
Modeling Inheritance as Coercion in the Kenzo System

César Domı́nguez
(Universidad de La Rioja, Spain
cesar.dominguez@unirioja.es)

Julio Rubio
(Universidad de La Rioja, Spain
julio.rubio@unirioja.es)

Francis Sergeraert
(Institut Fourier, Université Grenoble I, France

francis.sergeraert@ujf-grenoble.fr)

Abstract: In this paper the analysis of the data structures used in a symbolic com-
putation system, called Kenzo, is undertaken. We deal with the specification of the
inheritance relationship since Kenzo is an object-oriented system, written in CLOS,
the Common Lisp Object System. We show how the order-sorted algebraic specifica-
tion formalism can be adapted, through the “inheritance as coercion” metaphor, in
order to model the simple inheritance between structures in Kenzo.

Key Words: Algebraic specification, symbolic computation, inheritance, coercion.

Category: F.3.1

1 Introduction

Kenzo is a system designed by the third author [Dousson et al. 1999] for the
calculation of homology and homotopy groups for topological spaces. It is written
in CLOS and is a descendant of the first system developed by the third author
for symbolic computation in Algebraic Topology, called EAT [Rubio et al. 1997].

The main difference between Kenzo and EAT is the object-oriented approach
of the former, as well as its superior performance. The presence of object-oriented
programming enables the reuse of data structures through inheritance, and the
possibility of defining polymorphic operations (i.e., operations that can be ap-
plied to data of different, but related, types).

In a series of papers [Lambán et al. 1999b, Lambán et al. 1999a,
Domı́nguez et al. 2001, Lambán et al. 2003, Domı́nguez et al. to appear],
the data structures which appear in EAT have been analyzed. Nevertheless, the
methods used to deal with EAT cannot be directly applied to Kenzo, mainly
due to the inheritance between data structures which appears in Kenzo.

Inheritance, like the notion of object-oriented as a whole, is a rather
elusive concept [Weber 1987, Taivalsaar 1996]. Therefore its modeling by
means of formal methods is a complex task, which can be approached

Journal of Universal Computer Science, vol. 12, no. 12 (2006), 1701-1730
submitted: 17/10/06, accepted: 23/12/06, appeared: 28/12/06 © J.UCS



from many different perspectives (see, for instance, [Kamir and Reddy 1994,
Goguen and Meseguer 1992, Bruce 1992, Cardelli 1988]). To our aim in this pa-
per, the specification side (and not the implementation) of inheritance is consid-
ered [Snyder 1987]. (On the contrary, in the work on EAT [Lambán et al. 1999b],
implementation issues were the main point of interest.) Our approach is based
on the hidden order-sorted specification framework (for order-sorted matters, see
[Goguen and Meseguer 1992], and for hidden ones [Goguen and Malcolm 2000])
but interpreting inheritance as a kind of explicit coercion [Weber 1987,
Bruce and Wegner 1990, Breazu-Tannen et al. 1991].

The technique explained in this paper was previously developed in
[Domı́nguez and Rubio 2001] for the specification of a particular example: the
chain complex/simplicial set relationship. In this work, it is generalized to in-
clude all the simple inheritance relations between structures in Kenzo.

The paper is organized as follows. Section 2 deals with some preliminaries
on algebraic specifications. Section 3 includes an introductory example. Section
4 explains the hidden specification of structures in EAT, through an operation
called imp operation, and Section 5 provides some examples of this specifica-
tion. This technique is not valid for Kenzo structures due to the presence of
inheritance in their construction. So, Section 6 deals with the specification of
the simple inheritance between structures in Kenzo. First, the syntactical as-
pects of inheritance are tackled, and then, two alternative approaches to deal
with algebraic inheritance in the hidden context are explored. Section 7 presents
some examples of this technique. In Section 8, we compare our approach with
other related works. Section 9 presents the conclusions and includes some open
problems. The paper ends with an appendix devoted to a short introduction
to the Kenzo system that tries to reflect some of the characteristics previously
studied.

2 Preliminaries on algebraic specification

We will briefly introduce some basic notions on algebraic specifications; see
[Loeckx et al. 1996] for a systematic presentation.

In Mathematics, when dealing with an algebraic structure, such as for in-
stance a group, we refer to a set G together with some operations on G,
∗ : G × G → G, − : G → G, e : → G. This way of working is abstracted in
the field of universal algebra, where structured-sets in this sense are studied in
a generic way. Roughly speaking, algebraic specifications can be understood as
universal algebra enriched with some syntactic constructs that establish a link
between programming languages (through the notion of type) and mathematical
structures.

More precisely, a signature Σ is a pair (S, Ω) of sets, whose elements are
called sorts and operations, respectively. Each operation consists of a (n + 2)-

1702 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



tuple, ω : s1 . . . sn → s with s1, . . . , sn, s ∈ S and n ≥ 0. In the case n = 0,
the operation is called a constant of sort s. The sorts should be understood as
the names for the sets to be defined, and the operations play the same role for
operations on these sets. In the example of a group, the convenient signature,
denoted by GRP, has one sort g and three operations prd : g g → g, inv : g → g,
unt : → g.

Then, the structures of universal algebra are retrieved by means of the notion
of Σ-algebra. Let Σ = (S, Ω) be a signature. A total algebra for Σ (or Σ-algebra)
assigns a set As to each sort s ∈ S, called the carrier set of the sort s, and a total
function ωA : As1 × · · · × Asn → As to each operation ω : s1 . . . sn → s ∈ Ω. In
the example, we can define a Σ-algebra A taking Ag = G, prdA = ∗, invA = −
and untA = e.

The Σ-algebras can be organized as a category Alg(Σ) using the following
natural notion of morphism. Let A, B be two Σ-algebras, with Σ = (S, Ω).
A Σ-homomorphism h : A → B from A to B is a family {hs : As → Bs}s∈S

of functions such that hs(ωA(a1, . . . , an)) = ωB(hs1(a1), . . . , hsn(an)) for any
operation ω : s1 . . . sn → s ∈ Ω and for all ai ∈ Asi , i = 1, . . . , n.

In the specification of actual programming systems, it is usual to find partial
maps, that is to say, maps which are undefined for certain arguments. A partial
algebra [Loeckx et al. 1996, Cerioli et al. 1999] A is defined as an algebra except
that for each operation ω : s1 . . . sn → s, the map ωA : As1 × · · · × Asn → As is
defined on a (possibly proper) subset of As1 × · · · × Asn , denoted by Def(ωA).

In order to obtain a category of partial algebras PAlg(Σ), it is necessary to
adapt the definition of homomorphism. One of the possibilities, which is useful
for the purposes of this paper, is the following. A weak homomorphism between
partial algebras [Loeckx et al. 1996] is defined as a homomorphism h : A → B

except that, for any operation ω : s1 . . . sn → s, if (a1, . . . , an) ∈ Def(ωA)
then (hs1(a1), . . . , hsn(an)) ∈ Def(ωB), and in this case: hs(ωA(a1, . . . , an)) =
ωB(hs1(a1), . . . , hsn(an)).

In this work, we will use the notion of quotient algebra, which is an al-
gebra in which some carriers are identified with each other. The identifica-
tion is obtained with the help of a congruence relation. In particular, we need
the partial version of this algebra [Cerioli et al. 1999]. Let Σ = (S, Ω) be a
signature and A be a Σ-algebra. A family Q = (Qs)s∈S of partial equiv-
alence relations (symmetric and transitive relations), Qs on As, is a par-
tial congruence relation on A if for each operation ω : s1 . . . sn → s ∈ Ω,
and for any tuples (a1, . . . , an), (b1, . . . , bn) ∈ Def(ωA) such that ai Qsi bi,
i = 1, . . . , n, then ωA(a1, . . . , an) Qs ωB(b1, . . . , bn). Given a partial congru-
ence relation on the Σ-algebra A, the partial quotient algebra of A by Q is the
Σ-algebra A/Q defined by: (A/Q)s = {[a]Qs | a Qs a} for each s ∈ S, and
ωA/Q

([a1]Qs1
, . . . , [an]Qsn

) = [ωA(x1, . . . , xn)]Qs , for each ω : s1 . . . sn → s ∈ Ω,

1703Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



where ([a1]Qs1
, . . . , [an]Qsn

) ∈ Def(ωA/Q
) iff exists xi ∈ [ai]Qsi

, i = 1, . . . , n

such that (x1, . . . , xn) ∈ Def(ωA).
Since we are interested in object-oriented matters, we will use a par-

ticular case of algebraic specification, known as hidden specification (see
[Goguen and Malcolm 2000] for details).

Let V Σ = (V S, V Ω) be a signature. Let us fix a V Σ-algebra D and let us
include in V Ω, as constants, the elements of the carrier sets of D that do not
correspond with constants previously found in V Ω. This new set is also named
V Ω and it is used instead of the previous one. The elements of V S are called
visible sorts and those of V Ω are called visible operations. The V Σ-algebra D

is called data domain. Then a hidden signature, on V Σ and D, is a signature
HΣ = (S, Ω) such that:

– S = HS � V S; the elements of HS are called hidden sorts of HΣ.

– Ω = HΩ � V Ω and for each operation ω : s1 . . . sn → s in HΩ the following
property holds: in s1, . . . , sn there is at most one hidden sort.

(The � symbol denotes the disjoint union.)
A hidden algebra A for a hidden signature HΣ, on V Σ and D, is a HΣ-

algebra such that AV Σ = D (in other words, the restriction of A to the visible
part is equal to the data domain D). A hidden morphism between two hidden
algebras is a HΣ-homomorphism h such that hV S is the identity on D.

The (partial) hidden algebras for a hidden signature HΣ, on V Σ and D,
together with the (weak) hidden morphisms, define a category, which is denoted
by HPAlgD(HΣ).

3 An introductory example: families of groups

As an introductory example let us consider the simple case of groups. Let us
denote by GRP the category of groups. This corresponds to a subcategory of
total algebras of the signature GRP described in the previous section, satisfying
in addition the well-known axioms for groups.

Let us denote now by GRP Z the category of groups built over a fixed under-
lying set Z. This is to say, that the carrier set for a group is Z or, more generally,
a quotient of Z. (This new category appears in a natural way when modeling
a programming scenario: Z being an example of a type in a programming lan-
guage.) Let us define a family of groups as a function G : A → Obj(GRP Z),
where A is a set, called index set, and Obj(GRP Z) denotes the class of objects
in the category GRP Z. An example is the family of all groups module n, where
A = N and G(n) = Z/nZ, for each n ∈ N. These families are objects of a cat-
egory denoted by HPAlgZ(GRPeq

imp). This category will be our main entity of
study and the reasons for this notation will be explained later on. The main

1704 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



feature of this category is it has a final object. More precisely, the elements of
the index set of the final object are tuples of functions defining a group over (a
quotient of) Z. This object nicely corresponds to the implementation of the data
structures used in Kenzo.

4 The imp operation

Before trying to obtain a specification for inheritance relationships between
structures in Kenzo, we have to consider the specification of a simple structure
where inheritance is not used in its construction. This situation is similar to the
one presented for the EAT structures in [Lambán et al. 1999b]. In that work, an
operation called imp was defined to obtain the specification of those structures.
In this section, we present the same operation with some slight differences.

The initial data is a category, or rather a class of objects T , we want to model
(the class of groups, the class of simplicial sets and so on). Then, a signature Σ =
(S, Ω) is designed with the aim of obtaining Σ-algebras which represent (in some
sense) the objects in T . Nevertheless, it is not sensible to think of representing
any object in T (any group, for example), both from a computability point of
view (usually, T is a non-numerable class) and from a practical one (it is very
useful to identify the ground elements of some sort with a unique programming
type). This restriction leads, at the model level, to the need of fixing a data
domain D = {Ds}s∈S for the signature Σ. The idea is to consider only Σ-
algebras with carrier sets in D.

The apparent strictness of working with a fixed data domain could be over-
come in at least two ways. On the one hand, the models can be defined on
quotient sets of the data domain D (and not on D itself). To illustrate this
point, let us consider the case of the groups. If D = Z, the set of integer num-
bers, we are dealing with groups represented on Z. So, a finite group such as
Z/nZ can be represented on D if equalities (i.e. equivalence relations) on Z are
allowed. On the other hand, the models can have partial operations. Then, for
example, the semigroup N can be represented on the data domain D = Z if we
consider the operation of the semigroup partial with the definition domain on N.
In particular, in the field of Algebraic Topology, structures are based on graded
sets (usually, the degree is related to some notion of geometric dimension), and
this implies that operations are only defined for elements of same degree; see
the particular cases of simplicial sets and chain complexes below (we refer to
[May 1982] for the mathematical definition of these structures).

In our context, we allow for both aspects, although working with a fixed data
domain, we can obtain different domains either because we define a quotient on
the data domain or because, through partiality, we only take into account one
data domain subset.

1705Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



Given a signature Σ = (S, Ω) and a data domain D fixed for it, to deal with
the above points we need the following process. The signature Σ is enriched with
a boolean test operation eqs : s s → bool for each s ∈ S, and a new signature,
denoted by Σeq, is obtained. Then, for each Σeq-operation ω : s1 . . . sn → s

we fix a set domω ⊆ Ds1 × · · · × Dsn , the definition domain of ω, and we
write dom = {domω}ω∈Ωeq . Therefore, we are going to work with the following
category PAlgD,dom(Σeq), that is to say, the category of partial Σeq-algebras
on D with definition domain dom and endowed with weak morphisms of partial
algebras [Loeckx et al. 1996]. The fixing of the definition domain is motivated
at the implementation level. Note that at the algebraic level every operation in
an algebra is endowed with its definition domain, when it is defined as a partial
function. So, it is not necessary to fix one of them and it is possible to obtain our
results without this restriction. Nevertheless, we prefer model these structures as
closely as possible to the Kenzo system, using examples directly extracted from
this program. At the implementation level, for each operation of the signature
there is only one code (that implements this operation) and a data domain where
the code is syntactically correct, but, in general its real definition domain is not
explicitly encoded. In fact, a given code can have different definitions domains.
Thus, we decide to fix one of them in our modeling framework.

The category of models C considered is a full subcategory of PAlgD,dom(Σeq)
such that a Σeq-algebra A ∈ C satisfies two conditions. First, the family eqA =
{eqs}s∈Seq defines a partial congruence on A. Second, the quotient A/eqA defines
an object of T .

In Kenzo and EAT, and in general in any symbolic computation system, you
do not work only with a unique data structure, a group for example; in contrast,
you deal at runtime with families of this data structure. So, we can distinguish
two layers of data structures in these systems. In the first layer, ones finds the
usual data structures as integer numbers or (finite) list of symbols. In the second
layer, one must deal with algebraic structures as groups or chain complexes
whose elements are data belonging to the first layer. To model this situation,
in [Lambán et al. 1999b] an operation between specification frames, called imp

operation, was defined. Here, we have modified slightly that operation to adapt
it for our situation.

This operation assigns to each signature Σeq = (Seq , Ωeq) with data do-
main D and definition domain dom a hidden signature Σeq

imp = (Seq
imp, Ω

eq
imp).

This signature presents a new sort, denoted by impΣeq , and an operation
imp ω : impΣeqs1 . . . sn → s for each operation ω : s1 . . . sn → s ∈ Ωeq . The
only hidden sort in this signature is the new sort and the data domain is D.

The category that we use for that signature is HPAlgD,dom(Σeq
imp). This cat-

egory has as objects the partial hidden Σeq
imp-algebras A on D and each operation

imp ω : impΣeqs1 . . . sn → s has as definition domain: AimpΣeq ×domω (in other

1706 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



words, it will be total on the hidden argument). The morphisms of this category
are the weak hidden Σeq

imp-homomorphisms.
We are interested in a full subcategory Cimp of HPAlgD,dom(Σeq

imp) whose
objects represent families of algebras in C (so, of T -objects). In order to fulfill
that idea, the distinguished sort will be used as index of these algebras, i.e. each
element of the distinguished sort can be understood as a parameter allowing
to define an algebra in C. Hence, for each element a ∈ AimpΣeq , we must note
that we can define a partial Σeq-algebra Aa. This algebra has the carrier set
Aa

s := Ds for each sort s ∈ Seq, and the partial function ωAa(d1, . . . , dn) :=
imp ωA(a, d1, . . . , dn), with definition domain Def(ωAa) := domω, for each op-
eration ω : s1 . . . sn → s ∈ Ωeq. Now, the algebras A in Cimp must verify that
Aa ∈ C for each a ∈ AimpΣeq . So, we can distinguish the two layers of data struc-
tures in the algebra. The visible sorts represent the first layer: fixed data that are
used to build the algebraic structures of the second layer, which is represented
by the hidden sort.

Under these conditions, the category Cimp has a canonical object, which
is denoted by Acan. This object can be presented as a set of partial func-
tional tuples in the carrier set for the hidden sort (it is similar to the tu-
ples of methods in Cardelli’s approach [Abadi and Cardelli 1996]). More con-
cretely, Acan

impΣeq := {(fω)ω∈Ωeq | 〈D, (fω, domω)ω∈Ωeq〉 ∈ C} and Acan
s := Ds

for each sort s ∈ Seq. Then, the partial functions of this algebra are defined
in the natural way: imp ωAcan((fδ)δ∈Ωeq , d1, . . . , dn) := fω(d1, . . . , dn), for each
imp ω : impΣeq s1 . . . sn → s ∈ Ωeq , each (fδ)δ∈Ωeq ∈ Acan

impΣeq and each tuple
(d1, . . . , dn) ∈ domω . Besides, this canonical object is a final object in Cimp. This
result is reflected in the following theorem.

Theorem 1. The canonical object Acan is a final object in Cimp.

Proof. For each object B ∈ Cimp, it is possible to define a weak hidden Σeq
imp-

homomorphism, hcan, which has as component for the distinguished sort the
total function hcan

impΣeq : BimpΣeq → Acan
impΣeq , such that hcan

impΣeq (b) := (ωBb)ω∈Ωeq

for each b ∈ BimpΣeq . Besides, it is easy to prove that this homomorphism is
unique.

This result should be compared, first, with the general result for hidden
algebras reported in [Goguen and Malcolm 2000], and, second, with the imple-
mentation strategy used in Kenzo and EAT (see the appendix and the examples
described below). The above theorem on the existence of hidden final objects
formally proves that the representation chosen in these programs for their struc-
tures is the “most general” possible one (in the sense that exists a homomor-
phism between any other representation and the one chosen for this programs). It
shows that the hidden machinery is suitable for specifying symbolic computation
systems like Kenzo and EAT.

1707Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



5 Examples of hidden specification of families of structures

In this section, we put into practice the specification technique previously defined
with some families of structures: a family of groups over Z in a total context and
a family of chain complexes and simplicial sets over a data domain in a general
context. Then, we introduce the different treatment in the Kenzo system of a
family of simplicial sets using inheritance techniques.

5.1 Families of groups revisited

The signature HPAlgD(GRPeq
imp) introduced in Section 3 is obtained by applying

the imp operation to the signature GRPeq , which is the signature for a group
enriched with a boolean test operation on g. Besides, the set Dg = Z is fixed as
data domain for the sort g. Then, we consider the subcategory of total algebras
of HPAlgD(GRPeq

imp) which satisfy that the quotient defined through the equality
in the GRPeq-algebra is a group (i.e. the group axioms are satisfied over it). As
in Section 3, the family of finite groups Z/nZ, n ∈ N, is obtained as a hidden
algebra with hidden carrier set N and the natural equality for every fixed n ∈ N.

5.2 Families of chain complexes

A chain complex (Cp, dp)p∈Z is a family of free Z-modules (Cp)p∈Z, together
with a family of Z-module morphisms (dp)p∈Z, the differential maps, such that
dp : Cp → Cp−1, and dp−1 ◦ dp = 0, for each p ∈ Z (see [Mac Lane 1994]). The
elements of Cp are called combinations of degree p.

Following the style of EAT and Kenzo, a signature CCimp capa-
ble of dealing with the elements of chain complexes is composed of:
zero − cmbn : int → cmbn

cmbn − opps : cmbn → cmbn

n − cmbn : int cmbn → cmbn

2cmbn− add : chcm cmbn cmbn → cmbn

dffr : chcm cmbn → cmbn

eqgnr : chcm gnr gnr → bool

eqcmbn : chcm cmbn cmbn → bool

Here, the sort gnr stands for the

generators set (in other words, the basis for any chain complex must be sub-
sets of the carrier set for gnr), the sort cmbn for combinations and the sort
chcm for the families of chain complexes. Thus, the meaning of the operations
is clear.

Note that this signature is a simplification of the signature ΣCC,eq
imp obtained,

through the imp operation, from the signature ΣCC,eq for a chain complex. This
signature has the operations of CCimp without the chcm argument and with an
equality on the int sort. If we are dealing with free Z-modules, we can canonically

1708 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



define the unit, inverse and product operations, so that they are the same for
each chain complex and we can remove the first argument in these operations.
The equality on the int sort will be considered as the literal equality on the
integers.

As data domain we define Dcc
int = Z and Dcc

gnr = B, where B is a graded set
B = {Bp}p∈Z (B will be the only variable set in the data domain). In order to
define Dcc

cmbn let us consider the signature formed by constants extracted from
Dcc

int and Dcc
gnr, the operation zero − cmbn and a new operation:

add−mnm−to−cmbn : int gnr cmbn → cmbn

This operation is intended to capture the (partial) map that formally adds a
monomial to a combination (such an operation exists in EAT and Kenzo). Then,
we define Dcc

cmbn as the initial model for the category of algebras for this auxiliary
signature. This model can be described as follows:

{〈p, [(t1, a1), (t2, a2), . . . , (tm, am)]〉 | p ∈ Z, m ∈ Z, m ≥ 0, ti ∈ Z, and
ai ∈ Bp, ∀i = 1, . . . , m}

This description of the combinations in Dcc
cmbn directly corresponds to the rep-

resentation used in Kenzo.
This completes the definition of the hidden signature CCimp, because visible

operations are fixed in a natural way. Now, we will rely on the partiality of the
operations to obtain the graded structure: the addition and equalities are only
defined on elements of the same degree.

Then, we consider the subcategory Ccc
imp of HPAlgDcc,domcc

(CCimp). An al-
gebra A in this category satisfies that for every fixed element a ∈ Achcm, its
functions with this element fixed allow to define a quotient partial algebra that
verifies the properties necessary to obtain actual chain complexes (imposing
dp−1 ◦ dp = 0 and so on).

Now, in the subcategory Ccc
imp we can define a final object. In this case, the

carrier set of the hidden sort is composed of tuples of four functions (visible
operations have fixed functions and are not necessary to determine the chain
complex). But, due to the identification produced during the quotient, the func-
tion 2cmbn − add can be determined from cmpr in a natural way. Besides, the
equality between combinations can be defined through the equality between
generators. Then, only two functions (d, =gnr) are needed. These functions are
d : Dcc

cmbn → Dcc
cmbn and =gnr : Dcc

gnr ×Dcc
gnr → Dcc

bool, where d is a representation
of the differential of a chain complex and =gnr is an equality on the generators
at each degree, both satisfying partiality conditions.

In order to fit more closely the features of Kenzo, we can introduce a syntactic
construction that will be also useful when dealing with inheritance. We consider
a partial operation:

coerint×gnr
cmbn : int gnr → cmbn

1709Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



defined by: coerint×gnr
cmbn (p, a) = 〈p, [(1, a)]〉 on the tuples (p, a) such that a ∈

Bp. When an operation symbol is prefixed by coer, this means that it is a
coercion and then that certain previously defined operations are overloaded in
a polymorphic way. In this particular case, it is assumed that a new partial
operation

dffr : chcm int gnr → cmbn

is canonically defined by:

dffr(cc, p, a) := dffr(cc, coerint×gnr
cmbn (p, a))

Therefore, this differential on generators determines the differential on combi-
nations by linearity. So, this differential can replace the other one in the fi-
nal object. This models accurately the implementation strategy used in Kenzo
[Dousson et al. 1999].

So, the representation in Kenzo, despite being the “most general” possible
one, is quite efficient, since it is “minimal”, in a certain sense, among all the
isomorphic final objects in Ccc

imp.

5.3 Families of simplicial sets in EAT

In the previous example, we have shown how the hidden techniques correspond
very nicely to the way of working in the Kenzo system. For simplicial sets, things
are a bit more complex, because in Kenzo simplicial sets are considered a subclass
of chain complexes as it is explained in the appendix. Now, we will show how
the description given in [Rubio et al. 1997] for simplicial sets in the EAT system
can be adapted to the hidden framework.

A simplicial set K is a graded set {Kn}n∈N, together with two family of
maps δn

i : Kn → Kn−1, n > 0, i = 1, . . . , n and ηn
i : Kn → Kn+1, n ≥ 0,

i = 1, . . . , n, which satisfy known identities. An element of Kn is called simplex
of dimension n and the maps δ and η are the face and degeneracy operators
respectively. A simplex that is in the image of a degeneracy operator is called
abstract simplex, otherwise it is called geometric simplex (see [May 1982] and
[Lambán et al. 1999a] for the general definitions on simplicial sets).

The “minimal” signature to deal with simplicial sets is:
dgnr : nat absm → absm

face : smst nat nat absm → absm

eqabsm : smst absm absm → bool

eqgsm : smst gsm gsm → bool

where gsm denotes a set of geo-

metric simplices, absm the set of the abstract simplices and smst is the hidden
sort for simplicial sets. The operations dgnr and face represent, respectively,
the degeneracy and face operators.

As data domain, we define Dss
nat = N, Dss

gsm = B = {Bp}p∈Z, with
Bp = ∅ if p < 0 (from this technical condition, we will get an homogeneous

1710 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



representation of geometric simplices and chain complex generators) and choose
as Dss

absm, the initial model for the following specification. The signature con-
tains the elements of Dss

nat and Dss
gsm as constants, the operation dgnr and, in

addition, a new operation:

coergsm
absm : gsm → absm

intended to transform a geometric simplex into the corresponding non-degenerate
abstract simplex. This signature, together with the natural properties and par-
tiality conditions, defines a category of algebras whose initial model is used to
define Dss

absm, the set of abstract simplices. A description for Dss
absm is:

{〈(jk, . . . , j1), a〉 | ∃ n ∈ N such that a ∈ Bn, k ∈ N, ji ∈ N, ∀i = 1, . . . , k,

and 0 ≤ j1 < · · · < jk ≤ n + k − 1}
(This description of the abstract simplices corresponds to the representation
used in EAT, and is closer to the usual presentation used in simplicial topology;
see [May 1982]. The description suggested by Kenzo is based on a very efficient
numerical encoding of the degeneracy list (jk, . . . , j1), but we do not take into
account the specification of these (implementation) technical matters due to
efficiency of the programs.)

This completes the definition of a hidden signature for simplicial sets since the
visible operations are fixed on the data domain. Again, partiality conditions on
the operations are used to determine the graded structure on this data domain.

The final object for a hidden category is obtained by simply storing the
tuples of functions associated with the algebraic structure. In this case, the only
essential operations form a tuple (f, =gsm) with f : Dss

nat × Dss
nat × Dss

absm →
Dss

absm and =gsm : Dss
gsm × Dss

gms → Dss
bool such that f is a representation of the

face of a simplicial set and =gsm is an equality on the geometric simplices (see
[Lambán et al. 1999a] for details).

As for chain complexes, we define coergsm
absm(a) := 〈(), a〉 for each geometric

simplex a, and, if this operation is included in the signature, a polymorphic
operation (which is present in Kenzo) appears:

face : smst nat nat gsm → absm

This operation computes the faces of the geometric simplices and determines the
face of the abstract simplices, so it can be used in the tuple of the final object
instead of the faces on abstract simplices.

5.4 Families of simplicial sets in Kenzo

Whereas the above specification technique is suitable for the rest of the struc-
tures of EAT, it is not directly applied to the Kenzo structures due to their
object orientation. In this system, structures are built taking advantage of the

1711Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



inheritance of CLOS by reusing of the common elements. Besides, we obtain,
in an automatic way, some relevant polymorphic functions. This illustrates, in
this particular case, the benefits of object-oriented programming from a soft-
ware engineering point of view. For example, Kenzo implements simplicial sets
as particular cases of a chain complexes, as simplicial sets can be interpreted as
Eilenberg-MacLane FD-complexes (see [May 1982], page 93). Roughly speaking,
a simplicial set (X, face) is endowed with a differential structure

dn : Cn(X) → Cn−1(X)

where Cn(X) is the free Z-module generated on the n-geometric simplices of X ,
and essentially,

dn(−) :=
n∑

i=0

(−1)iface(X, i, n,−).

The previous EAT system provides a construction function which builds this
chain complex from a simplicial set, when needed (see [Rubio et al. 1997] and
[Domı́nguez et al. 2001]).

Inheritance can seem strange in the case of the simplicial set/chain complex.
It does not correspond to the is a relationship, which is a “standard model”
to understand object-oriented inheritance (see [Weber 1987], for instance). A
typical example of inheritance between structures that follows this model is the
case of the group/semigroup. In this case, it is said that a group is a semi-
group. However, in Algebraic Topology it is usual to say that a simplicial set
has (canonically) associated a chain complex, but it is not said that a simpli-
cial set is a chain complex. Indeed, in this case, inheritance has been used to
implement a has a relationship (this shows how the notion of inheritance is diffi-
cult, conceptually, to apprehend; see [Breazu-Tannen et al. 1991], [Bruce 1992],
[Taivalsaar 1996] or [Weber 1987] again). But, let us observe that, in category
theory terminology, there is a functor F from the simplicial sets category to
the chain complexes category. Thus, the situation is not so different from the
group/semigroup case: there is a functor, even if it is not a forgetful functor. But,
in such a context, given a functor F : C → D it is always possible to “enrich” the
source category C to obtain a pair [X, F (X)] for each object X of C. Obviously,
from this new category, there is a forgetful functor to D encoding the same con-
struction F . This was the idea of Eilenberg-MacLane [May 1982], who replaced
the notion of simplicial set by that of FD-complex. This was the approach chosen
to write Kenzo and, coherently, it is the way of working reflected in our models
of the following section.

To deal with this new situation, a first attempt is to use an order-sorted
specification [Goguen and Meseguer 1992] which is the technique usually used
in the hidden framework [Goguen and Malcolm 2000]: a new signature SSimp

is obtained by adding to the signature CCimp of Section 5.2 the operations on

1712 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



simplicial sets of Section 5.3, and by declaring smst < chcm. However, this ap-
proach is not convenient because to the syntactical declaration smst < chcm

corresponds, at the model level, the fact that Asmst ⊆ Achcm for each order-
sorted algebra (see [Goguen and Meseguer 1992]). But, the final objects in the
previous sections and the appendix illustrate the well-known fact that inheri-
tance, in the universal algebra context, is rather a forgetting matter and not an
inclusion one.

This weakness of the original order-sorted approach has been remarked by
several authors. In particular in [Mossakowski et al. 2000], in the context of
the CoFI Algebraic Specification Language, CASL [CoFI Task Group 1999], two
subsorting relationship ≤1,≤2 are considered. The first one ≤1 is related to the
usual interpretation as inclusions, and the second one ≤2 is closer to the inter-
pretation as coercions. (The idea of interpreting a sort relation as a coercion
is not original from [Mossakowski et al. 2000], since it had previously been pro-
posed by other authors in [Weber 1987, Bruce and Wegner 1990], for instance.)
Obviously, our declaration smst < chcm should be interpreted as smst ≤2 chcm

rather than as smst ≤1 chcm.
Thus, we define our definitive SSimp signature by adding to CCimp the oper-

ations on simplicial sets and a new operation:

coersmst
chcm : smst → chcm

Even if this operation does not appear explicitly in Kenzo (it is subsumed by the
fact that simplicial sets are defined as a subclass of chain complexes1), it allows
to specify, at the syntactical level, all the Kenzo features (including polymor-
phism/overloading of operations) without including any redundant information.
These coercion operations are present in other works. For example, they act
implicitly in the algebraic structures in Coq [Geuvers et al. 2002], which sim-
plifies the syntactic notation. However, we have preferred making explicit these
operations to represent the inheritance relation between our structures.

This specification technique is generalized in the following section to model
the inheritance derived from a forgetful relation between two structures in the
Kenzo system.

6 Hidden specification of inheritance in Kenzo

Let T 1 and T 2 be two categories and F : T 2 → T 1 be a functor representing
a forgetful relation between them. Let us assume that the modeling process
explained in Section 4 can be accomplished for the T 1 category. Basically, we
have a signature Σ1,eq, a data domain D1 and a definition domain dom1, and
1 To be precise, simplicial sets are a subclass of coalgebras and these are a subclass of

chain complexes.

1713Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



we define C1 a full subcategory of PAlgD1,dom1
(Σ1,eq) such that for each partial

Σ1,eq-algebra A of C1, the partial quotient algebra A/eq1
A

is an object of T 1.
Then, we can specify families of T 1 objects if we construct a hidden signature
Σ1,eq

imp and a subcategory C1
imp of HPAlgD1,dom1

(Σ1,eq
imp ) such that an algebra A

in C1
imp verifies that for each element a ∈ AimpΣ1,eq , the Σ1,eq-algebra Aa is an

object of C1.
In order to model the second category and the forgetful relation between

them, we assume that we can define a signature Σ2,eq, a data domain D2 and a
definition domain dom2, such that Σ1,eq ⊆ Σ2,eq, D1 ⊆ D2 and dom1 ⊆ dom2.
Then, we define a subcategory C2 of PAlgD2,dom2

(Σ2,eq) such that for each
partial Σ2,eq-algebra A of C2, the partial quotient algebra A/eq2

A
is an object

of T 2. In addition, if we want to represent the functor F , it is necessary to
impose that if we apply the functor F to the object A/eq2

A
, we obtain the T 1-

object (A|Σ1,eq)/eq1
A
. In this object, eq1

A denotes the partial congruence in the
restriction of the Σ2,eq-algebra A to Σ1,eq, A|Σ1,eq, which is obtained when the
equality operations of Σ2,eq are restricted to the operations derived from Σ1,eq.
In other words, we are assuming that the functor F : T 2 → T 1 can be expressed
in the model level through an operation F̃ : Obj(C2) → Obj(C1) which builds
the following commutative diagram among objects:

Obj(C2) F̃−−−−→ Obj(C1)

/eq2

⏐⏐�
⏐⏐�/eq1

T 2 −−−−→
F

T 1

These conditions can seem quite demanding, but, as we will see in the exam-
ples, they appears naturally when we try to specify the forgetful relation between
algebraic structures in general, and between the Kenzo structures in particular.

Then, we can specify families of T 2 objects if we construct a hidden signature
Σ2,eq

imp . This signature contains the sorts and operations of Σ1,eq
imp together with

the sorts S2 \ S1 ∪ {impΣ2,eq} and the operations {imp ω : impΣ2,eqs1 . . . sn →
s}ω : s1...sn→s∈Ω2\Ω1 ∪ {coerimpΣ2,eq

impΣ1,eq
: impΣ2,eq → impΣ1,eq}. In this signature, it

is clear the syntactic reuse in the inheritance. Besides, we obtain polymorphism
in some operations. The first signature operations can be applied to elements of
the second hidden argument, in that case, the coercion operation acts.

Note that even if the signature Σ2,eq
imp has been completely defined, its nature

as hidden signature has not been elucidated yet. Essentially, it lacks the deter-
mination of the hidden sorts. It is natural to require the sort impΣ2,eq to be a
hidden sort. But, the nature of impΣ1,eq is more controversial.

If the structures of T 1 and T 2 are considered “at the same level”, then
impΣ2,eq and impΣ1,eq should be both hidden sorts. On the contrary, if T 1 is
considered a previous, auxiliary, data structure, then impΣ1,eq should be declared

1714 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



a visible sort. In the following two subsections, both alternatives are explored.

6.1 Hidden signature with two hidden sorts

If both impΣ2,eq and impΣ1,eq are declared hidden sorts, the signature Σ2,eq
imp

can be directly considered a hidden signature, since the data domain part D2 is
fixed (sometimes using initial models as explained in examples of the previous
section). Besides, the coercion operation is considered total, so, dom2 determines
the definition domain of this signature.

Now, to represent families of T 2 objects a full subcategory C2
imp of

HPAlgD2,dom2
(Σ2,eq

imp ) is considered. An algebra A in this category verifies the
following conditions. First, its restriction to Σ1,eq

imp is in C1
imp, i.e., A|Σ1,eq

imp ∈ C1
imp.

Second, for each element a ∈ AimpΣ2,eq , the Σ2,eq-algebra Aa, that is naturally
defined when the element a is fixed as first component for the functions with
sort impΣ2,eq and the element coer

impΣ2,eq

impΣ1,eq
(a) is fixed as first component for the

functions with sort impΣ1,eq , is an object of C2. The first condition represents
the semantic reuse in the inheritance and the second allows polymorphism in
some operations.

This situation is more complex than those analyzed in [Lambán et al. 1999b],
as Σ2,eq is not a pure deconstructor signature (see [Lambán et al. 2003]). In other
words,

coer
impΣ2,eq

impΣ1,eq
: impΣ2,eq → impΣ1,eq

is a constructor for the hidden sort impΣ1,eq , and this implies that the tech-
niques to be used are more complex. However, this kind of signatures are
covered by the result on the existence of final objects in hidden categories of
[Goguen and Malcolm 2000]. This result is not directly applicable to our case,
because we are dealing with partial algebras, but we are able to modify it to our
particular case.

If we denote by A1,can the final object in the category C1
imp, we define a par-

ticular object in C2
imp, denoted by A2,can as follows. First, A2,can reuses A1,can,

i.e., A2,can|Σ1,eq
imp = A1,can. Second, the elements of A2,can

impΣ2,eq
are tuples of par-

tial functions: the functions of a tuple in A1,can
impΣ2,eq

that join with a function for
each new operation in Σ2,eq (these specialized the former tuple) to define, to-
gether with D2, an element of C2. Third, the coercion function acts over a tuple
of A2,can

impΣ2,eq
forgetting the functions that correspond to operations of Ω2 \ Ω1.

Finally, the rest of the functions are defined in a natural way. Then, A2,can is
the final object of C2

imp.

Theorem 2. The hidden category C2
imp on the signature Σ2,eq

imp , with two hidden
sorts impΣ2,eq and impΣ1,eq , has a final object.

1715Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



Proof. For each object B ∈ C2
imp, it is possible to define a (unique) weak hid-

den Σ2,eq
imp -homomorphism, h2,can, with total functions for the two hidden sorts

defined as: h2,can
impΣ1,eq

= h1,can
impΣ1,eq

, where h1,can is the unique homomorphism

between B|Σ1,eq
imp and A1,can; and h2,can

impΣ2,eq
: BimpΣ2,eq → A2,can

impΣ2,eq
, such that

h2,can
impΣ2,eq

(b) := (ωBb)ω∈Ω2,eq for each b ∈ BimpΣ2,eq .

6.2 Hidden signature with a unique hidden sort

If we decide to declare impΣ1,eq as a visible sort, then things are easier, be-
cause the signature Σ2,eq

imp becomes a deconstructor signature and the gen-
eral results for this particular kind of signatures of [Lambán et al. 1999b] and
[Lambán et al. 2003] can be applied. But, in this case the data domain must be
completed with a new set D2

impΣ1,eq
.

The elements in D2
impΣ1,eq

should be interpreted as the ground on which the
elements of C2 are built. Bearing in mind this interpretation, it is clear that a
good candidate should be the carrier set on the sort impΣ1,eq in the final object
obtained for C1

imp.
The fact that we usually define carrier sets for visible sorts through initial

models (for example, combinations for chain complexes or abstract simplices
for simplicial sets), while D2

impΣ1,eq
is fixed by means of a final model, reflects

the different nature of these visible sorts. The first one specifies elements, so, it
is convenient to get as few data items as possible, and the second one specifies
families of elements of the first type and then we need a representation as general
as possible (see [Rutten and Turi 1994], [Jacobs and Rutten 1997]).

Then, the next theorem follows from general results in
[Goguen and Malcolm 2000] and [Lambán et al. 2003].

Theorem 3. The hidden category C2
imp on the signature Σ2,eq

imp , with a unique
hidden sort impΣ2,eq , has a final object.

This final object (as it is shown in [Lambán et al. 2003]) can be described
by means of tuples of functions. Interestingly enough (but not surprisingly), the
functional final objects of the two last theorems are exactly identical as standard
(no hidden) Σ2,eq

imp -algebras (obviously the final morphisms are different in both
categories). However, the semantic interpretation of both situations has different
connotations. If we have two hidden sorts, we can interpret it as a reuse relation.
There are two structures at the same level and we reuse one to construct the
other. If we have a unique hidden sort, we have a fixed structure previously built
used as data domain in the other. This situation can be interpreted as an use
relation. (A study on the differences between use and reuse relation can be found
in [Meyer 1997].)

If we want to model the inheritance relationship implemented in Kenzo to
deal with these structures, we should choose the reuse interpretation, which is

1716 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



close to the inheritance relationship, and not the use interpretation, which is
closer to the client relationship. Nevertheless, as it is reported in [Meyer 1997],
both interpretations can appear in inheritance relations.

7 Examples

In this section, we present two examples to illustrate the above technique.
First, we explore the simple relation between semigroups and groups. In
[Sergeraert 2001], the third author used similar examples to explain the im-
plementation of the inheritance relation between structures in Kenzo. Second,
we analyze the relationship between chain complexes and simplicial sets present
in Kenzo.

7.1 Semigroups, groups

In this example, we work in a total frame without equalities (i.e., equalities are
restricted to literal ones), focusing on the inheritance process.

A signature for semigroups is SGRP, with one sort g and one operation
prd : g g → g, and a signature for groups GRP consists of SGRP enriched with
two new operations unt : → g, inv : g → g. If a data domain D = {Dg} is fixed,
we can define a subcategory CSGRP of AlgD(SGRP) whose algebras are semi-
groups on D, i.e., their operations verify the semigroup axiom prd(a, prd(b, c)) =
prd(prd(a, b), c). Similarly, we define the subcategory CGRP of AlgD(GRP).

Now, if we apply the imp operation to SGRP, we obtain a hid-
den signature SGRPimp with g as visible sort and impSGRP as hidden
sort, and an operation imp prd : impSGRP g g → g. Then, the sub-
category CSGRP

imp of HAlgD(SGRPimp) whose algebras satisfy the axiom
imp prd(z, a, imp prd(z, b, c)) = imp prd(z, imp prd(z, a, b), c) gathers families
of semigroups over D.

To specify families of groups over D, we can construct the signature
GRPimp, which includes the sorts and operations of SGRPimp, a new sort
impGRP and new operations imp unt : impGRP → g, imp inv : impGRP g → g,
coer

impGRP
impSGRP

: impGRP → impSGRP. This signature is declared as a hidden signa-
ture with two hidden sorts impSGRP, impGRP. Then, we consider the subcategory
CGRP

imp of HAlgD(GRPimp) whose algebras satisfy that their restriction to the
SGRPimp-signature are objects of CSGRP

imp and besides satisfy group axioms such
as imp prd(coerimpGRP

impSGRP
(x), a, imp unt(x)) = a, and so on.

The final object in the category CSGRP
imp has as carrier set for the hidden

sort tuples with one function. This function must represent the operation of a
semigroup over D. The final object in the category CGRP

imp has as carrier set for
the hidden sort impGRP tuples of three functions: the one of the tuple for SGRPimp

1717Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



which is specialized by two new functions to form a group over D. The coercion
function acts as a forgetful function between both kind of tuples.

7.2 Chain complexes, simplicial sets.

At this point, we will use again the signatures CCimp, SSimp and data domains
and definition domains for them defined in Section 5. As is natural, we con-
sider the carrier set for the generators of the chain complexes as the geomet-
ric simplices of the simplicial sets, i.e., Dcc

gnr := Dss
gsm. Then, the final object

for the simplicial sets admits the following functional description, denoted by
Bcan. The elements of Bcan

chcm and Bcan
smst are the pairs of functions (d, =gnr) and

(f, =gsm) in the previous section. Then, the constructor is defined in a natural
way: (coersmst

chcm)Bcan(f, =gsm) = (df , =gnr), where df is a representation of the
differential FD-operator defined from f and =gnr. This final object corresponds
closely to the way in which simplicial sets have been implemented in the Kenzo
system, as is illustrated in the appendix.

In order to interpret the operation coersmst
chcm, let us note that the explicit

representation of simplicial sets is given by five maps (since visible operations

are fixed on the data domain):

=gsm : Dss
gsm × Dss

gsm → Dss
bool

=absm : Dss
absm × Dss

absm → Dss
bool

f : Dss
nat × Dss

nat × Dss
gsm → Dss

absm

+ : Dcc
cmbn × Dcc

cmbn → Dcc
cmbn

df : Dss
cmbn → Dss

cmbn

But the

addition and the equality on abstract simplices are induced by the comparison
test on geometric simplices =gsm, whereas the differential is induced by this
comparison test and the face operator f . Thus, in the final object, only =gsm

and f are necessary. If a simplicial set is identified with the five operations above,
it is clear that the coercion coersmst

chcm (and therefore the inheritance relationship)
can be interpreted as a forgetful mapping.

8 Related work

In the previous sections we have mentioned, when necessary, references both
to the theory of object-oriented programming and to the algebraic specification
field. In this section, we will focus on papers dealing with the interaction between
Symbolic Computation and Type Theory.

The paper should be first read in the context of our previous papers on the
EAT system: [Lambán et al. 1999b] (where implementation issues were math-
ematically modeled), [Lambán et al. 2003] (where the relationship with hidden
specifications and coalgebras was explored) and [Domı́nguez et al. 2001] (where
our constructions were expressed in an institutional framework; for the concept
of institution, see [Mosses 1989] or [Calmet and Tjandra 1993]). Our approach

1718 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



seems to be quite original, in the sense that it deals with the modeling of a system
already produced: we do not try to explain the way in which a type system has
been designed or used to implement a computer algebra program, but rather to
obtain mathematical models (through algebraic specifications machinery) in or-
der to have enough resources to reason on the internal processes of computation
in the EAT and Kenzo systems.

Nevertheless, it is clear that our research direction is not separate from the
main topics in type systems for Symbolic Computation. We will briefly review
some of these topics.

In a first block of papers, we find those related to, or inspired by, the sys-
tem Axiom (previously Scratchpad) [Jenks and Sutor 1992]. And the main ref-
erence should be the work explaining the ideas used in the development of
Axiom, [Davenport and Trager 1990] for instance. There are several differences
between our approach and the one of Axiom. A first source of differences stems
from the systems themselves: Axiom has been designed to be a general pur-
pose Computer Algebra system and Kenzo is a special purpose program cre-
ated to compute homology and homotopy groups. In addition, the research in
[Davenport and Trager 1990] focused on a system in progress aimed, among oth-
ers things, at explaining the type system and using it to structure libraries; on
the contrary our objective is not to influence the Kenzo system (which is running,
and well, since several years ago), but rather to introduce tools to reason on its
results. From a technical point of view, Axiom is based on a type system which
is explicitly second-order (through the notions of category and domain), while
Kenzo is directly constructed on CLOS and then the dynamic typing strategy
of Common Lisp is used. We claim that, in order to specify EAT and Kenzo,
the standard first-order approach is enough (this is the reason why we rely on
[Loeckx et al. 1996] and [Goguen and Malcolm 2000], for instance, and not on
higher-order techniques in algebraic specification, such as [Broy 1988] for ex-
ample), even if the implementation uses (higher-order) functional programming
intensively. Finally, a last difference between the work on Axiom and our ap-
proach is the relevance of infinite data structures. Even if in Axiom domains
can be implicitly infinite and infinite data structures (as streams or series) can
be managed in it (see [Burge and Watt 1987]), in EAT and Kenzo (and, indeed,
in any general system of computation in Algebraic Topology) this feature must
be explicitly managed. Or, rather, the unusual aspect is that both finite and
infinite objects (effective and locally effective objects, in Sergeraert’s terminol-
ogy [Rubio and Sergeraert 1993], [Rubio 2001]) must be considered together (see
the notion of effective homology in the appendix): with the first ones, we can
compute (the Betti numbers of a chain complex of finite type, for instance) and
the second ones can be handled (by means of certain functors) and are used for
computing with their elements (computing the faces of a simplex, for example;

1719Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



no difference with Axiom on this second aspect).
The notion of coercion has been used by several authors in the field

of Symbolic Computation, in particular by Weber [Weber 1992, Weber 1994,
Weber 1995] and Doye [Doye 1999, Doye 1997]. Weber’s approach is more “syn-
tactic” in nature: he deals with the notion of coercion (and the related concept of
coherence) in type systems for Computer Algebra packages and is interested in
type inference, and not, as in our case, in the abstract data type, model-based,
point of view. Doye’s perspective is closer to ours, since he uses order-sorted
algebras, but with the aim of proving the (general and algorithmic) existence of
coercions for pairs of Axiom types. In our case, a coercion is used to model, at
the algebraic level, an already existing relationship at the implementation level
between data structures: the relationship induced by inheritance in an object-
oriented programming language (hence, both the existence and the algorithmic
nature of the relation are a priori known).

Last in this block, the Weyl computer algebra substrate [Zippel 1993] is a
system written, as Kenzo, in CLOS. The Weyl system provides an infrastructure
to develop computer algebra programs embedded in more general applications
(integrating numerical methods and user interfaces, for example). However, our
objective is to give a superstructure to reason on some concrete systems. An inter-
esting question (but quite unrelated to our research project) is to know whether
the Kenzo system could be suitably reprogrammed on the Weyl substrate. An-
other problem, closer to our perspective, is to study whether our techniques can
be, more o less directly, applied to programs written on Weyl.

A second source of references on these topics comes from the
works by Calmet et al. [Calmet and Tjandra 1993, Calmet et al. 1993,
Homann and Calmet 1995]. These papers deal with the problem of knowledge
representation and, particulary, with the representation of mathematical knowl-
edge by means of algebraic structures. The formalism used for the specifications
in the language Formal [Calmet and Tjandra 1993] is that of unified algebras
[Mosses 1989], which allows the analyst to calculate in an integrated way with the
elements and with the sorts of a specification. This point of view could be used as
an alternative approach to model the two-layer organization of EAT and Kenzo
data structures: computation with algebraic structures and computation with
the elements of algebraic structures (these two layers are also explicitly present
in Weyl [Zippel 1993], through the notions of domain and domain element, and
implicitly in Axiom [Jenks and Sutor 1992]). More work will be necessary to
know whether the approaches of [Calmet and Tjandra 1993] and this paper can
be formally integrated.

Finally, we must investigate whether our techniques can be ap-
plied to more general systems of Symbolic Computation such as Magma
[Cannon and Playoust 1997], Axiom [Jenks and Sutor 1992] or Aldor [ALDOR]

1720 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



(and, related to it, the application to the Domains package of Maple
[Monagan et al. 2002]). Further investigation is needed at this point.

9 Conclusions and further work

This paper deals with the specification of the simple inheritance mechanisms
used in a symbolic computation system, known as Kenzo. To this aim, two
alternative approaches based on hidden specifications and coercions have been
explored. The first approach implies declaring both sorts involved in inheritance
as hidden sorts. In this case, the two structures which take part in the inheritance
are considered at same level and the coercion operation is a constructor which
obtains one structure after forgetting some characteristics of the other. The
second idea involves declaring one of this sorts visible and then consider one
structure as a previous auxiliary data structure to build the other structure. In
our case, the first idea seems more natural, but implies more technical difficulties.
These approaches model quite closely the simple inheritance mechanisms used
in Kenzo and allow us to specify some polymorphic operations of this system.
These techniques are used to specify some examples directly extracted from the
system.

This work may continue along different lines. On the one hand, it will be
necessary to translate these ideas from the specification inheritance to the im-
plementation inheritance field, since our actual interest is to explain, as close
as possible and in a formal way, the object-oriented features of the Kenzo sys-
tem. Another line is the study of the multiple inheritance present in Kenzo too.
This is a difficult problem that requires further investigation. Finally, the ques-
tions raised in the previous section (in particular, the relationships with Weyl
[Zippel 1993] and Formal [Calmet and Tjandra 1993]) must be elucidated.

Acknowledgements

This work has been partially supported by MEC, project MTM2006-06513 and
by Comunidad Autónoma de La Rioja, project ANGI2005/19. We wish to thank
to an anonymous referee for valuable comments which have improved the final
version of this paper.

References

[Abadi and Cardelli 1996] M. Abadi and L. Cardelli, A theory of objects. Springer
(1996).

[ALDOR] The Aldor programming language. http://www.aldor.org.
[Cannon and Playoust 1997] W. Bosma, J. Cannon, and C. Playoust, The Magma al-

gebra system I: The user language. J. Symbolic Comput. 24 (1997) 235-265.

1721Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



[Breazu-Tannen et al. 1991] V. Breazu-Tannen, T. Coquand, C. Gunter, and
A. Scedrov, Inheritance as explicit coercion. Inform. and Comput. 93 (1991)
172-221.

[Broy 1988] M. Broy, Equational specification of partial higher-order algebras. Theo-
ret. Comput. Sci. 57 (1988) 3-45.

[Bruce 1992] K. Bruce, The equivalence of two semantic definitions for inheritance
in object-oriented languages. In Mathematical Foundations of Programming Se-
mantics, edited by S.D. Brookes, M.G. Main, A. Melton, M.W. Mislove, and D.A.
Schmidt. Lecture Notes in Comput. Sci. 598 (1992) 102-124.

[Bruce and Wegner 1990] K. Bruce and P. Wegner, An algebraic model of subtype
and inheritance. In Advances in Database Programming Language, edited by
F. Bancilhon and P. Buneman. ACM Press/Addison-Wesley (1990) 75-96.

[Burge and Watt 1987] W.H. Burge and S.M. Watt, Infinite structures in SCRATCH-
PAD II. In Proc. of European Conference on Computer Algebra, edited by J.H.
Davenport. Lecture Notes in Comput. Sci. 378 (1987) 138-148.

[Calmet et al. 1993] J. Calmet, K. Homann, and I.A. Tjandra, Unified domains and
abstract computational structures. In Proc. of Artificial Intelligence and Symbolic
Mathematical Computation, edited by J. Calmet and J.A. Campbell. Lecture Notes
in Comput. Sci. 737 (1993) 166-177.

[Calmet and Tjandra 1993] J. Calmet and I.A. Tjandra, A unified-algebra-based spec-
ification language for symbolic computing. In Proc. of Design and Implementation
of Symbolic Computation Systems, edited by A. Miola. Lecture Notes in Comput.
Sci. 722 (1993) 122-133.

[Cardelli 1988] L. Cardelli, A semantics of multiple inheritance. Inform. and Comput.
76(2) (1988) 138-164.

[Carlsson and Milgram 1995] G. Carlsson and R. J. Milgram, Stable homotopy and
iterated loop spaces. In Handbook of Algebraic Topology, edited by I.M. James.
North-Holland (1995) 505-583.

[Cerioli et al. 1999] M. Cerioli, T. Mossakowski, and H. Reichel, From total equa-
tional to partial first-order logic. In Algebraic Foundations of Systems Specification,
edited by E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner. Springer (1999) 31-
104.

[Davenport and Trager 1990] J.H. Davenport and B.M. Trager, Scratchpad’s view of
algebra I: Basic commutative algebra. In Proc. of Design and Implementation of
Symbolic Computation Systems, edited by A. Miola. Lecture Notes in Comput. Sci.
429 (1990) 40-54.

[Domı́nguez et al. 2001] C. Domı́nguez, L. Lambán, V. Pascual, and J. Rubio, Hidden
specification of a functional system. In Proc. of Computer Aided Systems Theory,
edited by R. Moreno-Daz, B. Buchberger, and J.L. Freire. Lecture Notes in Comput.
Sci. 2178 (2001) 555-569.

[Domı́nguez and Rubio 2001] C. Domı́nguez and J. Rubio, Modeling inheritance as
coercion in a symbolic computation system. In Proc. of International Symposium
on Symbolic and Algebraic Computation, edited by B. Mourrain. ACM Press (2001)
107-115.

[Domı́nguez et al. to appear] C. Domı́nguez, L. Lambán and J. Rubio, Object ori-
ented institutions to specify symbolic computation systems. To appear in Rairo-
Theor. Inform. Appl.

[Dousson 1999] X. Dousson, Homologie effective des classifiants et calculs de groupes
d’homotopie. Thèse, Institut Fourier, Grenoble, France (1999).

[Dousson et al. 1999] X. Dousson, F. Sergeraert, and Y. Siret, The
Kenzo program. Institut Fourier, Grenoble France (1999).
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo.

[Doye 1997] N. Doye, Order Sorted Computer Algebra and Coercions, PhD thesis,
University of Bath, United Kingdom (1997).

1722 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



[Doye 1999] N. Doye, Automated coercion for Axiom. In Proc of International Sym-
posium on Symbolic and Algebraic Computation, edited by S. Dooley. ACM Press
(1999) 229-235.

[Geuvers et al. 2002] H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg, A con-
structive algebraic hierarchy in Coq. J. Symbolic Comput. 34 (2002) 271-286.

[Goguen and Malcolm 2000] J.A. Goguen and G. Malcolm, A hidden agenda. Theo-
ret. Comput. Sci. 245(1) (2000) 55-101.

[Goguen and Meseguer 1992] J.A. Goguen and J. Meseguer, Order-sorted algebra I:
Equational deduction for multiple inheritance, overloading, exceptions and partial
operations. Theoret. Comput. Sci. 105(2) (1992) 217-273.

[Homann and Calmet 1995] K. Homann and J. Calmet, Combining theorem proving
and symbolic mathematical computing. In Integrating Symbolic Mathematical Com-
putation and Artificial Intelligence, edited by J. Calmet and J.A. Campbell. Lecture
Notes in Comput. Sci. 958 (1995) 18-29.

[Jacobs and Rutten 1997] B. Jacobs and J. Rutten, A tutorial on (co)algebras and
(co)induction. Bull. Eur. Assoc. Theoret. Comput. Sci. EATCS 62 (1997) 222-259.

[Jenks and Sutor 1992] R. D. Jenks and R. S. Sutor, Axiom: The Scientific Compu-
tation System. Springer (1992).

[Kamir and Reddy 1994] S. Kamin and U. Reddy, Two semantic models of object-
oriented languages. In Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design, edited by C. A. Gunter and J. C. Mitchell. MIT
Press (1994) 463-495.

[Lambán et al. 2003] L. Lambán, V. Pascual, and J. Rubio, An object-oriented inter-
pretation of the EAT system. Appl. Algebr. Eng. Commun. Comput. 14 (2003)
187-215.

[Lambán et al. 1999a] L. Lambán, V. Pascual, and J. Rubio, Simplicial sets in the

EAT system. In Proc. of Encuentros de Álgebra Computacional y Aplicaciones,
edited by I. Bermejo. Universidad de La Laguna, Spain (1999) 267-276.

[Lambán et al. 1999b] L. Lambán, V. Pascual, and J. Rubio, Specifying implementa-
tions. In Proc. of International Symposium on Symbolic and Algebraic Computation,
edited by S. Dooley. ACM Press (1999) 245-251.

[Loeckx et al. 1996] J. Loeckx, H. D. Ehrich, and M. Wolf, Specification of Abstract
Data Types. Wiley-Teubner (1996).

[Mac Lane 1994] S. Mac Lane, Homology. Springer, 4th edition, (1994).
[May 1982] J. P. May, Simplicial Objects in Algebraic Topology. Midway (1982).
[Meyer 1997] B. Meyer, Object-Oriented Software Construction. Prentice Hall, Second

Edition (1997).
[Monagan et al. 2002] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M.

Vorkoetter, J. McCarron, and P. DeMarco, Maple 8 Introductory Programming
Guide. Waterloo Maple Inc. (2002).

[Mossakowski et al. 2000] T. Mossakowski, A. Haxthausen, and B. Krieg-Brückner,
Subsorted partial higher-order logic as an extension of CASL. In Recent Trends
in Data Type Specification, edited by D. Bert, C. Choppy, and P. Mosses. Lecture
Notes in Comput. Sci. 1827 (2000) 126-145.

[Mosses 1989] P.D. Mosses, Unified algebras and institutions. In Proc. of Logics in
Computer Science, IEEE Press (1989) 304-312.

[Rubio 2001] J. Rubio, Locally effective objects and Artificial Intelligence. In Proc.
of Artificial Intelligence and Symbolic Computation, edited by J.A. Campbell and
E. Roanes-Lozano. Lecture Notes in Artificial Intelligence 1930 (2001) 223-226.

[Rubio and Sergeraert 1993] J. Rubio and F. Sergeraert, Locally effective objects and
algebraic topology. In Computational Algebraic Geometry, edited by F. Eyssette
and A. Galligo. Progr. Math. 109 (1993) 235-251.

[Rubio et al. 1997] J. Rubio, F. Sergeraert, and Y. Siret, EAT: Symbolic Software
for Effective Homology Computation. Institut Fourier, Grenoble, France (1997).
ftp://ftp-fourier.ujf-grenoble.fr/pub/EAT.

1723Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



[Rutten and Turi 1994] J.J.M.M. Rutten and D. Turi, Initial algebra and final coalge-
bra semantics for concurrency. In A Decade of Concurrency, Reflections and Per-
spectives, edited by J.W. de Bakker, W.P. de Roever, and G. Rozenberg. Lecture
Notes in Comput. Sci. 803 (1994) 530-582.

[Sergeraert 1990] F. Sergeraert, Functional coding and effective homology. Astérisque
192 (1990) 57-67.

[Sergeraert 1994] F. Sergeraert, The computability problem in algebraic topology.
Adv. Math. 104 (1994) 1-29.

[Sergeraert 2001] F. Sergeraert, Common lisp, typing and mathematics. Technical
report, (2001). Satellite talk at the 2001 EACA Congress.

[Snyder 1987] A. Snyder, Inheritance and the development of encapsulated software
components. In Research Directions in Object-Oriented Programming, edited by
B. Shriver and P. Wegner. MIT Press (1987) 165-188.

[Taivalsaar 1996] A. Taivalsaari, On the notion of inheritance. ACM Computing Sur-
veys 28(3) (1996) 438-479.

[CoFI Task Group 1999] The CoFI Task Group on Language Design, CASL, The
Common Algebraic Specification Language - Summary. Version 1.0. Technical re-
port (1999).

[Weber 1992] A. Weber, A type-coercion problem in computer algebra. In Proc. Ar-
tificial Intelligence and Symbolic Mathematical Computation, edited by J. Calmet,
J.A. Campbell. Lecture Notes in Comput. Sci. 737 (1992) 188-194..

[Weber 1994] A. Weber, Algorithms for type inference with coercions. In Proc. of
International Symposium on Symbolic and Algebraic Computation, edited by J. von
zur Gathen and M. Giesbrecht. ACM Press (1994) 324-329.

[Weber 1995] A. Weber, On coherence in computer algebra. J. Symbolic Comput. 19
(1995) 25-38.

[Weber 1987] P. Wegner, The object-oriented classification paradigm. In Research
Directions in Object-Oriented Programming, edited by B. Shriver and P. Wegner,
MIT Press (1987) 479-560.

[Zippel 1993] R. Zippel, The Weyl computer algebra substrate. In Proc. of Design
and Implementation of Symbolic Computation Systems, edited by A. Miola. Lecture
Notes in Comput. Sci. 722 (1993) 303-318.

Appendix

The Kenzo program

The EAT and Kenzo systems are the first significant machine programs about
classical Algebraic Topology. The data structures of these symbolic computation
systems are rich enough to require an innovative analysis. This task is undertaken
in this paper for some features of fragments of the Kenzo program. The purpose
of this section is to briefly present the Kenzo program through some examples
that reflect quite directly the implementation of some of its structures. For a
systematic description of the Kenzo system, see [Dousson et al. 1999], and for a
detailed study of the Kenzo characteristics, see [Dousson 1999].

For example, let us imagine that we want to calculate the homology group
H5(Ω2S3), i.e. the fifth homology group of the second loop space of the 3-sphere
S3 (roughly speaking, a second loop space of some topological space X is the

1724 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



space of continuous maps from the 2-sphere S2 to the space X). With Kenzo2

we construct the 3-sphere,

>(setf s3 (sphere 3)) �
[K1 Simplicial-Set]

The program returns a simple external form of the assigned object, this is
the Kenzo-object �1 (K1), a simplicial set, that is, a combinatorial version of the
requested sphere, and this object is assigned to the symbol s3.

Then we construct the second loop space of this sphere,

> (setf l2s3 (loop-space s3 2)) �
[K18 Simplicial-Group]

The combinatorial version of the loop space is highly infinite: it is a combina-
torial version of the space of continuous maps S2 → S3 but functionally coded
as a small set of functions in a simplicial group object, that is, a simplicial set
endowed with a group structure compatible with the simplicial structure.

The homology groups of an object such as a chain complex, a simplicial set
or a simplicial group, are computed by the Kenzo function homology. Now, we
request the fifth homology group:

> (homology l2s3 5) �
homology in dimension 5:

Component Z/3Z

Component Z/2Z

---done---

and the result H5(Ω2S3) = Z2⊕Z3 is obtained in 1 second with a 400 MHz PC.
Let us study more carefully these structures examining, with the help of the

CLOS function inspect, how they are stored on the computer memory.

> (inspect s3) �
The window displayed by this Lisp statement is shown in Figure 1.

Figure 1 is an example of how inspect displays a CLOS object: one line
for each slot of the object; the name of the slot appears before the symbol
*. Without going into excessive details, let us explain that, in our case, the
essential slots of this simplicial set object are basis (encoding an algorithm
that associates a list of simplices of dimension n to each natural number n),
cmpr (encoding a comparison test between simplices) and face (encoding the
face operators for each simplex). The rest of the slots appear by inheritance from
other classes (see more details on inheritance below). Let us stress that the three
most relevant slots are of functional nature (primitive functions or user-defined

2 The small Lisp statements showed for illustration have really been run in the Kenzo
program under Allegro Common Lisp. The Lisp prompt is here ‘>’ and the maltese
cross � corresponds to the <Return> key that asks for the evaluation of the type-in
statement.

1725Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



Figure 1: Inspect of s3

lexical closures). This feature has been very precisely reflected in the final object
described in Section 6.

We display the l2s3 structure as well so they may be compared.

> (inspect l2s3) �
See the inspect window in Figure 2.

Figure 2: Inspect of l2s3

Comparing Figure 1 and Figure 2, it is clear that l2s3 contains all the slots
of the previous simplicial set structure. This is due to the fact that in Kenzo the
simplicial group class has been defined as a subclass of the simplicial set class.

1726 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



In Category Theory, it is said that there is a forgetful functor from the category
of simplicial groups to the category of simplicial sets. In our algebraic setting,
this implies considering that the inheritance relationship “forgets” some of the
slots. This characteristic of Kenzo has also been reflected in Section 6, on our
algebraic specified models.

The new slots in this simplicial group class are grml and grin, which de-
fine the multiplication and inverse operations of the group, respectively. The
aprd and kfll slots belong to this class because, besides, the simplicial group
class inherits from another classes, particulary from the algebra class (aprd en-
codes the algebra product) and the Kan class (kfll encodes a Kan “hat”); see
[Dousson et al. 1999] for a description of these structures.

An essential difference between the structures s3 and l2s3 is that
the first one is a finite structure, effective in Sergeraert’s terminology
[Rubio and Sergeraert 1993], which is the direct implementation of a finite sim-
plicial set; namely, a combinatorial version of the topological space S3. Nev-
ertheless, l2s3 is an implementation of an infinite space, implementation that
simulates this non-finiteness in such a way that all the information necessary for
the calculations is accessible. This information will be always of a local nature,
that is to say, related to one element or a finite set of elements which are near,
in some (geometric or algebraic) sense. So, these structures are called locally ef-
fective objects. In this work, only locally effective objects have been considered.
The basis slot reflects this characteristic, and stores a mapping from dimensions
to lists of the non-degenerate simplices of the simplicial set if these lists are fi-
nite, i.e. corresponds with an effective object (this can be seen in Figure 1: the
slot basis is a lexical closure). Otherwise (that is to say, if the simplicial set is
infinite in some dimensions or if no information on its cardinality is available to
the system), the keyword :LOCALLY-EFFECTIVE is stored in this slot (see Figure
2). Then, in the first case, we can ask for the list of non-degenerate simplices of
s3, for instance in dimension 3:

> (basis s3 3) �
(S3)

It consists of a unique element, the “fundamental” simplex of S3, which is called
s3 too. In the second case, we cannot obtain similar information from the l2s3

object since the “list” of non-degenerate simplices in dimension 3 of the encoded
space is infinite:

> (basis l2s3 3) �
;; Error: The object [K18 Simplicial-Group] is

locally-effective.

Nevertheless, we can work with particular simplices of this simplicial group; we
can compare if two simplices are equal, calculate their faces, etc. For example:

1727Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



> (face l2s3 0 3 (loop3 1 (loop3 1 ’s3 1) 1)) �
<AbSm - <<Loop[<<Loop[0 s3]>>]>>>

which constructs the face ∂3
0 of a simplex of l2s3.

Another important aspect is that operators have a homogeneous interface for
every kind of object. So, to calculate the face ∂3

0 of the “fundamental” simplex
of s3 we can use the same function:

> (face s3 0 3 ’s3) �
<AbSm 1-0 *>

In this operator, we can identify two different kinds of arguments: the first ar-
gument and the rest. The first argument determines the “ambient space” where
the calculations will take place. As data objects, they are rather “hidden”, be-
cause even if their structure can be explicitly explored by means of inspect (see
Figures 1 and 2), their internal constitution cannot be shown: the slot values are
lexical closures. The conclusion is that the objects associated to s3 or l2s3

only have behavior. They are purely observational (over given arguments for the
lexical closures that compose them). By contrast, the rest of arguments are “vis-
ible”, in the sense that their structure is completely known. This characteristic
is also shared by the results of the applications, namely the corresponding ab-
stract simplices, like <AbSm 1-0 *>: it is the degeneracy η1η0 of the base point
(denoted by *) of the sphere; and their structure is completely “visible” from
their machine representation. Note that “visible” data can be both constants
(as the integers 0 or 3, for instance) or generated (as <AbSm 1-0 *>). This is
to be compared with the standard approach in hidden specification, where each
visible datum is considered as constant (see [Goguen and Malcolm 2000], page
63, and our presentation in Section 2). In Section 4 we present a more natural
approach, modeling more accurately the situation in Kenzo (see in [Rubio 2001]
how our technique can be also applied to other cases).

An important concept in Kenzo, which is stored in the slot efhm, is that
of effective homology [Sergeraert 1994]. An object with effective homology is a
“mixed” object with effective and locally effective features (an effective object
such as s3 can be considered, in particular, locally effective), that allows to ben-
efit from both features: the locally effective coding of “infinite” objects allows to
solve apparent difficulties of non-finiteness, while the effective coding allows to
obtain information of global nature, such as the homology of the object. The two
types of coding are related through hybrid objects, basically, homotopy equiva-
lences between effective chain complexes and locally effective chain complexes.
There is an example of such hybrid in the homotopy equivalence in the efhm slot
(see Figure 2) of the object l2s3 among the locally effective chain complexes
K18 and K251 and the effective chain complex K247. Without going into details,
this homotopy equivalence is a tool that allows to calculate the homology of a
locally effective object, in this case K18 (l2s3), by building an effective object

1728 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



K247 with the same homology (this object can be understood as a description of
the homology of the previous object), through an intermediate object K251 (see
[Sergeraert 1994, Sergeraert 1990] for a detailed description). We can reach this
auxiliary object:

> (K 251) �
[K251 Chain-Complex]

This object is really a chain complex. If we try to obtain the fifth homology
group of this chain complex:

> (homology (K 251) 5) �
;; Error: I don’t know how to determine the effective homology

of: [K251 Chain-Complex] (Origin: (BICONE [K111 Reduction

K95⇒K33] [K235 Reduction K233⇒K33]).

the program fails because the system has not enough knowledge to compute the
homology of such a locally effective chain complex. Let us observe this object in
detail:

> (inspect (K 251)) �
See the inspect window in Figure 3.

Figure 3: Inspect of K251

The chain complex class is one of the most basic in Kenzo. Its essential slots
(in the locally effective case) are cmpr (encoding the equality between elements)
and dffr (encoding the differential maps). Both are functional, and this fact has
also been reflected in the final object in the paper. The slots that have been not
described correspond to the internal organization of the software (as grmd, idnm
or orgn).

The chain complex class is inherited, in particular, by the simplicial set class
(this is why every slot in Figure 3 also appears in Figures 1 and 2).

We insist that inheritance in the case of the simplicial group/simplicial set is
quite natural because it is generally admitted that a simplicial group is (in par-

1729Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...



ticular) a simplicial set, and the is a relationship is a “standard model” to un-
derstand object-oriented inheritance (see [Weber 1987], for instance). However,
usually in Algebraic Topology it is said that a simplicial set has (canonically)
associated a chain complex, but it is not said that a simplicial set is a chain
complex. Indeed, in this case, inheritance has been used to implement a has a

relationship. But, note that, in category theory terminology, there is a functor
F from the simplicial sets category to the chain complexes category and if we
consider the idea of Eilenberg-MacLane [May 1982], who replaced the notion of
simplicial set by that of FD-complex, we obtain a forgetful functor between this
structure and the chain complex structure. This was the approach chosen to
write Kenzo and, coherently, it is the way of working reflected in our models of
Section 6.

At present the Kenzo program has already computed homology groups very
difficult to obtain using old methods or unreachable so far with “classical” Al-
gebraic Topology, even from a theoretical point of view. To illustrate this point,
let us consider the homology group H5(Ω3Moore(Z2, 4))3 which is “in principle”
reachable using old methods, see [Carlsson and Milgram 1995], but experience
shows even the most skillful topologists have some difficulties to determine it.
With the Kenzo program, we construct the third loop space of the Moore space:

> (setf l3m4 (loop-space (moore 2 4) 3)) �
[K291 Simplicial-Set]

and then its fifth homology-group is requested:

> (homology l3m4 5) �
homology in dimension 5:

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

---done---

and the result H5(Ω3Moore(Z2, 4)) = Z
5
2 is obtained in 1m30s with a 400 MHz

PC.
As the nature of this mathematical result (namely, that H5(Ω3Moore(Z2, 4))

is Z
5
2) can be a bit controversial (because no human seems capable of confirming

or refuting this fact), it is quite clear that software reliability, in the case of the
Kenzo program, becomes a main concern. We are trying to give the first steps in
order to obtain a modeling of this system, with the aim of devising theoretical
resources to reason on internal program processes.

3 The space Moore(Z2, 4) is a “canonical” connected space that only have non-trivial
homology in dimension 4, namely Z2.

1730 Dominguez C., Rubio J., Sergeraert F.: Modeling Inheritance ...


