
POCA : A User Distributions Algorithm in Enterprise

Systems with Clustering

Ping-Yu Hsu

Department of Business Administration, National Central University, Taiwan

pyhsu@mgt.ncu.edu.tw

Ping-Ho Ting

Department of Hospitality Management, Tunghai University, Taiwan

ding@thu.edu.tw

Abstract: As enterprises worldwide race to improve real-time management to im-
prove productivity, customer services and flexibility, huge resources have been invested
into enterprise systems (ESs). All modern ESs adopt an n-tier client-server architec-
ture, which includes several application servers to hold users and applications. As in
any other multi-server environment, the load distributions, and user distributions in
particular, become a critical issue in tuning system performance.

In stateful ESs, a user who logs onto an application server and stays connected to the
server for an entire working session, which can last for days, evokes each application.
Therefore, admitting a user onto an application server affects not only current but also
future performance of that server. Although the n-tier architecture may involve web
servers, there is little in the literature in Distributed Web Server Architectures that
considers the effects of distributing users instead of individual requests to servers.

The algorithm proposed in this paper gives specific suggestions in user distributions and
the minimal number of servers required based on the application reusability threshold.
A heuristic version of the algorithm is also presented to improve the performance. The
paper also discusses how to apply association rules to predict new user behavior when
distributing users in the run-time. The distributions recommended by the algorithms
are compared against the Round-Robin distributions on a set of real data derived from
a mid size company. The result shows that the user distributions suggested have better
performance than Round Robin distributions.

Keywords: Clustering, User Distribution, Profile, Load Balancing, Enterprise

Systems

Category: H.3.4 H.2.8 H.3.3 H.2.4 H.1.2 K.6.4

1 Introduction

As enterprises world-wide strive to reduce time and costs spent in dealing with

customer enquires and request, large amount of resources have been invested

into developing, purchasing, and implementing Enterprise Resource Planning

(ERP), Customer Relationship Management (CRM), Supply Chain Management

(SCM), and all sorts of other enterprise systems (ESs). Due to different design

objectives, ESs have various functionalities, but all modern ESs share a common

IT foundation, namely, the n-tier client-server architecture. This architecture has

Journal of Universal Computer Science, vol. 12, no. 2 (2006), 160-186
submitted: 12/1/05, accepted: 15/7/05, appeared: 28/2/06 © J.UCS

a database server in the storage layer, multiple application servers in the service

layer, several web servers in the interface layer and browsers or other access

devices in the presentation layer. Figure 1 shows a sample n-tier architecture.

In this style of architecture large number of programs are held and executed

within the application servers. When users log onto a system, they either select

an application server or they are being assigned to one by the system.

Figure 1: The N-Tier Client-Server Architecture

As in any OLTP system, ES users have low tolerance toward slow system

responses. If a system responds to data entries or queries too slowly, users often

lose patience and complain about the lack of suitable service. Yet, the number

of ES users is growing for most enterprises as the number of business processes

incorporated into ESs has increases dramatically. Therefore, keeping response

time under control is a vital issue for most system administrators.

When memory shortage or CPU speed dampen down a server response, two

approaches, namely, scale-up and scale-out, can improve the performance. With

the scale-up approach, more memories or CPUs are installed on the same server

to alleviate the constraints. With the scale out approach, a new server is installed

to reduce the loads on the original servers and thus improve the performance. In

general, the former approach costs less money and requires less effort to maintain

the systems. However, enterprises may take the latter approach for the reason

161Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

of high availability, hardware limitation, or lack of hardware compatibility. An

extra server can reduce the risk of system shut down if one of the servers fails and

thus increases the system availability. All servers have limitations on the sizes of

memories and numbers of CPUs that can be installed on a machine and no new

components can be installed when the limitation is met. Since computer hard-

ware phased out quickly, organizations may adversely find that no compatible

memories and CPUs can be installed with the existing hardware.

When an ES has multiple application servers, distributing users with similar

behaviors to the same application servers plays an important role in tuning

system performance1. In a stateful system, each user’s requests during a logging-

on session are directed to the same application server. In enterprise systems, a

logging on session may last for an entire working day. Therefore, user assignments

have long-term impact on system performances for stateful application servers

comparing to stateless application servers, which may assign each request to a

different server.

The most important piece of the algorithm is the POCA(Profile Oriented

Clustering Algorithm) algorithm, which partitions users into groups within the

patterns of accessed transaction sets. The algorithm is novel in finding all clusters

satisfying a given threshold instead of finding a number of locally optimized

clusters. The cluster algorithm is also special in partitioning data made by sets

of categorical data, instead of data points marked with Manhattan distances.

A heuristic version of POCA is also proposed to improve the speed of user

clusterings.

The research procedure is shown in figure 2. The procedure starts with col-

lecting user profiles from an enterprise system. The profile is consisted of a set of

transactions accessed by users. The transactions that are accessed frequently are

labeled as regular transactions in the second step. The frequencies are compared

against profile support threshold and user support threshold. The profile support

threshold is used to screen transactions that are seldom used by all users and

user support threshold is to find transactions which are accessed frequently by

each single user. The regular transactions are further analyzed to form associ-

ated regular transaction in the third step with confidence threshold. Associated

regular transactions are designed to predict the behavior of new and infrequent

users who do not have enough records in the user profile. In the distribution

phase, regular transactions are used to cluster users with two naval algorithms,

namely POCA and HPOCA. The clusters formed by POCA require an extra

step to form pick distributions which consists of the minimum number of clus-

ters A hybrid distribution mechanism is also proposed to distribute users with

or without patterns during the run-time.

1 An application in an ES corresponds to an atomic and unbreakable transaction. In
this paper, transactions and applications are used interchangeably.

162 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

Figure 2: The Procedure of the Research

To verify the distribution results, a four-week user access logs were extracted

from a mid size company. Three weeks of the data were used to form clusters and

the forth week of the data were used to verify the effectiveness of the distribution.

The effectiveness was measured against round-robin user distribution in terms of

application buffer hitting ratios and entropies of user applications in each server.

To explain the algorithms and related procedures, the rest of the paper is

organized into following sections. Applications are grouped into large itemsets

with a traditional Apriori algorithm[11] to find frequent patterns. The process

is explained in section 2. The association rules between single transactions and

patterns are also discovered in the section. A group of users forms a cluster if

163Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

the group’s Application Reusability (AR) exceeds a given threshold. AR is a

similarity measure of user patterns grouped in the same set. The definition of

AR and related properties are proved in section 3. The algorithm of POCA is

explained in section 4. POCA computes all possible clusters and pick the ones

with the properties of disjoined and comprehensive to form distributions. The

distributions with the fewest number of clusters are returned to system admin-

istrators. POCA are proved ends in finite steps, and the distributions generated

from POCA are complete and sound in section 5. A heuristic version of POCA

are shown in section 6. A hybrid dispatching algorithm to distribute users in

run-time is shown in section 7. The comparison between Heuristic POCA and

Round-Robin based on real data in terms of buffer hitting ratio and application

entropy are shown in section 8. A review of distributed web server architectures

and clustering of categorial sets and other clustering technique are shown in sec-

tion 9. Conclusion and possible extension of POCA are discussed in section 10.

2 Finding Users’ Regular Transactions

To record system and user statuses, most enterprise systems include various

tracing mechanisms. Among the various recordable data are user sessions and

applications executed in session. We defined one day to be a session. We make

up the transaction sets used by users per day to be a session. For the purpose

of the paper, these data are transformed into user profiles. A user profile is a set

of 〈 user-id, transaction-set 〉, where user-id is the account name of a user and

transaction-set is the set of transactions accessed by the user in a session.

A sample user profile is shown in Table 2, which records the sessions of ten

users. User 1, 3 and 6 have more than one sessions in the profile. User 1 access

transaction A, B, E, F, and H in one session and A, B, E, and F in another

session.

As careful readers may have found that the transactions accessed by user 10

in the profile shown in Table 2 is special because most of his/her transactions

are unique and are not shared by others. Transaction G of users 2 in the first

session is also unique. If the rarely used transactions are all stored in buffers,

large sizes of buffers are needed and the utilization rates of these buffers are low.

Therefore, only regularly accessed transactions are considered in AR. A user’s

regularly accessed transactions,termed as regular transactions, are transactions

which occur in enough number of sessions in the corresponding user profile and

are accessed often enough by the user.

Definition 1 Given a user,u, a user profile, U, and a transaction, t, t is

one of u’s regular transaction in U if

|{s|t ∈ s.transaction-set, s ∈ U}|
|U | ≥ profile support threshold, and

164 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

User-Id Transaction-Set

1 {A, B, E, F, H}

1 {A, B, E, F}

2 {A, B, E, F, G}

2 {A, B, E, H}

3 {A, B, E}

3 {B, E, F, H}

4 {I, J, K, L}

5 {B, I, J, K}

6 {B, I, J, L}

6 {B, I, J, K}

7 {O, P, Q, R}

8 {O, P, Q, R}

9 {P, Q, R, K}

10 {W, X, Y}

Table 1: User Profiles

|{s|s ∈ U, s.user-id = u ∧ t ∈ s.transaction-set}|
|{s|s ∈ U, s.user-id = u}| ≥ user support threshold.

Profile support threshold and user support threshold are given by system ad-

ministrators. The higher the threshold, the fewer the regular transactions users

have.

To compute or estimate regular transactions for each user, three steps are

employed. The first one computes large itemsets with any existing set oriented

pattern discovering algorithm, such as [5, 13]. The large itemsets computed from

the algorithms have supports higher than the profile support threshold in the

associated user profile. In the second algorithm, each large 1-itemset is examined

against each user to form users’ regular transactions. For new users who do not

have accumulated enough entries to computer personal regular transactions, the

paper propose to predicate their regular transactions with the association rules

computed with known algorithms.

Figure 3 shows the stages in computing regular transactions.

Any set oriented minding technology that can find large itemsets with sup-

ports higher than a given profile support threshold can be used. In the section,

traditional Apriori-like algorithm [5] is example to explain the process of finding

transaction patterns. The algorithm includes two phases: candidate generation

and pruning phases. The candidates surviving the pruning phase are termed as

large itemsets. Candidates are generated and pruned level by level. In the first

level, each transaction in the user profile is treated as a candidate. Each can-

didate is checked against the user profile to count the number of transaction

165Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

Figure 3: The Stages of Computing Regular Transactions

sets which include the candidate. Candidates with counts under a threshold are

pruned and the remaining candidates are large itemsets. Large itemsets are then

"joined" to form next-level candidates. The process continues until no new large

itemsets are found.

If profile support threshold is set at 20%, the set of level 1 large itemsets of

the sample user profile is {A, B, E, F, H, I, J, K, P, Q, R}; the level 2 set is {AB,

AE, AF, BE, BF, BH, BI, BJ, EF, EH, IJ, IK, JK, PQ, PR, QR}; the level 3 set

is {ABE, ABF, AEF, BEF, BEH, BIJ, IJK, PQR}; the level 4 set is {ABEF}.

Therefore, the set of patterns generated from the Apriori-Like Algorithm is {A,

B, E, F, H, I, J, K, P, Q, AB, AE, AF, BE, BF, BH, BI, BJ, EF, EH, IJ, IK,

JK, PQ, PR, QR, ABE, ABF, AEF, BEF, BEH, BIJ, IJK, PQR, ABEF}.

The second step in computing users’ regular transactions is to map transac-

tions in large itemsets to users. A transaction is a user’s regular transaction if

it happens in enough number of the user’s sessions. One obvious way to do so is

taking every Level 1 large itemsets and check it against each users’ transaction

sets. The itemset is one of the user’s regular transaction if the item occurs in

enough number of the user’s transaction sets.

Assume the user support threshold is set at 40%, the regular transactions of

the running example is shown in Table 2.

New users do not have any records in the user profiles and do not have associ-

ated regular transactions. However, dispatching programs still need to dispatch

them in run-time. Therefore, help for dispatching programs to guess the patterns

of new users are in order.

If each new user provides one of the transactions she/he wishes to access after

log on, the dispatching program can check if the transaction has high association

with any large itemsets. If so, the union of the large itemsets denote the user’s

166 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

User-Id Regular Transactions

1 {A, B, E, F, H}

2 {A, B, E, F, H}

3 {A, B, E, F, H}

4 {I, J, K}

5 {B, I, J, K}

6 {B, I, J, K}

7 {P, Q, R}

8 {P, Q, R}

9 {P, Q, R}

10 ∅

Table 2: Regular Transactions

Predicted Regular Transaction set.

Definition 2 The Associated Regular Transactions of a transaction, t, un-

der a set of large itemsets, P , a user profile, U , is

AT(t) = Σp∈P ∧ t∈pCPU (p|t) ≥ confidence threshold,

where CPU (p|t) = |{s|s∈U,p∈s.transaction set}|
|{s|s∈U,t∈s.transaction set}|

By setting the confidence threshold at 80%, the Associated Regular

Transactions of transactions in large 1-itemsets in the running example is

shown in Table 2.

Since the algorithms needed to find the Associated Regular Transactions are

trivial when large itemsets are ready. The paper does not include the algorithm

either.

3 The Definitions of Similarity Measure, Clusters, and
Distributions

Load balancing programs utilizes the benefit of multiple servers at the cost of

wasting memories in keeping duplicated programs and data. In sophisticated ap-

plication servers with hundreds of people on-line, the memory needed for trans-

actions are considerable [2]. Therefore, users with similar regular transactions

should be grouped into one cluster, which are then assigned to a server[1, 14].

This section defines the measure of similarity and proves related properties. For-

mal definitions of clusters and distributions are also included.

167Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

Transaction PT Confidence

A ABE 100%

B AB 100%

E ABE 83%

F BEF 100%

H BEH 100%

J IJK 100%

K IJK 100%

P PQR 100%

Q PQR 100%

R PQR 100%

Table 3: Associated Regular Transactions with Confidence Threshold at 80%

Definition 3 A Cluster is a set of users that share similar regular trans-

actions.

The similarity of users in a cluster is measured by AR, Application Reusabil-

ity. The AR of a transaction in a cluster is defined as the percentage of users

in the cluster evoking the transaction, and the AR of a cluster is defined as the

average AR of transactions in the cluster.

Definition 4 – The Regular transactions, T, of a user, u are defined as

T(u)

– AR of a transaction, t, in a cluster, c, is defined as

R(t, c) =
|{u |u ∈ c and t ∈ T (u)}|

|c|
.

– The AR of a cluster, c, is defined as the average AR of regular trans-

actions in the cluster.

R(c) =

∑
t∈T (u) and u∈c R(t, c)

|{t |u ∈ c and c ∈ T (u)}| ∗ |c|
.

With |c| as one of the denominators, AR implicitly favors cluster with few num-

ber of users

Lemma 1 Every entry in an AR has a value between 0 and 1.

168 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

Proof

ARs are positive and therefore are always greater than or equal to

0. AR of a transaction, t, in a cluster, c, is

R(t, c) =
|{u |u ∈ c and t ∈ T (u)}|

|c|
≤ {u |u ∈ c}

|c|
≤ 1

Cluster AR is the averages of Transaction AR and therefore also

has values between 0 and 1.

�

Lemma 2 Let a cluster, c, has the AR of p
u∗q where p is the times of regular

transactions being accessed by users in the cluster, u is the number of users

in the cluster, and q is the number of different regular transactions in the

cluster. If a new user is added to the cluster with n regular transaction

accesses and m of them are different from the existing transactions then

the new AR is p+n
(u+1)∗(q+m) .

Theorem 1 Conditional Anti-Monotonicity of AR R(c) decreases with new

user added to c, if the number of transactions accessed by the new user

is fewer than or equal to the average number of transactions accessed by

original users.

Proof

if c has an AR of p
u∗q where u is the number of users in the server,

q is the number of transactions in the cluster, and p is the times

of transactions being accessed by users in cluster c. A new user is

added to the server with n transaction accesses; m of them are new

transactions. , the new AR should be p+n
(u+1)∗(q+m) .

p

u ∗ q − p+ n

(u+ 1) ∗ (q +m)
=

p ∗ (u+ 1) ∗ (q +m)− (p+ n) ∗ u ∗ q
u ∗ q ∗ (u+ 1) ∗ (q +m)

=
p ∗ u ∗m+ p ∗ q + p ∗m− n ∗ u ∗ q

u ∗ q ∗ (u+ 1) ∗ (q +m)

=
m ∗ (p/q + p/uq) + (p/u− n)

(u+ 1) ∗ (q +m)

Therefore, p
u∗q − p+n

(u+1)∗(q+m) ≥ 0 if p/u ≥ n. �

169Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

Therefore, R(c) has the property of Conditional Anti- Monotonicity, which al-

lows POCA to prune hapless user groups.

Definition 5 – A cluster whose AR exceeds a given ARThreshold is called

qualified cluster.

– A set of clusters is comprehensive under a user profile, U, if the union

of the clusters includes all and only all users with regular transactions.

– A set of clusters is disjoined if the intersection of any two clusters in

the set is empty.

– A set of qualified clusters is a distribution under a user profile, U, if

they are comprehensive under U and disjoined.

The clusters of {1, 2, 3}, {4, 5, 6}, and {7, 8, 9} have ARs of 100%, 11/12, and

100%, respectively, under the running example. If the ARthreshold is set at 55%

then all three are qualified clusters. The three clusters are both comprehensive

and disjoined in the example, and therefore form a valid distribution.

4 Clustering and Distributing by POCA

POCA returns distributions that satisfy administrator constraints and has the

fewest number of clusters, and the rules associating single transactions to pre-

dicted regular transactions. The constraints include an AR threshold, min-

support, rule confidence, and coverage threshold. The recommendations guaran-

tee that when all frequent users logging on the system and accessing all regu-

lar transactions, each server still has an AR above the given ARThreshold (AR

Threshold). Information included in the recommendations are number of servers,

ARs, needed units of user, transaction, and data buffers.

POCA relies ≥U , which is a chain, to hold Conditional Anti-Monotonicity

and to form each user combination at most once.

Definition 6 Let S be the set of users in a user profile, U. The order ≥U

is defined on S such that for any u1, u2 ∈ S, u1 ≥U u2 if

– T (u1) > T (u2), or

– T (u1) = T (u2) and user-id of u1 ≤ user-id of u2.

Theorem 2 ≥U is a chain.

Proof

For all x, y, z ∈ user set of U ,

– x ≥U x, since the user-id of x are the same,

170 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

– x ≥U y and y ≥U x imply that x and y have the same user-id

and therefore x = y,

– x ≥U y and y ≥U z imply one of the four cases,

1. T (x) > T (y) and T (y) > T (z), imply T (x) > T (z) and there-

fore x ≥U z,

2. T (x) > T (y) and T (y) = T (z), imply T (x) > T (z) and there-

fore x ≥U z,

3. T (x) = T (y) and T (y) > T (z), imply T (x) > T (z) and there-

fore x ≥U z,

4. T (x) = T (y) and T (y) = T (z) and user-id of x ≤ user-id of y

and user-id of y ≤ user-id of z imply user-id of x ≤ user-id

of z and therefore x ≥U z,

– x ≥ y or y ≥ x since even if x and y have the same value of T ,

they have different user-ids, which are comparable.

Therefore, ≥U is a chain.

�

POCA includes two major steps in computing the recommendations – com-

puting the set of qualified clusters and selecting clusters to form server distribu-

tion. The main steps are listed as following:

Initialization: for each user with regular transactions, turns the user into a

single-user cluster. These clusters form C1, the 1-user cluster set.

Composing Ci+1 from Ci: Conditional join Ci with C1 to form Ci+1. A cluster

ci from Ci is added by one user in c1 from C1 if two criteria are met. The first

one states that the user from c1 has lower rank in ≥U than any user in ci.

The second criterion asserts that the new cluster has an AR value exceeding

the given threshold.

Repeating Last Step Until No New Clusters are Generated: If Ci+1 is empty

then POCA has found all qualified clusters in C1, . . . , and Ci; Otherwise,

POCA has to repeat the last step.

Selecting Clusters to Form Distributions: Finding the fewest number of qual-

ified clusters to form distributions. The algorithm includes a loop to check

if i clusters can form a distribution where 1 ≤ i ≤ C1. The loop is aborted

when distributions are found.

171Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

In the running example, the first cluster set is formed by turning each user

into a cluster. The result of C1 is {{1}, {2},{3},{4},{5},{6},{7},{8},{9}}

If setting the AR threshold at 55%, C2, the set of 2-user clusters, is equal to

the join of C1 and C1. C2 = {{1, 2}, {1, 3}, {2, 3}, {5, 6}, {5, 4}, {6, 4} {7, 8},

{7, 9}, {8, 9} }. C3 is the conditional join of C2 and C1. C3 = {{1, 2, 3}, {4, 5,

6}, {7, 8, 9}}. C4 is the conditional join of C3 and C1. C4 and associated ARs

are listed in Table 4. C5 is empty since potential 5-user clusters have ARs lower

than 55%.

Four-Item Cluster AR

{1, 2, 3, 7} 18/32

{1, 2, 3, 8} 18/32

{1, 2, 3, 9} 18/32

Table 4: The 4-User Cluster Set

Now that all cluster sets are ready, it is time to select clusters to form user

distributions.

The selection continues by examining 1-cluster distribution, 2-cluster distri-

bution, etc. In the running example, 1-cluster and 2-cluster distributions are

empty since there are no 9-user and 5-user clusters. On the other hand, 3-cluster

distributions have various alternatives and are all returned to system adminis-

trators. 3-cluster distributions and corresponding ARs are listed Table 5. The

performance issues of set unions and intersections have been intensively studied

by many researches and is not the main topic of the paper. POCA just picks one

to examine the comprehensiveness of clusters.

User Distributions ARs

{1, 2, 3}, {4, 5, 6}, {7, 8, 9} 100%, 11/12, 100%

{1, 2, 3, 7}, {4, 5, 6}, {8, 9} 18/32, 11/12, 100%

{1, 2, 3, 8}, {4, 5, 6}, {7, 9} 18/32, 11/12, 100%

{1, 2, 3, 9}, {4, 5, 6}, {7, 8} 18/32, 11/12, 100%

Table 5: 3-Cluster Distributions and ARs

The algorithm of POCA is listed in Figure 4. The algorithm returns all the

distributions that satisfy the requirements and let system administrators to de-

cide which distribution he/she prefers.

172 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

Input: U �User Profile,

MinProfileSupport �Profile Support Threshold,

MinUserSupport �User Support Threshold ,

ConfidenceThreshold � Threshold of Associating Transactions to Large

Itemsets ,

ARThreshold �Threshold of Application Reusability,

Output: UD (User Distributions)

PR (Association Rules of Predicting Patterns from Transactions)

P = Apriori(U, MinProfileSupport) � finding patterns

T = FindRegular((P, U, MinUserSupport) � Definition 1

PR = FindPredictedTransactions(P,ConfidenceThreshold,U) � Definition 2

�Transforming a set of users with regular transactions to C1

C1 = {{u.User-id} | u ∈ U and T (u.User-id)
= ∅}
�compute Ci+1 from conditional join of Ci and C1

For i = 1; Ci
= ∅; i++ {

Ci+1 = ∅
For each c ∈ Ci

For each u1 ∈ ∪C1 {

If ∀u ∈ c, u ≥U u1 then

If R(c ∪ {u1}) ≥ ARThreshold then

Ci+1+ = (c ∪ {u}) }}
�Building a Cluster Set

C = ∅
For i= 1; Ci
= ∅; i++

C = C ∪ Ci

� Combining clusters to form distribution

UD = ∅
For i = 1; i ≤ |C1| and UD = ∅; i ++ {

For each combination of c1, c2, . . . , ci ∈ C

If
∑

(|c1|, . . . , |ci|) = |C1| and ∪(c1, . . . , ci) = ∪C1 then

UD ∪= {〈c1, . . . , ci〉, 〈|c1|, . . . , |ci|〉,
〈| ∪ T (c1)|, . . . , | ∪ T (ci)|〉,

Return UD, PR

End Algorithm

Figure 4: Profile Oriented Clustering Algorithm

173Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

5 The Correctness of POCA

In this section, we prove that POCA ends in finite steps, and the distributions

generated from POCA are complete and sound. That is, all distributions satisfy

system administrators’ requirements are generated and all generated distribu-

tions are correct. By requirements, we mean that all distributions are composed

of the fewest number of clusters, clusters are comprehensive and disjoined, and

each cluster has an AR above the designated threshold.

Theorem 3 POCA stops in finite steps.

Proof

The proof of termination is straightforward. Ci+1 generated in the

cluster generation loop is a set of (i+1)-user clusters. Each loop

increases one to i. In the worst case, the loop iterates |C1| times

and produces the set of C|C1|+1, which must be empty. The empty

set leads to the termination of the cluster generation loop.

�

Theorem 4 POCA returns only sound distributions.

Proof

The proof of soundness is trivial since the selection criteria in the

cluster generation loop finds only qualified clusters with AR exceed-

ing ARThreshold. The distribution generation loop starts from 1 to

find the fewest number of clusters needed to form a distribution.

The if-condition in the loop asserts that clusters in distributions

must be comprehensive and disjoined. Therefore, distributions re-

turned must be correct.

�

Theorem 5 POCA returns all correct distributions.

Proof

The distribution generation loop produces all combinations of clus-

ters which are comprehensive and disjoined and include the fewest

clusters. Therefore, the completeness of POCA lies on the com-

pleteness of clusters generated in the cluster generation loop.

For each cluster ci, which has i users and i > 1, ci can be seperated

into two subsets ci−1 and c1 such at the former subset has i − 1

users and the latter has 1 user and ∀u ∈ ci−1, u1 ∈ c1, u ≥U u1, since

≥U is a chain.

174 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

∀u ∈ ci−1, u1 ∈ c1, , c = ci−1∪c1, u ≥U u1

⇒ T (u) ≥ T (u1)

⇒ Avg(T (u)) ≥ T (u1)

⇒ R(ci−1) ≥ R(ci)

Therefore, for each cluster with more than one user, the AR of the

sub-cluster that excludes the least element in the cluster is higher

than or equal to the AR of the complete cluster. With the same

argument, if a cluster has an AR lower than the ARThreshold, all

of its super-clusters formed by adding users with ranks lower than

any user in the cluster also have ARs lower than the ARThresh-

old. Therefore, POCA generates complete clusters with ARs above

ARThreshold.

�

6 Performance Improvement of POCA

In section 4, POCA potentially examines all possible combination of users with

regular transactions in the associated user profile. If the number of users is k,

the complexity of POCA is O(kk) in the worst case. By incorporating Chain

into POCA, the complexity in the worst case can be reduced to O(2k). In this

section, we propose a Heuristic POCA, namely HPOCA to further reduces the

complexity.

The HPOCA uses a greedy method to distribute users. HPOCA tries to

squeeze as many users as possible into a cluster by finding the user that can

reduce the least amount of AR into a cluster. The main approach is listed as

following:

Initialization: Sorting users with regular patterns into a list, L, in the de-

scending order of numbers of transactions. Taking the first user from L and

form the first cluster, C1.

Composing Ci from L:

while L is not empty

Retrieve a user,u, from L such that R(Ci ∪ {u} has the greatest value.

If R(Ci ∪ {u}) ≥ ARThreshold then add u to Ci and delete u from L.

Else

i = i +1

Ci = L(1) and delete L(1).

End If

End While

The clusters found by HPOCA constitute a distribution.

175Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

7 An AR Based Hybrid Dispatching Approach

Each ES typically has a dispatching program listening to networks and accepts

user requests. The program resides an application server, intercepts user re-

quests, and direct them to application servers.

Assuming the system administrator in our running example picks the distri-

bution of {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. The case of user 1, 2, 4, 7, and 8 have

logged on and user 5 and 6 are waiting in the web server is depicted in Figure 5.

Figure 5: Users are Distributed through a Dispatching Program

The distributions suggested by POCA bases on frequent patterns in user

profiles. For new and infrequent users, POCA does not suggest their distributions

directly but returns association rules, PR (Prediction Rules), in the output to

help dispatching program make the decision.To apply the rules, a new user only

needs to provide a transaction he/she plan to evoke after logging on the ES. With

the association rules, a dispatching program can distribute a user according to

its associated predicted regulation transactions. If the first transaction does not

lead to any predicted regular transactions, then the single transaction works as

the basis for dispatching.

An AR Based Hybrid dispatching algorithm distributes users while keeping

the AR of each server as high as possible. In the dispatching procedure, users

176 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

are distributed to a server by one of the three alternatives:

– If a regular user logs on, then send the user to the recommended server and

return to listening mode.

– If an infrequent user logs on with a transaction, then find the predicted

regular transactions implied by the transaction. If no entry matched then

the single transaction is treated as the predicted regular transaction.

– Compute the potential new AR in each server with the addition of the user

with predicted regular transactions. Assign the user to the server with the

highest AR, and update the AR in the corresponding server.

The distribution in the running example has ARs of 100%, 11/12, and 100%

in the three servers. If a new user with user-id 10 wishes to log on the system

and submits an A as the first transaction then the user has a assumed predicted

regular transaction of ABE, according to Table 2. The ARs after adding ABE

to the three servers would be 18/20, 14/24, 12/24. Therefore, the new user is

distributed to the first server, and the distribution becomes {1, 2, 3, 10}, {4, 5,

6}, {7, 8, 9}.

8 Simulation and Comparison

Several experiments are conducted on real data collected from a mid size ma-

chinery company based in Taichun, Taiwan. The company has their SAP system

up and running since 2002. Five weeks of user access logs are extracted from the

system to perform the experiment. Four weeks of the data are used to suggest dis-

tributions. The fifth week of data is used to evaluate the quality of the suggested

distributions. The qualities of the user distributions of HPOCA are benchmarked

against the qualities of user distributions based on Round-Robin distributions,

with which users are distributed to servers according to the logging-on orders.

The qualities of distributions are measured by Application Hit Ratios and

Entropies. The Application Hitting Ratio of a server is defined as the number of

transaction accesses hitting a stored version of the transactions in the memory

over the total number of transactions accessed in the server. The Application Hit

Ratio of a distribution is the average Application Hit Ratios of servers suggested

by the distribution. When an application is accessed in a server and yet does not

have a stored version, the transaction is stored into the memory buffer. When

memory buffers are full, the slot with the eldest application is emptied to store

the latest application. The entropy of a server is defined as −∑
pi log2(pi), where

pi is the probability of transaction i being accessed by users in the cluster. By

computing the entropy of each server, we can measure the similarity of regular

patterns of users allocated to the server.

177Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

The Experiment is implemented on Matlab 6.1 and executed on a Pentium

4-1.8 GHz Microsoft XP Server system with 256 Megabytes of main memory.

With the HPOCA, distributions can be suggested within one minute.

In the experiment, 1,853,689 access logs are collected, with which 56 users

are found to have regular patterns when the user support and profile support

thresholds are set at 0.3 and 0.1, respectively. The average number of different

transactions in regular patterns is 7.7.

Five experiments are performed by setting AR thresholds at 0.6, 0.5, 0.4, 0.3,

and to 0.2, respectively. The number of servers suggested by HPOCA in each

case is shown in Figure 6. The suggested numbers of machines are 5, 4, 3, 2, and

1 for the five AR thresholds.

Figure 6: Numbers of Servers Suggested with HPOCA

The hitting ratios of the five user distributions are further analyzed against

the sizes of memory buffers. In each distribution, hitting ratios against buffers

with sizes ranging from 15 to 28 are compared. The hitting ratios of distributions

suggested by HPOCA under various memory sizes are compared against the

result derived from Round Robin Distribution. The comparisons are shown in

Figure 7, 8, 9, 10. The Figures show that HPOCA has better performance than

Round-Robin in each case.

The qualities of distributions suggested by HPOCA and Round-Robin are

also contrasted in the dimension of entropies. The comparison is shown in Fig-

ure 11 Readers can again find that HPOCA beats Round-Robin in all five cases.

178 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

Figure 7: Hitting Ratios of Distributions of HPOCA and Round Robin in Two

Server Scenario

Figure 8: Hitting Ratios of Distributions of HPOCA and Round Robin in Three

Server Scenario

9 Related Work

9.1 Web load distribution

With the Internet rush, many researches have been devoted to distributing user

requests with Distributed Web Server Architecture to improve the performance

of web servers. Depending on the locations where request distributions happen,

these researches are classified into client-based, DNS (Domain Name Server)-

based, dispatcher-based, and server-based by [24, 7, 6]. The client-based archi-

tecture distributes requests from client sites and requires the browser software

to know the location of distributed servers. This approach adds work loads to

179Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

Figure 9: Hitting Ratios of Distributions of HPOCA and Round Robin in Four

Server Scenario

Figure 10: Hitting Ratios of Distributions of HPOCA and Round Robin in Five

Server Scenario

browser software and may even increase network traffic when browsers querying

for distributed locations of web servers. The DNS-based architecture translates

symbolic site names into IP addresses according to predefined algorithms, such as

Round Robin approach. The architecture may not always get the desired results

since some other DNSs on the net may cache a fouled version of the transla-

tions. Dispatcher-based architecture employs a central dispatchers as a gateway

to distributed web servers. All requests are directed to the central server that

may itself becomes a bottleneck in a heavily loaded network. The server-based

architecture cures the shortfalls of dispatcher-based architecture by having all

web servers process request distributions. Each server has the knowledge of loads

and content in all other servers and dispatches requests accordingly. The archi-

180 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

Figure 11: Entropies of Distributions Suggested by HPOCA and Round Robin

tecture requires extra work and loading in the web servers. The dispatcher- and

server-based architectures can be combined to form a two-level architecture in

which requests are distributed to a cluster of web servers by the dispatcher and

the requests are further routed by servers in the cluster [27].

Two kinds of granularity are proposed to distribute data in the architecture,

namely, basic component of web pages and sets of web pages. Instead of storing

complete web pages in distributed servers, [3, 19, 20] propose to split web pages

into several weblets that are components of web pages and can be executed inde-

pendently to generate data in pages. When generating web pages, only weblets

need to be recomputed, static parts of pages can be fetched from caches directly.

With careful distributing of weblets, systems can guarantees the QoS (quality of

service) of page generation. Ng et al. argue that distributed web servers do not

need to duplicate entire content in different servers since only a small portion

of web pages are requested in each session [21]. Web pages regularly queried in

a session are grouped into a migrating unit that is distributed to a web server.

The dispatch is accomplished in a two-level distributed web server architecture.

The central dispatcher distributes a session to a server according to the first

requested page and the loads in related servers. Every subsequent request is di-

rected to the designated server until a requested page is not held in the server.

In this case, the server redirects the requests to another server that holds the

page.

9.2 Clustering

Since current Http protocol is stateless, each request is routed independently

to a web server[6]. All of the above researches assume that requests can be in-

dependently route to different servers, where as in the application servers of

181Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

ESs, requests from the same users have to be routed to the same server. POCA

is a clustering algorithm, it is also related to clustering techniques. Clustering

algorithms partition data points into clusters so that the clusters exhibit good

characteristics, such as high similarities, short inter-distances, etc. Clustering

literatures are classified into partitioning clusterings and hierarchical clusterings

[17, 9, 12]. If k clusters are needed, partitioning Clustering choose k centroids

initially and gradually tune the constituents of each clusters or centroids with

some criteria function until a locally optimized characteristic is met. Hierarchical

clusterings can be further divided into agglomerative and divisive clusterings. As

the name suggested, agglomerative clusterings gradually merge smaller clusters

into larger clusters until k clusters are found. Divisive clustering, on the other

hand, splits larger clusters into smaller clusters until k clusters are found. POCA

is more close to agglomerative although it does not have predefined cluster num-

bers.

Many data type arising from cluster applications can be modeled as bipar-

tite graph[8, 18, 16] examples include users and ranked items in collaborative

recommendation systems[3, 4], gene and patient in clustering of microarray[22,

26, 15, 23, 25]. Bipartite clusters treat two types of objects connected with a

weighted bipartite graph as the first class citizens and try to find the clusters

that group objects from the two types in such a way that the summation of the

weights of the links connecting objects in different clusters are minimum. The

user allocation problem tackled by POCA treats users as the first class citizens,

transactions as properties of users and the number of servers needed as the num-

ber of clusters. Hence, clusters of bipartite graphs cannot be directly applied to

solve the issues.

Most clustering algorithms employ Euclidean or Manhattan distances to com-

pute similarity. The shorter the distances the similar the data points in the clus-

ters are. However, Euclidean distances are not ideal for clustering categorical

data. For example, to cluster transaction sets with Euclidean distances, each set

has to be translated into a sparse binary vector. In the running example, the sec-

ond session of user 1, {A, B, E, F} is translated into 〈1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0
, 0, 0〉. The huge number of zeros can easily skew the distances between transac-

tion sets. For example, a transaction set of {A} is translated into 〈1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0〉 and {I} is translated into 〈0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}〉.
Since {A} and {I} have a distance of

√
2 , and {A} and {A, B, E, F} have a

distance of
√
3 , the former pairs has shorter distance than the latter. The con-

clusion violates the general perception of set operations. Therefore, Euclidean

distances are not ideal for clustering categorical data.

Many set oriented algorithms use Jaccard coefficient [17] to compute dis-

tances. Given two sets T1 and T2, their Jaccard coefficient is T1∩T2
T1∪T2

. However,

Jaccard coefficient along cannot describe the number of elements in each cluster,

182 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

which are important to calculate the buffer efficiency. Another major work in

clustering categorical data is ROCK [10], which proposes to cluster transaction

sets based on links between nodes, which are composed by common neighbors

between any pair of nodes. A common neighbor of two transaction sets is a

transaction set sharing similar items with the two sets. ROCK puts two elements

into the same cluster if the count of common neighbors exceed certain threshold.

ROCK also has the same drawbacks as Jaccard coefficient. Hence, common cate-

gorial clustering technology is not suitable for clustering users in the application.

POCA is an agglomerative clustering algorithm that finds all clusters with

characteristic exceeding a given threshold and returns distributions with the

fewest of number of clusters. The reason for such a unique approach is that

in current status, some factors affecting system performances are difficult to

model and thus the optimized solutions provided by ordinary algorithms may

not best fit system administrators’ need. Therefore, providing a set of good

enough suggestions and related data may suit system administrators more.

10 Conclusion

Managers in enterprises often add users to ESs as they extend E-business prac-

tices to various parts of corporate operations. With the addition of each user, new

pressures on performances are brought upon the systems. Yet, system response

time is one of the most important factors in measuring user satisfactions.

To boost performance and increase system availability, organizations may em-

ploy several application servers. With multiple application servers in the scene,

distributing users with similar application requirements to the same application

servers can increase buffer utilization and improve system performance. Since

user sessions in an stateful ESs tend to cover entire working days, user profiles

should include all applications needed in typical working days.

To provide suggestions for the number of servers needed and distributing

users among the application servers, an algorithm named POCA is designed.

By taking user specified Application Reusability Threshold, POCA returns the

distributions with the least number of servers needed.

The procedure of POCA roots its theory on Application Reusability (AR),

which is applied in two levels – application and cluster level. The AR of an

application measures the probability of the application being accessed by users

in the same cluster. The AR of a cluster is the average ARs of all applications in

the cluster. A cluster with high AR values means users in the cluster share similar

applications. Therefore, POCA asks system administrators setting a threshold

to screen clusters without enough ARs.

Cluster level ARs have the property of Conditional Anti-Monotonicity, which

states that if the number of the transactions of a new user added to a cluster is

183Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

fewer than (or equal to) the average number of transactions accessed by existing

users then the AR of the new cluster is lower than (or equal to) the AR of the

original cluster. With the property, POCA prunes hopeless search branches and

stops the iterations when an empty cluster set is found.

By finding the least number of servers needed, POCA has the complexity

of 2k where k is the number of users with regular patterns. To speed up the

computation, the algorithm of HPOCA is also presented to heuristically derive

the distribution.

Although frequent users and regular transactions are stable in ESs, new users

are added to the systems from time to time. These users have no entries in user

profiles and are distributed by a hybrid dispatching program that distributes

frequent users according to a selected distribution and new users with dynamic

ARs. A transaction of the new user is checked to find its predicted regular

transactions. If an entry is found, the dispatching program associating the user

with the predicated transactions, otherwise, the single transaction is associate

with the user. The associated transaction is then used to compute which server

has the highest AR after accepting the user. The user is assigned to the server

with the highest new AR.

To measure the quality of distributions suggested by HPOCA several exper-

iments are conducted based on real data extracted from an ES system of a mid

size company. The qualities are measured by Application Hit ratios and En-

tropies of applications of users in the same servers. The quality of distributions

suggested by HPOCA are compared against Round Robin user distributions.

HOPCA’s results are better than that of Round Robin’s in both measurement.

Traditional load balance algorithms are classified into dynamic and static.

The former decides request distributions with static property of system config-

urations; the latter take into account current system situation in distributing

users. POCA extends the time line into future by considering a user’s regular

requirement at the point of user logs on.

Several issues require further studies, such as modeling user profiles with

sequences, dynamically updating user patterns, incorporating CPU and systems

loads into dispatching and distribution algorithms, and improving the efficiency

of POCA. Another extension is to investigate the possibility of building cluster

groups of servers. In the scenario, a logical cluster is supported by a disjoined

set of servers. In the run time, a dynamic load balance is activated to distribute

users logically allocated to one cluster by POCA to servers in the same group

based on the run time loading in the servers.

Acknowledgements

This study is supported by National Science Council, Taiwan, Republic of China,

through the Project No.92-2416-H-008-006. We would like to thank anonymous

184 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

referees for their invaluable comments on this work.

References

1. SAP AG. System R/3 Technicale Consultant Training 1 - administration, chapter
R/3 WorkLoad Distribution. SAP AG, 1998.

2. SAP AG. System R/3 Technicale Consultant Training 3 - Perf. Tuning, chapter
R/3 Memory Management. SAP AG, 1998.

3. Woo Hyun Ahn, Woo Jin Kim, and Daeyson Park. Content-aware cooperative
caching for cluster-based. The Journal of system and software, 69(1):75–86, 2004.

4. Y.Chen andJ.Wang and R.krovetz. Content-based image retrieval by clustering.
In In Proceedings of the 5th ACM SIGMM international workshop on Multimedia
information retrieval, pages 193–200, 2003.

5. R. Argawal and R. Srikant. Fast algorithms for mining associations rules. In
Proceedings of International Conference in Very Large Data Bases, pages 487–499,
1994.

6. H. Bryhni, E. Klovning, and O. Kure. A comparison of load balancing techniques
for scalable web servers. IEEE Network, 14:58–64, 2000.

7. V. Cardellini, M. Colajanni, and P.S. Yu. Dynamic load balancing on web-server
systems. IEEE Internet Computing, 3:28–39, 1999.

8. I. Dhillon. Co-clustering documents and words using bipartite spectral graph par-
titioning. In In Proceedings of the 7th ACM SIGKDD international conference on
knowledge discovery and data mining, pages 269–274, 2001.

9. R. O. Duda and P. E. Hard. Pattern Classification and Scene Analysis. Wiley-
Interscience Publication, 1973.

10. S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for cate-
gorical attributes. Information Systems, 25(5):345–366, 2000.

11. J. Han and M. Kamber. Data Mining: Concepts and Techniques, chapter Mining
association rules in large databases. Morgan Kaufmann Publisher, 2001.

12. J. Han and M. Kamber. Data Mining: Concepts and Techniques, chapter Cluster-
ing. Morgan Kaufmann Publisher, 2001.

13. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate genera-
tion. In Proceedings of ACM-SIGMOD International Conference on Management
of Data, pages 1–12, 2000.

14. J.A. Hernándes. The SAP R/3 Handbook, chapter Distributing R/3 Systems.
McGraw-Hill, 2 edition, 2000.

15. A. J. Holloway, R.K. van Larr, R.W. Tothill, and D.D. Bowtell. Options available
- from start to finish- for obtaining data from dna microarrays ii. Nature Genetics,
32 (suppl):481–489, 2002.

16. H.Zha, X.He, C.Ding, H.Simon, and M.Gu. Bipartite graph partitioning and data
clustering. In In Proceedings of the 10th international conference on Information
and Knowledge management, pages 25–32, 2001.

17. A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.
18. E. Jessup and D. Sorensen. A parallel algorithm for computing the singular

value decomposition of a matrix. Journal on Matrix Analysis and Applications,
15(2):530–548, 1994.

19. P. Mohapatra and H. Chen. A framework for managing qos and improving per-
formance of dynamic web content. In Proceedings of Global Telecommunications
Conference, volume 4, pages 2460–2464, 2001.

20. S. Nadimpalli and S. Majumdar. Techniques for achieving high performance web
servers. In Proceedings of International Conference on Parallel Processing, pages
233–241, 2000.

185Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

21. B. C-P. Ng and C-L. Wang. Document distribution algorithm for load balancing on
an extensible web server architecture. In Proceedings of International symposium
on cluster computing and the Grid, pages 140–147, 2001.

22. Jie Qin, Darrin P.lewis, and William Stafford Noble. Kernel hierarchical gene
clustering from microarray expression data. Bioinformatics, 19(16):2097–2104,
2003.

23. J. Quackenbush. Microarray data normalization and transformation. Nature Ge-
netics, 32(suppl):496–501, 2002.

24. Victor Safronov and Manish Parashar. Optimizing web servers using page rank
prefetching for clustered accesses. Information Sciences, 150:165–176, 2003.

25. D.K Slonim. From patterns to pathways: gene expression data analysis comes of
age. Nature Genetics, 32 (suppl):502–508, 2002.

26. Marcel Smid, Lambert C.J.Dorssers, and Guido Jenster. Venn mapping:clustering
of heterologous microarray data based on the number of co-occurring differentially
expressed genes. Bioinformatics, 19(16):2065–2071, 2003.

27. J. Zhang, T. Hamalainen, J. Joutsensalo, and K. Kaario. Qos-aware load balanc-
ing algorithm for globally distributed web systems. In Proceedings of international
conferences on Info-tech and Info-net, volume 2, pages 60–65, 2001.

186 Hsu P.-Y., Ting P.-H.: POCA: A User Distributions Algorithm ...

