platform (DAOPAmI) that combines
CBSD and AOSD approaches, putting their mutual benefits to the service of AmI
applications [Fuentes, 04]. In this paper we are going to show how aspects improve
AmI application modularization, and therefore, reusability, adaptability and system
evolution, by carrying out a comparative study of the DAOPAmI and the PCOM
platforms.

237Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

After this introduction, in section 2 we study the PCOM platform, showing an
AmI application that displays PowerPoint presentations on different devices as a case
study. Next, in section 3 we describe the DAOPAmI platform and show the benefits
of applying aspects to components by implementing the same application as in
PCOM. In section 4, as part of the comparative study, we identify the impact of
performing different evolution changes in applications developed on top of both
platforms. In section 5 we will show some related work. We will finish in section 6
with some conclusions and an outline of our plans for future work.

2 PCOM

PCOM [Becker, 04] is a component-based middleware platform developed in Java
and designed to create unattended autonomous applications that communicate with
each other in order to perform collaborative tasks. The PCOM architecture, shown in
figure 1, is structured in two well differentiated parts. On the one hand, the lower part,
named BASE, manages the communication among devices. On the other hand, the
upper part, named PCOM, offers high-level programming abstraction to application
programmers. In the following section this architecture will be described in detail.

Figure 1: PCOM Architecture

238 Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

2.1 PCOM architecture

PCOM applications are defined in terms of a set of components that are deployed
inside PCOM containers. PCOM containers provide a set of services for the: (1)
instantiation; (2) adaptation, and (3) communication of components.

With respect to the instantiation service of components a PCOM container
defines a remote interface used to: (1) expose the contracts of local components.
Contracts define the component name, implementation, interface, resources and their
dependences with other components (see the contract example shown in figure 2); (2)
offer services to other containers for instance to negotiate the component contract, and
(3) instantiate remote components. Before instantiating a component, PCOM
examines its contract dependences and tries to find the required components and
resources in any local or remote PCOM container.

Therefore, to execute an application, PCOM has to examine all the available
component contracts, verifying that all dependences are satisfied. Additionally,
PCOM components define proxies to communicate with other components and the
instantiation service will initialize them following the component contract definition.

Although the PCOM approach to instantiate and deploy components is similar to
the component platform EJB/J2EE, it does not consider the definition of the
application architecture (AA) as for example CCM/CORBA does. This makes it
difficult to provide a complete view of the application since it is spread among the
component contracts, which can even be distributed in different devices. So, as the
AA definition is split into different contracts there is not a single description that
indicates how components are put together in order to set up the final application.

With respect to the adaptation service, PCOM defines a signalling based
adaptation mechanism. This mechanism provides several strategies to support
automatic adaptation in cases where the execution environment changes.

<?xml version="1.0" encoding="UTF-8"?>
<CONTRACT> <IMPLEMENTATION NAME="Control"
 FACTORY="pcom.component.DefaultFactory"
 IMPLEMENTATION="info.pppc.demo.powerpoint.control.ControlComponent"
 INTERFACE="info.pppc.demo.powerpoint.control.ControlInterface"
 SKELETON="info.pppc.demo.powerpoint.control.ControlSkeleton"
 CONTRACT="info.pppc.demo.powerpoint.control.ControlContract"/>
 <FACTORY_DEMAND/>
 <INSTANCE_PROVISION/>
 <INSTANCE_DEMAND><COMPONENT NAME="Infrared"
 PROXY="info.pppc.demo.powerpoint.control.InfraredProxy">
 <PARAMETER NAME="ID" TYPE="INTEGER" COMPARATOR="EQUAL"
 VALUE="0"/>
 <INTERFACE TYPE="info.pppc.demo.infrared.Infrared"/>
 <EVENT TYPE="info.pppc.demo.infrared.InfraredEvent"/></COMPONENT>
 ...</INSTANCE_DEMAND></CONTRACT>

Figure 2: Control component contract

For example, an adaptation may be required when a remote component is no
longer available or a component providing better quality of service (for example more
processing speed) is found. These strategies are implemented in the container using
plugins, but they cannot be changed once the application starts to be executed. So, if
the user wants to implement a new strategy, he has to implement a new plugin, add it
to the container, recompile the application and redeploy it again on the device.

239Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

Furthermore, the new strategy will be scattered between the application functionality
and the adaptation service, making it very hard to reuse in other applications.

Finally, with respect to the communication service, all communications in PCOM
are delegated to the BASE middleware. BASE supports the sending of synchronous
and asynchronous messages among components. Additionally, BASE is able to re-
establish communication with other devices when communication errors occur. This
capacity is very important in AmI environments where communications among
applications are established spontaneously and are continuously changing. To achieve
this flexibility, BASE models the different communication protocols using plugins, as
shown in the Plug-in Manager in figure 1. Although this mechanism allows us to
easily add implementations of new communication protocols, one single application
normally uses only one. In the latter case, it would be a waste of application resources
to use the Plug-in Manager for only one protocol. One possible solution to this
problem, using aspects, was proposed in [Fuentes, 05].

Now we are going to show a more detailed view of the BASE architecture. BASE
is composed of several layers. The first layer, the application layer, upon which the
component model of PCOM is built, offers PCOM containers access to the basic
communication services. The second layer, named System Core Layer, models three
basic BASE objects. The ServiceRegistry, which registers the platform basic services
used by the containers; the DeviceRegistry, which maintains a list of other PCOM
devices in the environment and, finally, the InvocationBroker, which manages
communication between PCOM containers. The third layer, named the Plug-In layer,
manages different plugins that implement the services provided by BASE. Finally, the
Device Capability layer represents the implementation of each plugin interacting with
the available hardware of the device.

We can observe that PCOM offers a pre-defined and fixed set of services,
identified by an identifier at the platform level. This makes it difficult for new
services, such as security, fault tolerance or persistence to be incorporated into the
platform, without modifying the current release of PCOM. Finally, one good feature
of PCOM is that it does not require any central or coordination element as is required
in other environments like Aura or Gaia. So, each device manages all connections and
interactions with the environment by itself. Thus, this architecture is adequate for
producing autonomous applications that are executed in resource-constrained devices
that do not rely on additional infrastructures.

2.2 Remote control application example

In this section we are going to show an example of a distributed PCOM application,
deployed with the current PCOM release. The example uses two AmI devices, each of
them executing part of the application functionality in their respective PCOM
container. The first container, which we call the display container, is executed on a
device that displays images on a screen. The second one, which we call the control
container, is executed on a device that is able to load and execute PowerPoint
presentations. These presentations are loaded from the local file system of the device.
Additionally, both devices support infrared communications.

240 Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

 Display container Control container

PCOM Platform

Contracts
Displayer contract
Adapter contract
Infrared contract

BASE

PCOM Platform

Contracts
Control contract

Filesystem contract
Infrared contract

Displayer contract

BASE

8
Converter

Displayer Infrared Filesystem

Control

presenter

Infrared

1 7

3

4

2

5

6

Figure 3: PCOM Example

Figure 3 shows the initial configuration for both containers and their components.
In order to start the application in the display container, a Converter, a Display and
Infrared components are created. The Displayer component shows images on the
device screen, while the Converter component adapts the received data, (PowerPoint
slides) to images that fit on the screen modelled by the Displayer component. We
must indicate that there is a reference, between the Displayer component and the
Converter component that allows them to communicate. As a result, both component
implementations are dependent on each other. Finally, the Infrared component
continuously sends a signal containing a local display identifier (an integer) to the
environment.

With respect to the control container, the application is started initializing the
Filesystem component, the Infrared component and the Control component. The
Filesystem component provides navigation capabilities on the local file system and is
able to load PowerPoint presentation files whereas the Control component is able to
execute these files. This component provides a graphic interface that allows the user
to perform basic commands like load, start or stop the presentation. Finally, the
Infrared component detects remote Infrared components and retrieves the identifier
sent by them, establishing a connection between the Control, and the Displayer
components. This connection is maintained by the Control component using a proxy,
called presenter that is shown in figure 4. As mentioned previously, components
reflect their dependences with other components using contracts: One of these
contracts, where the Control component demands an Infrared component, was shown
in figure 2.

public class ControlComponent extends DefaultInstance
 implements ControlInterface, CommunicationListener {

//A proxy to the file system.
private FilesystemProxy filesystem;
//A proxy to the presenter.
private PresenterProxy presenter;
//A proxy to the infrared receiver.
private InfraredProxy infrared;
//The dialog of the component.
private ControlDialog dialog;
…
}

Figure 4: Control Component Definition

241Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

Now we are going to describe how the application is executed in the displayer
container. Initially, the Displayer, the Converter and the Infrared component are
instantiated and this last one starts to send the identifier to the environment (step 1).

Meanwhile, in the controller container the Control component is instantiated and
the Filesystem and Infrared components are created. After initialization, the Infrared
component will search for other infrared beacons in the environment (step 2). If one
Infrared component is found, the connection between the Control component and the
Displayer component will be established. Then, when the Control component loads a
new presentation using the Filesystem component (step 3), the local Infrared
component establishes a connection with the previously found display container (step
4). Each time that the Control component performs an action with the loaded
presentation, it sends a command (step 5) to the active Displayer component to update
its content using the BASE middleware (step 6). Then, the Displayer component
receives the message, containing presentation data (step 7) and sends it to the
Converter component. Subsequently, this component adapts and returns the data to
the Displayer component (step 8), which finally shows it. Additionally, if the control
device points to another display device, the connection will be redirected and the
presentation data will be sent to the new Displayer component, which will start to
show the presentation. The old display device, after noticing that the connection has
been lost, will release the presentation data.
Through this example we can observe that the use of CBSD in PCOM provides good
application modularity splitting the application functionality into several components.
However, this is not enough because we also found several limitations when we tried
to add new functionality to the application or to reuse the defined components in new
applications. These limitations are due to the tangled code present in components. For
example, in figure 4, we observe that the Control component implementation uses
hard code references to access the components required by this component contract.
As an example, the presenter proxy is a reference to the Displayer component. Hence,
although contracts are defined using XML, outside of the component (figure 2), each
component maintains direct references to other components.

To support this feature, the component must know the implementation of the
referred component and, therefore, this fact will make it more difficult to reuse the
Control component in new applications that present different data formats.
Additionally, in this component we found the graphical interface and the presentation
control functionality were mixed in the dialog attribute shown in figure 4.

3 DAOPAmI

DAOP [Pinto, 04] is a component and aspect based platform created to develop
distributed applications. Starting from the lessons learned from the development of
this platform we have developed DAOPAmI [Fuentes, 04], which is an adaptation of
DAOP to support AmI applications. DAOPAmI has been developed using the Java
Micro Edition (J2ME) platform to allow portability among devices. As we said in the
introduction, aspects are extra-functional properties that crosscut several components
from which it is advisable that they can be detached. Extra-functional properties
should be modelled as independent aspects to increase the reusability of both
components and aspects and allowing the adaptation of AmI applications to such

242 Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

evolving technologies, without affecting the component core functionality. Examples
of properties that are usually modelled as aspects are communication (e.g. Bluetooth,
802.11, etc.), persistence (file systems, databases, etc.) or fault tolerance.

3.1 DAOPAmI architecture

Figure 5 shows the architecture of the DAOPAmI platform. The DAOPAmI platform
is divided into two main levels. In the upper level, a DAOPAmI application is built in
terms of a set of components and a set of aspects (upper part of figure 5).
Additionally, an XML file describes the architecture of the DAOPAmI application.
This file contains information about the components, the aspects, the composition
rules and the deployment information that builds up the application. By using this
document DAOPAmI provides a full view of the AA, instead of the limited view
provided by the PCOM component contracts.

The lower part of the platform contains the core functionality needed to execute
AmI applications. This functionality is split into five main parts. The first one is the
Application Architecture Manager (or AAM) that loads the AA information at the
application start-up and stores it in its internal structures. This information will be
consulted at runtime by the platform to perform the dynamic weaving of components
and aspects.

The second part, the Component Manager, is in charge of instantiating the
application components by using the information provided by the AAM. It also keeps
track of the instantiated components and their states. An important contribution of our
approach is that DAOPAmI uses a role name to identify components instead of direct
code references. The role name of a component is an architectural name (a string) that
indicates the role that the component plays in a specific architecture. This means that
when a component sends a message to another component it uses the role name to
identify the target component instead of using a direct reference, hence solving the
direct references problem previously mentioned in PCOM.

DAOPAmI Platform

 Application
Architecture

Manager

Component
Manager

Communication
Discovery

Components
Aspects
Properties
Evaluation Rules
Deployment Rules
Initial Context

Application

System
Aspect

Manager

Persistence
Location
….

Application
Architecture
Description

 Component
Component

Component

User
Aspect

Manager

Aspect
Evaluation
Manager

Aspect

 Aspect
Aspect

Figure 5: DAOPAmI Architecture

243Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

With respect to aspects we differentiate two kinds, system aspects and user
aspects. The main difference between them is that system aspects are executed
continuously by AmI applications, whereas user aspects are optionally used in
applications and can be enabled or disabled during the application execution. In our
implementation the system aspects are equivalent to the fixed services provided by
PCOM, but with the important difference that the initial set of services offered by the
platform can be extended with new aspect definitions. Therefore DAOPAmI defines
two aspect managers. The System Aspect Manager (SAM) for system aspects such as
the discovery and the communication aspects. And the User Aspect Manager (or
UAM) for user defined aspects such as for example persistence or security.
Additionally, the aspects defined in the DAOPAmI application level use these system
and user aspects and, as a result, they are parametrized in the AA file.
Finally, the last part is the Aspect Evaluation Manager (or AEM), which is
responsible for applying the rules loaded in the AAM when necessary. We must
indicate that in DAOPAmI, communication among components takes place using
synchronous or asynchronous messages and events, and that the evaluation rules are
applied dynamically when messages are sent or received by components and also
when they are created or finalized. Thus, if we change the AAM information at
runtime we will modify the application behaviour automatically, and also how the
AEM applies the composition rules.

In developing the DAOPAmI platform we are trying to demonstrate that by using
aspects it is possible to solve problems that the current PCOM platform is unable to
solve. Consequently, we now discuss the flexibility offered by our approach by
presenting some situations in which both the platform and the applications on top of it
need to be adapted. Firstly, one common problem when developing AmI applications
is that we must support different devices with different requirements. DAOPAmI
copes with this problem by the definition of Device Profiles. The device profiles
concept is similar to the J2ME profiles. In our implementation the device profile is a
file that describes the device capabilities such as CPU type, memory or supported
communication protocols. Using this information we can automatically generate a
platform version that fits the device characteristics and the application needs. For
example, in applications that do not define user aspects we can remove the UAM
from the platform. In a device that provides support for only one communication
technology, we can replace the default SAM implementation with a more efficient
version customized to that technology. Another possible example is to provide a static
component and aspect binding if the application does not use the DAOPAmI dynamic
composition mechanism. All this customization is possible because the platform
configuration had been established externally and is not hard coded.

Secondly, imagine that we need to add a new service, for example a Bluetooth
communication service. To add this new functionality, we only need to model it as a
system aspect and add it to the SAM. In order to use it, we simply define how to use
the service, parametrizing it, and modifying the AA file adequately. This is possible
thanks to the use of the AA file that describes the application and provides us with a
full view of the AA and, consequently, it is easy to modify it to add the new
functionality.

Thirdly, suppose that we need to change an aspect in execution time, for example
to adapt HTML presentation data instead of PowerPoint data. If a HTML converter

244 Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

aspect is available in the application, we can change the AA at runtime, using the
AAM, and replace the previous aspect for the new implementation and adapt the
application behaviour automatically.

Finally, let’s suppose that we want to provide our application with different
graphic user interfaces that the user can change at runtime. If we provide different
implementations of a GUI component, that maintain compatible interfaces, we
achieve this effect in our application changing the default component implementation
in the AAM. The rest of the components and aspects are not affected by this change.
This mechanism can also be used to change aspect implementations without
recompiling anything.

3.2 Remote control application in DAOPAmI

In this section we are going to show how to implement in DAOPAmI the previously
presented application. In order to achieve a more adaptable application than the one
developed for PCOM, our goal is to modularize the application using components and
aspects. Therefore, our first step was to decide which part of the application should be
modelled as components and which one as aspects (figure 6). As a general rule, we
have decided to model a component as an aspect if its functionality can be seen as a
crosscuting property of the AmI application domain or if it is highly probable for it to
be replaced due to technological evolution.

With respect to the first container (see figure 3), we will maintain the Displayer
component because it implements a concrete and independent functionality. However,
we should transform the Converter component into an aspect. We consider it an
aspect because first, it can evolve independently from the other components in the
application in which it is used, and secondly, the application can be executed without
the Converter functionality. Additionally, modelling this component as an aspect we
can develop other Converter aspect versions that will be able to adapt presentation
data with several different formats such as html, text files or video to images.

In the case of the Infrared component, we have decided to transform it into a
system aspect. The main reason is that if the device does not support the infrared
communication technology it will be possible to replace it completely with other
technologies such as Bluetooth or RFID which provide a similar functionality.

 Displayer Controller

DAOPAmI Platform

DAOPAmI Platform

3

4 5

Displayer Component ControlGUI
Component

Filesystem
Component

Application
Architecture

Manager

Component
Manager

User
Aspect

Manager

Aspect
Evaluation
Manager

User Aspect Level

2

Converter Aspect
User Aspect Level

System Aspect Level

Application
Architecture

Manager

Component
Manager

User
Aspect

Manager

Aspect
Evaluation
Manager

System Aspect Level

1

Control
Component

Communication
Aspect

Discovery
Aspect

InfraredSender

Aspect

7

Communication
Aspect

Discovery
Aspect

InfraredReceiver

Aspect

6

System
Aspect

Manager System
Aspect

Manager

Figure 6: DAOPAmI Example

245Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

Moreover, we have modelled this aspect as two different aspects in order to
reflect the dual role that it plays in the application. The first aspect, named
InfraredSender and located in the displayer container will send information to show
that the local Displayer component is ready to receive presentation data. The second
aspect, named InfraredReceiver is located in the control container. This aspect
determines which displayer device we are pointing at with the control device when a
message is sent.

With respect to components in the control container (see again figure 3), we have
decided to split the Control component functionality into two components. One of
them is the ControlGUI component, which manages the graphical user interface. The
other one is the Control component, which manages the controller application logic.
This division allows us to have different GUI component implementations, which
allows us to give each application a different appearance.

Next, the Filesystem component remains unchanged. This component can be
replaced by other implementations that will provide support to alternative file systems
such as a database or a web server. Finally, the original Infrared component is
modified and modelled as an aspect named InfraredReceiver as mentioned previously.

After separating the functionality of the application into components and aspects
the next step to develop a DAOPAmI application is the description of the AA. In
figure 7, we show part of its AA configuration. Notice that, every aspect and
component in the figure is referred to using its role name and that the composition
rules make reference to these names.

<applicationArchitecture>
 <components>
 <component role="Control" binding =”STATIC”>
 <providedInterface><href>ControlProvidedInt.xml</href></providedInterface>
 <requiredInterface><href>ControlRequiredInt.xml</href></requiredInterface>
 <implementations><implementation name="PowerPoint”><lang>java</lang><class href="controlImpl1.class"/></implementation>
 <default-impl>PowerPoint</default-impl>
 </implementations> </component>
 <component role="ControlGUI">…</component>
 <component role="Filesystem">…</component></components>

 <aspects>
 <aspect role="Converter" binding =”DYNAMIC” kind=”USER”>
 <evaluatedInterface joinPoint="BEFORE_RECEIVE"/>
 <implementations><implementation name="PDA"><lang>java</lang><class href="ConverterImpl1.class"/></implementation>
 <default-impl>PDA</default-impl>
 </implementations></aspect>
 <aspect role="InfraredSender" binding=”STATIC” kind=”SYSTEM”><parameters><href>commParams.xml</href></parameters></aspect>
 …</aspects>

 <compositionConstraints>
 <aspectEvaluationRules>
 <BEFORE_RECEIVE>
 <source-comp>Control</source-comp><target-comp>Displayer</target-comp><targetMessages><message name="nextSlide"/></targetMessages>
 <applyAspects><concurrent><aspect role="Converter"/></concurrent></applyAspects>
 </BEFORE_RECEIVE>
 …</aspectEvaluationRules> </compositionConstraints>

 <deploymentInformation>
 <deployComponent role="Control" location="local"/>
 <deployComponent role="Displayer" location="remote"/>
 <deployAspect role="InfraredSender" location="local"/>
…</deploymentInformation>

 <initialContext>
 <createComponent role="Control" roleInstance="control1"/>
 </initialContext>
</applicationArchitecture>

Figure 7: Application Architecture in DAOPAmI

246 Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

There the Control component definition is shown in the AA file, enclosed by a
component tag. This component describes its provided and required interfaces, the
messages that it sends and receives, in the requiredInterface and providedInterface
tags. In the example, the component defines only one possible implementation and is
declared as having a STATIC binding, as a result, it will not be possible to modify its
implementation during the execution of the application.

The Converter aspect definition is also shown. Its definition, enclosed in an
aspect tag, indicates that this aspect is DYNAMIC and USER. This means that the
aspect can be removed or replaced during execution dynamically and that the UAM
manages the aspect. Additionally, the joinpoint property indicates that the aspect will
only be evaluated before a component receives a message. A joinpoint is an
application execution point usually located before or after a component method
invocation or before or after a component creation or finalization. In the joinpoints,
the aspects are evaluated modifying the application behaviour. A more detailed
explanation of this part of the AA configuration file can be found in [Pinto, 03]. See
also part of the system InfraredSender aspect definition (denoted by the kind tag
value). Additionally, system aspects are parametrized in an independent file (marked
by an href tag in figure 7). These parameters are usually aspect initialization data or
information about data conversion. Additionally, this file provides information about
how components and aspects are deployed (deploymentInformation tag) and which
components must be instantiated by the application (initialContext tag).

Finally, the last step is to initiate the application. Notice that once the application
is initiated in the devices, the information about the AA is available at runtime. We
first describe how the displayer application part works. Figure 6 shows the
DAOPAmI application configuration. The application is initiated when the Displayer
component is created. After creating this component an aspect evaluation rule (not
shown in figure 7 for space reasons) indicates that the InfraredSender aspect must be
evaluated. As part of its evaluation, this system aspect will start to send information
about the device availability. Then, if the Displayer component receives a message,
for example a nextSlide message to show a new slide (step 1), the AEM consults the
information provided by the AAM, and decides that the Converter aspect (step 2)
must be evaluated. The aspect is evaluated before receiving the nextSlide message in
the Displayer component and (step 3) will adapt the presentation data to the data
format expected by the Displayer component. In figure 7 we can see this behaviour
reflected in the BEFORE_RECEIVE rule.

In the controller part, the application is executed as follows. First, the application
instantiates the Control and the ControlGUI components. After creating the Control
component, the InfraredReceiver aspect is evaluated. This system aspect will try to
find an InfraredSender aspect, located in a remote displayer device. If it succeeds, the
aspect keeps the information about the displayer device in order to be used later.
Otherwise, the user will be asked to point to a valid displayer device on which the
presentation will be shown. Next, using the ControlGUI component the user loads a
presentation file. To do this, the ControlGUI component sends a loadfile message to
the Control component (step 4), which upon receival then sends a retrieveFile
message to the Fylesystem component (step 5). This component retrieves the file data
and sends a retrieveFile message to the Control component. Finally, the Control

247Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

component instantiates the PowerPoint presentation. All these steps are shown in
figure 8 with part of the Control component implementation explained later.

Now, if the user wants to show the loaded presentation he points to a displayer
device and presses the next slide button shown by the display of the ControlGUI
component. This component sends a nextSlide message to the Control component that
sends another nextSlide message, with the slide data as parameter, to the remote
Displayer component (step 6). But before sending this message, the InfraredReceiver
aspect is evaluated (step 7) to determine if a valid displayer device has been selected.

If so, the message will be delivered to the target component using the data
previously stored by the InfraredReceiver aspect. Let us suppose now that the user
points to a new displayer device and shows a new slide. In that case, the
InfraredReceiver aspect will notice that the identification data provided by the new
InfraredSender aspect differs from the information that it has. So, the aspect will send
a message to the previous Displayer component ending the presentation. Then it will
update the current displayer device data, and, it will send a nextSlide message to the
new Displayer component changing the target component dynamically.

To conclude this section, we must remark that using the DAOPAmI approach the
Control component does not contain direct references to any other component or
aspect. It only uses role names to communicate with other components as is shown in
figure 8, where the first argument of the execute method indicates the role of the
target component that will receive the message indicated by the third argument.
Therefore, in the Control component there is no reference to the InfraredReceiver
and, thus, it will be possible to completely replace the InfraredReceiver and the
InfraredSender aspects by other equivalent ones.

public class ControlImpl1 extends Component
 implements ControlComponentInt{

PowerPoint powerPoint;
…
public void loadFile(){
…
 Object[] args={filename};
 execute(“FileSystem”,”localFilesystem”,”retrieveFile”,null);
…}

public void retrieveFile(File file){
 powerPoint=new PowerPoint(file);
}

public void nextSlide(){
…
 Object[] args={powerPoint.getSlide()};
 execute(“Displayer”,”remoteDisplayer”,”nextSlide”,args);
…}
…
}

Steps 4 and 5

Role name

Role name

Step 6

Figure 8: Control Component Implementation

248 Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

4 Comparing PCOM and DAOPAmI

After describing both approaches we can conclude that both platforms show reliable
solutions to develop AmI applications. But there are some problems related to PCOM
and some advantages that make the DAOPAmI platform approach more flexible.
Now we are going to comment on these problems and advantages.

In the PCOM application it is difficult to obtain a complete view of the
application architecture since each component acts like an independent application
trying to find the appropriate resources in the environment before execution starts.
This behaviour is indicated in their contract making it difficult to figure out what the
application is trying to do only by examining the individual component contracts.
Additionally, there is no explicit information about which messages can be
interchanged by components. In DAOPAmI the application behaviour is clearly
expressed using the AA XML file and all messages sent and received by components
are expressed explicitly in the AA. Also the rules that drive the composition between
components and aspects are expressed in the AA information.
Another problem in PCOM is that it provides common functionality to AmI
applications using a fixed list of platform services that are modelled as plugins. It is
possible to add new implementations of these services using plugins, but if we need to
add a new common functionality, for example authentication, we have to modify the
platform implementation in order to integrate it into the core functionality. Moreover,
the provided services cannot be changed once the application is started. In DAOPAmI
common services are modelled as aspects, with two main advantages. The first one is
that the user can add new aspects not implemented by the platform such us
authentication, access control, etc. So, we can add new functionality to applications
without modifying the existing components. In addition, in DAOPAmI we can change
the current component or aspect implementation at runtime, modifying the application
behaviour dynamically. This flexibility and adaptability is impossible to achieve in
PCOM.

Another problem in PCOM is that components manage communication using
proxies to send and receive messages. As was shown in figure 4, this implementation
solution introduces dependences among components. So, if some component
implementation is changed or we need to add a new component to the application, we
have to modify the component contracts, change the component code and recompile
the application to update it. This makes the component less reusable and the
application difficult to modify, maintain and evolve. DAOPAmI solves this problem
using role names to refer to components instead of hard coded references. In this
example, this change may affect only the control component, but in more complex
systems this change will affect a lot of components.

An additional advantage of DAOPAmI is derived from the combined use of
device profiles and the description of the AA that helps us to automatically generate a
platform implementation that fits the target device capabilities. This reduces the
application size because we only include the platform parts that are needed. Moreover
both the aspects and components are integrated statically or dynamically depending
on the AA file specification. As a consequence, we get a better application
performance in resource-limited devices that execute AmI applications. PCOM does

249Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

not provide such a mechanism and thus the developer must decide which functionality
must be included in the deployed platform.

5 Related work

An example of aspect-based AmI development platforms is MIDAS [Falcarin, 04].
This platform tries to solve the dynamic adaptation problem, but the platform does not
consider all the specific problems associated with AmI devices. For example, MIDAS
solves the configuration problem using dynamic aspects and changing the
configuration of the application at runtime, but it relies on the use of a listener register
in a remote server to notify of application changes. This continuous connection to
receive notifications is not always possible in AmI applications and the dynamic
loading and unloading of application components is based on a reflection mechanism
that it is not usually available in all AmI devices.

Other work for developing an AmI application using aspects is being conducted
by [Young, 05]. This work is centred around the implementation of AmI application
product lines. These product lines develop complete applications considering the
device capabilities and encapsulating the different functionalities inside of aspects. So
several versions of the same application can be obtained and the aspects can be reused
in new applications. Unfortunately, the use of AspectJ [AspectJ, 05] as an
implementation language does not provide support for the dynamic adaptation of
applications.

6 Conclusions and future work

In this paper, we have shown two applications that provide the same functionality
using two middleware platforms which provide different approaches to solving the
AmI development problems. We have proven that the main difference between them,
the use of aspects, is a key concept to solve the problem of software evolution and
application adaptation over time.

Although today several frameworks exist which are suitable for supporting and
developing AmI applications, these frameworks do not consider the Dynamic
Evolution problem. The only option for handling this problem is rewriting,
recompiling and completely replacing the old application for a new version.
DAOPAmI tries to overcome this problem thanks to the combined use of AOSD and
CBSD.

Currently we are working on the complete implementation of the DAOPAmI
platform and the development of tools that helps in the automatic generation of
different middleware platform versions using device profiles suited to each AmI
device.

Acknowledgements

This work is partially financed by IST-2-004349-NOE AOSD-Europe and the
Spanish Ministry of Technology and Science, CICYT, under grant TIC2002-04309-
C02-02. We want to give special acknowledgments to C. Becker and M. Handte for

250 Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

providing us with the PCOM source code. This code has helped us to identify specific
aspects in the AmI domain.

References

[AspectJ, 05] AspectJ Web Site, 2005, http://eclipse.org/aspectj

[AOSD] Aspect-Oriented Software Development Web Site, 2005, http://www.aosd.net

[Becker, 04] C. Becker et al. PCOM – A Component System for Pervasive Computing, In Proc.
Of second Int. Conf. on Pervasive Computing, 2004, Orlando, Florida, United States of
America, 14-17 March

[Falcarin, 04] P. Falcarin, G. Alonso, Software Architecture Evolution through Dynamic AOP,
European Workshop in Software Architectures, 2004, St. Andrew, United Kingdom, 21-22
May

[Fuentes, 04] L. Fuentes, D. Jimenez, M. Pinto, Towards the development of ambient
Intelligence Environments using Aspect-Oriented techniques, In proc. of the Third AOSD
Workshop on Aspects, Components, and Patterns for Infrastructure Software, 2004, Lancaster,
United Kingdom, 22-26 March

[Fuentes, 05] L. Fuentes, D. Jimenez, M. Pinto, Experiences Refactoring Ambient Intelligence
Applications with Aspects, In proc. of the Linking Aspect Technology and Evolution
Workshop, 2005, Chicago, Illinois, United States of America, March 14

[Georgantas, 04] N. Georgantas, V. Issarny. User Activity Synthesis in Ambient Intelligence
Environments, In proc. of the European Symposium on Ambient Intelligence, 2004,
Eindhovem, Netherlands, November 8-10

[ISTAG] ISTAG. Information Societies Technology Advisory Group Web site, 2005,
http://www.cordis.lu/ist/istag-reports.htm

[Pinto, 03] M. Pinto, L. Fuentes, J.M. Troya, DAOP-ADL: an architecture description language
for dynamic component and aspect-based development, In proc. Of second International
conference on Generative Programming and Component Engineering, 2003, Erfurt, Germany,
22-25 September

[Pinto, 04] M. Pinto, L. Fuentes, J.M. Troya. A Dynamic Component and Aspect Oriented
Platform. The Computer Journal, Vol. 48, number 4, Pp. 401-420, 2004

[Sousa, 03] J.P. Sousa, D. Garlan. The Aura software Architecture: an Infrastructure for
Ubiquitous Computing. Technical Report. CMU-CS-03-183, 2003

[Szypersky, 02] C. Szypersky, Component Software. Beyond Object-Oriented Programming,
Addison-Wesley, ACM press, 2002

[Young, 05] T. Young, G. Murphy. Using AspectJ to Build a Product Line for Mobile Devices.
Demonstration in Aspect Oriented Software Development Conference, Chicago, Illinois,
United States of America, March 16

251Fuentes L., Jimenez D., Pinto M.: Development of Ambient Intellignece ...

