
Verifying Real–Time Properties of tccp Programs

Maŕıa Alpuente
(Technical University of Valencia, Spain

alpuente@dsic.upv.es)

Maŕıa del Mar Gallardo
(University of Malaga, Spain

gallardo@lcc.uma.es)

Ernesto Pimentel
(University of Malaga, Spain

ernesto@lcc.uma.es)

Alicia Villanueva
(Technical University of Valencia, Spain

villanue@dsic.upv.es)

Abstract: The size and complexity of software systems are continuously increasing,
which makes them difficult and labor-intensive to develop, test and evolve. Since con-
current systems are particularly hard to verify by hand, achieving effective and au-
tomated verification tools for concurrent software has become an important topic of
research. Model checking is a popular automated verification technology which allows
us to determine the properties of a software system and enables more thorough and less
costly testing. In this work, we improve the model–checking methodology previously
developed for the timed concurrent constraint programming language tccp so that more
sophisticated, real–time properties can be verified by the model–checking tools. The
contributions of the paper are twofold. On the one hand, we define a timed extension
of the tccp semantics which considers an explicit, discrete notion of the passing of
time. On the other hand, we consistently define a real–time extension of the linear–
time temporal logic that is used to specify and analyze the software properties in tccp.
Both extensions fit into the tccp framework perfectly in such a way that with minor
modifications any tccp model checker can be reused to analyze real–time properties.
Finally, by means of an example, we illustrate the improved ability to check real–time
properties.

Key Words: timed concurrent constraint paradigm, model checking, temporal logic

Category: D.2.4, D.3.2

1 Introduction

The ever–growing size and sophistication of software systems requires more
powerful, automated analysis and verification tools that are able to improve
the reliability of programs. When considering concurrent software, the prob-
lem of verification becomes even more acute, since correctness is more elu-
sive to capture by any but very precise formal tools. Linear temporal logic,

Journal of Universal Computer Science, vol. 12, no. 11 (2006), 1551-1573
submitted: 1/5/06, accepted: 15/10/06, appeared: 28/11/06 © J.UCS

as it is used in model–checking procedures [Clarke, Emerson and Sistla 1993,
Manna and Pnueli 1992], has been proven to be very appropriate for the veri-
fication of concurrent software. One of its attractive features is the qualitative
representation of time, which is based more on the notion of precedence of events
than on metric description.

The main problem that model–checking methodologies have to face is the
traditional state–explosion problem that makes them inapplicable to large size
systems. In the concurrent constraint paradigm ccp [Saraswat 1993], the notion
of store as valuation is substituted by the notion of store as constraint, so that
very compact state representations are obtained. This makes tccp (the timed con-
current constraint programming language of [de Boer, Gabbrielli and Meo 1999]
which extends ccp with a discrete notion of time and a suitable mechanism
to model timeouts and preemptions) especially appropriate for specifying and
analyzing timing properties of concurrent systems by model checking. Two im-
portant features of tccp are the monotonicity of the store and the maximal
parallelism of processes in execution. In other words, the store expands mono-
tonically through time, and all parallel processes are run concurrently at each
time instant.

In order to specify the desired temporal properties of the systems, both the
tccp model–checking framework defined in [Falaschi and Villanueva 2006] and
the optimized frameworks based on the symbolic and abstract algorithms of
[Alpuente et al. 2005a] and [Alpuente et al. 2004a, Alpuente et al. 2005b] rely
on the linear temporal logic LTL of [de Boer, Gabbrielli and Meo 2001], which is
especially tailored to reason with constraints. The main limitation of this frame-
work is caused by the monotonicity inherent to tccp stores. Roughly speak-
ing, information is incrementally recorded in a disordered bag (the store) so
that the relative order in which two pieces of information are stored is un-
avoidably lost. Moreover, it is also difficult to recognize whether two variables
correspond to the same incarnation of recursive procedure calls, unless some
ad-hoc “packaging” predicates are explicitly introduced in the tccp code, as
in [Alpuente et al. 2005b]. As a consequence of these shortages of the previous
model–checking framework, it is very hard to deal with quantitative temporal
properties regarding the relative precedence among tccp events such as: “from
the time instant in which y = 2 on, x will always be positive”.

In this paper, we improve the existing model–checking technology for tccp so
that sophisticated timing properties regarding temporal ordering can be natu-
rally verified. First, we define an extension of the tccp semantics which considers
an explicit, discrete notion of time. The main idea is to supply the global store
with a suitable structure which allows us to recognize the pieces of information
that are added at each time instant. A new notion of constraint entailment is
also provided for structured stores so that the resulting computational model is

1552 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

proven equivalent to the original one.
In order to improve the verification power of our model, we then introduce

new temporal operators for the logic LTL that better exploit the structure of
stores. In contrast to the metric temporal logic of [Alur and Henzinger 1994]
that annotates next–state and strong–until operators with nonnegative integer
time points, we introduce discrete–time marks to formulae instead, which suf-
fices to model synchronous real–time systems. This also makes it different from
[Alur and Henzinger 1994], which was devised to model dense time with discrete
clocks.

By means of an example, we also compare the advantages of using tccp speci-
fications w.r.t. a different approach for modeling and verifying real–time systems
which is based on timed automata. Timed automata [Alur and Dill 1994] are an
extension of Büchi automata with real–valued variables that model the clocks
that describe the passing of time and are also used to postpone certain transi-
tions until the corresponding deadline has been reached. Several model checkers,
such as Uppaal [Larsen, Petterson and Yi 1997] and Kronos [Yovine 1997], have
been developed to analyze timed automata w.r.t. a particular class of real–time
temporal logic formulae. As we show, the typical time restrictions of real–time
systems can be described in tccp by using the original language sentences. More
specifically, clocks can be implemented as time constraints, and then handled as
ordinary constraints by the program. Thus, real time is introduced in tccp in a
natural manner, which makes feasible extending tccp model checkers to analyze
real–time properties in a simple way.

The paper is organized as follows. In Section 2, we briefly introduce the essen-
tials of model–checking methods for tccp, as defined in [Alpuente et al. 2004a,
Alpuente et al. 2005a, Alpuente et al. 2005b, Falaschi and Villanueva 2006]. In
Section 3, we introduce the notion of structured store and formalize the new
operational semantics for tccp augmented with time. In Section 4, we extend
the LTL logic of [de Boer, Gabbrielli and Meo 2001] so that the ability to rea-
son about temporal events in structured stores is improved. This is achieved by
introducing the notion of just entailed constraint as well as a suitable notation
for the streams which are used in tccp to record the change of state: each single
variable is associated to a stream (implemented as a logical list); that is, each
element of the list represents the value of the variable at a given time instant.
Section 5 formulates our method to verify real–time properties in tccp. Finally,
in Section 6 we conclude. Proofs of all technical results of the paper are given in
Appendix A.

2 Model Checking for tccp

Model checking is an automatic technique for verifying finite state concurrent
systems [Manna and Pnueli 1992]. It consists of three main tasks:

1553Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

1. Modeling the system to be analyzed using a modeling language. Since the
model built represents a non–deterministic concurrent system, its execution
will typically explore many different paths, which are usually formalized by
using a trace–based operational semantics given to the modeling language.

2. Specifying the desirable properties that the model must fulfill. Temporal
logics such as linear temporal logic (LTL) or branching time logic (CTL) are
frequently used to express both safety and liveness properties.

3. Running an automatic verification technique to check the correctness of the
model w.r.t. a specific temporal property. Model–checking algorithms work
by exhaustively inspecting the state space associated to the model, searching
for traces that do not satisfy the desirable property.

The main limitation of model checking is known as the state explosion prob-
lem, which occurs when the model to be verified generates too many states to
be recorded by the model–checking tool. Using tccp as a modeling language
partially mitigates this problem since tccp permits very compact state represen-
tations thanks to the use of constraints.

In [de Boer, Gabbrielli and Meo 1999], the Timed Concurrent Constraint lan-
guage (tccp for short) was defined as an extension of the Concurrent Constraint
Programming language ccp [Saraswat 1993]. In the cc paradigm, the notion of
store as valuation is replaced by the notion of store as constraint. The compu-
tational model is based on a global store where constraints are accumulated and
on a set of agents that interact with the store. The model is parametric w.r.t. a
cylindric constraint system C defined as follows.

Definition 1. Let 〈C,≤,�, true, false〉 be a complete algebraic lattice where �
is the lub operation, and true, false are the least and the greatest elements of
C, respectively. Assume that Var is a denumerable set of variables, and for each
x∈Var , there exists a function ∃x :C→C such that, for each u, v∈C:

1. ∃xu ≤ u 3. ∃x(u � ∃xv) = ∃xu � ∃xv

2. u ≤ v then ∃xu ≤ ∃xv 4. ∃x(∃yu) = ∃y(∃xu)

Then, 〈C,≤,�, true, false,Var , ∃〉 is a cylindric constraint system.

We will use the entailment relation 	 instead of its inverse relation ≤. For-
mally, given u, v ∈ C, u ≤ v ⇐⇒ v 	 u.

A set of diagonal elements for a cylindric constraint system consists of a
family of elements {δxy ∈ C|x, y ∈ Var} such that

1.true 	 δxx

2.If y �=x, z then δxz = ∃y(δxy � δyz).
3.If x �=y then δxy � ∃x(v � δxy)	v.

1554 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

Diagonal elements allow us to hide local variables, as well as to implement
parameter passing among predicates. Thus, quantifier ∃x and diagonal elements
δxy allow us to properly deal with variables in constraint systems.

In tccp, a new conditional agent (now c thenA elseA) is introduced (w.r.t. ccp)
which makes it possible to model behaviors where the absence of information
can cause the execution of a specific action. Intuitively, the execution of a tccp

program evolves by asking and telling information to the store. Let us briefly
recall the syntax of the language:

A ::= stop | tell(c) | ∑n
i=1 ask(ci) → Ai | now c thenA elseA | A||A | ∃xA | p(x)

where c, ci are finite constraints (i.e., atomic propositions) of C. A tccp process
P is an object of the form D.A, where D is a set of procedure declarations of
the form p(x) :−A, and A is an agent.

Intuitively, the stop agent finishes the execution of the program and tell(c)
adds the constraint c to the store. Conditions in agent choice are key to imple-
ment synchronization in tccp. Agent

∑n
i=1ask(ci) → Ai consults the store and

non–deterministically executes the agent Ai in the following time instant, pro-
vided the store satisfies the condition ci; otherwise, if no condition ci is entailed
by the store, the agent suspends. The conditional agent (now c then A1 else A2)
can detect negative information in the sense that, if the store satisfies c, then the
agent A1 is executed; otherwise A2 is executed. A1||A2 executes the two agents
A1 and A2 in parallel. The ∃x A agent is used to hide the information regarding
x. Finally, p(x) is the procedure call agent.

The notion of time is introduced by defining a global clock which synchronizes
all agents. In the semantics of tccp, the only agents that consume time are the
tell, choice and procedure call agents. Note that, since stores grow monotonically,
it is not possible to change the value of a given variable. If we want to model
the evolution of variable values along the time, we have to deal with streams,
which allow us to handle imperative variables in the same way as logical lists are
used in concurrent logic languages. We write X = [Y |Z] for denoting a stream
X recording the current value Y of the considered variable and the stream Z

of future values of the same variable. Streams are also used in tccp as explicit
communication channels between tccp agents as illustrated by the example given
in Section 3.3.

3 Introducing Explicit Time in tccp

In this section, we propose a new computational model for the language. First,
we define the new notion of store and entailment relation, and then we extend
the original operational semantics of the language to the new formulation.

1555Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

3.1 The Structured Store

The store used by tccp can be viewed as a blackboard where information is
continuously written and never canceled. As we have shown above, the problem
is that we add information without keeping track of the insertion order so that
we cannot recover the time instant when a constraint has been added, which is
essential to analyzing temporal properties.

The following definition provides a structure to the notion of store by using
the simple notion of time as a “state counter”. Intuitively, a structured store
consists of a timed sequence of stores. Each store represents only the information
added at a given time instant by the processes that are run concurrently. Thus,
we can observe and analyze the evolution of the structured store through time.

Definition 2. We define a structured store as an infinite indexed sequence of
stores, i.e., an element of the domain Store = Cω. We denote the ith component
of a structured store st as st i, and it represents the store at time i.

Now, to work with the new structure, we redefine the notion of entailment
relation and the least upper bound (lub) of constraints. Intuitively, the infor-
mation stored up to a given time instant t is the lub of all the stores sti in the
sequence 0 ≤ i ≤ t.

Definition 3. Given a constraint c ∈ C and a structured store st ∈ Store, the
new entailment relation 	t is defined as

st 	t c⇔ (�0≤i≤tst i) 	 c

We also need to adapt the mechanism for updating the store, since we want
to add the information to the right time instant.

Definition 4. Given a structured store st and a constraint c ∈ C, the addition
of c to the store st at the time instant t, st �t c, is the structured store st′, where
each component st′i is defined as stt � c if i = t and sti otherwise.

Intuitively, the updated structured store coincides with the old one in all the
components except for component t, where constraint c is added. Moreover, we
define the union of structured stores as (st � st ′)i = st i � st ′i ∀i ≥ 0 .

3.2 Operational Semantics Augmented with Time

Now we instrument the original operational semantics of the language with the
new notions of store and constraint entailment given in definitions 2 and 3.

In Figure 1, we show the new transition relation −→∈ (A × Store × N)2

where A is the set of tccp agents given in Section 2, and N is the domain of

1556 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

natural numbers.We have augmented the configurations handled by the seman-
tics with a parameter that represents the current time instant. As will become
apparent later, the introduction of this parameter is possible because tccp agents
are totally synchronized. The idea is that, at each time instant, we introduce the
constraint generated by the agents into the right component of the structured
store. Specifically, when a tell agent adds a constraint to the store, we update
the structured store by introducing that piece of information into the compo-
nent that corresponds to the subsequent time instant. 1 In the figure, symbol
�−→ is used to indicate that it is not possible a step using relation −→, i. e., the
corresponding agent suspends.

Given a tccp program P , an agent A0, and an initial structured store st0 =
st00 · trueω ∈ Store, 2 the timed operational semantics of P w.r.t. the initial
configuration 〈A0, st

0〉, is

OT (P)[〈A0, st
0〉] = {st = st00 · st11 · · · · ∈ Store|

〈Ai, st
i〉i −→ 〈Ai+1, st

i+1〉i+1 for i ≥ 0}

Thus, for each sti ∈ Store incrementally built during the execution, the se-
mantics only records its ith component stii, which corresponds to the constraints
added at the time instant i. We assume that each trace in OT (P)[〈A0, st

0〉] is
infinite (the last configuration is repeated indefinitely if necessary).

It is immediate for a particular implementation to optimize the representation
of structured stores by getting rid of redundant information. However, we prefer
to carry on with the proposed structure in our theoretical development in order
to keep our formulation simpler.

Recall that the original tccp operational semantics (showed in Appendix A),
which we denote as O, produces monotonic sequences of stores, that is, traces of
the form s = s0 · s1 · · · where each si ∈ C and ∀i ≥ 0.si+1 	 si. In contrast, the
sequences of stores produced by the instrumented operational semantics given
in Figure 1 are non monotonic. As commented above, the ith component only
contains the set of constraints added at the time instant i.

Let us explain how to transform structured stores into standard stores. Given
the structured store st = st0 ·st1 ·· · · , then the corresponding monotonic sequence
of stores mon(st) is given by the sequence s0 · s1 · · · si · · · , where s0 = st0 and
si = �j≤istj . On the other hand, a sequence of monotonic stores produced by
the standard trace semantics of tccp determines a structured store corresponding
to the timed semantics.

The following theorem establishes the soundness and completeness of the new
operational semantics with respect to the original one.
1 Note that, in the original semantics, the information added by the tell agent is also

available only in the subsequent time instant.
2 Note that st00 represents the first component of the structured store st0.

1557Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

R1 〈tell(c), st〉t −→ 〈stop, st �t+1 c〉t+1

R2 〈∑n
i=0 ask(ci) → Ai, st〉t −→ 〈Aj , st〉t+1 if 0 ≤ j ≤ n

and st 	t cj

R3
〈A, st〉t −→ 〈A′, st ′〉t+1

〈now c thenA elseB, st〉t −→ 〈A′, st ′〉t+1
if st 	t c

R4
〈B, st〉t −→ 〈B′, st ′〉t+1

〈now c thenA elseB, st〉t −→ 〈B′, st ′〉t+1
if st �	t c

R5
〈A, st〉t �−→

〈now c thenA elseB, st〉t −→ 〈A, st〉t+1
if st 	t c

R6
〈B, st〉t �−→

〈now c thenA elseB, st〉t −→ 〈B, st〉t+1
if st �	t c

R7
〈A, st〉t −→ 〈A′, st ′〉t+1 and 〈B, st〉t −→ 〈B′, st ′′〉t+1

〈A||B, st〉t −→ 〈A′||B′, st ′ � st ′′〉t+1

R8
〈A, st〉t −→ 〈A′, st ′〉t+1 and 〈B, st〉t �−→

〈A||B, st〉t −→ 〈A′||B, st ′〉t+1

R9
〈A, st1 � ∃x st2〉t −→ 〈A′, st ′〉t+1

〈∃st1xA, st2〉t −→ 〈∃st ′xA′, st2 � ∃x st ′〉t+1

R10 〈p(x), st〉t −→ 〈A, st〉t+1 if p(x) : −A ∈ D

Figure 1: Augmented operational semantics of the language

Theorem 5. Consider a tccp agent A and an initial store s0 ∈ C. Let the struc-
tured store st0 = s0 · trueω. Then

1. If st ∈ OT (P)[〈A, st0〉], then mon(st) ∈ O(P)[〈A, s0〉].
2. If s ∈ O(P)[〈A, s0〉], then ∃st ∈ OT (P)[〈A, st0〉] such that ∀i ≥ 0.si = �j≤istj.

3.3 Case Study: A Railway Crossing

We illustrate the use of tccp as a language to specify real–time systems by
modeling the railway crossing example described in [Schneider 2000]. The system
consists of three agents: train, gate and gate controller. Each agent behaves
as follows:

train Sends near message to the controller when it is approaching the cross-
ing. It also sends the message out when it has passed through the crossing.

controller When it receives the near message from the train, it sends the
message down to the crossing gate and waits for the confirmation. When it
receives the out message, it sends the message up and waits for the confir-
mation again.

1558 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

gate When it receives the down message from the controller agent, it changes
its state to down and responds properly. It behaves similarly when it receives
the message up.

train(toC,T) :- ∃ toC’,toC”, T’,T”(
ask(true) → train(toC,T) +
ask(true) →

tell(toC = [near|toC’])||
ask (true)300 → tell(T = [enter|T’]) ||

ask (true)20 → tell(T’ = [leave|T”]) ||
tell(toC’ = [out|toC”]) ||
train(toC”,T”))

controller(toC,toG,fromG) :- ∃ toC’, toG’,fromG’(
ask(toC=[near|-]) →

tell(toC=[near|toC’]) || tell(toG=[down|toG’]) ||
ask(fromG=[confirm|-]) → tell(fromG=[confirm|fromG’]) ||

controller(toC’,toG’,fromG’)
+
ask(toC=[out|-]) →

tell(toC=[out|toC’]) || tell(toG=[up|toG’]) ||
ask(fromG=[confirm|-]) → tell(fromG=[confirm|fromG’]) ||

controller(toC’,toG’,fromG’))

gate(fromG,toG,G):- ∃ fromG’,toG’,G’(
ask(toG = [down|-]) → tell(toG=[down|toG’]) ||

ask (true)100 → tell(G = [down|G’]) ||
tell(fromG=[confirm|fromG’]) ||
gate(fromG’,toG’,G’)

+
ask(toG = [up|-]) → tell(toG=[up|toG’]) ||

ask (true)100 → tell(G = [up|G’]) ||
tell(fromG=[confirm|fromG’]) ||
gate(fromG’,toG’,G’))

init:- ∃ toC,T,ToG,fromG,G (train(toC,T)|| controller(toC,toG,fromG)||
gate(fromG,toG,G))

Figure 2: tccp model for a railway crossing

This problem can be modeled in tccp as shown in Figure 2. The timing in-
formation encoded in the example is the following: a) the train takes at least
300 seconds to reach the crossing since the near message was sent; b) the train

takes at least 20 seconds to cross the crossing; and, c) the gate takes 100 seconds
to change its position following an instruction.

In order to simplify our example, we have implemented this timing informa-
tion using ask sentences. For instance, ask(true)100 represents a delay of 100
time units for the gate agent.

It is also interesting to note how streams are used in the example to update
the values of the variables that store the position of the train and the gates at

1559Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

each time instant. These streams are used as communication channels between
processes, as illustrated in procedure init. In particular, stream toC is the com-
munication channel from agent train to controller. Similarly, toG and fromG

model the communication from controller to gate and viceversa, respectively.
Observe that the tccp implementation given in Figure 2 is a direct translation

of the description given above. Agents communicate through the channels by
adequately instantiating the corresponding streams. For instance, when train is
approaching the crossing, in order to send message near to agent controller, it
binds value near to variable toC by means of agent tell(toC = [near|toC’]).
On the other hand, controller and gate are suspended in choice agents until
they receive messages from the other agents to proceed consequently.

Note that the passing of time is implicit in the model. In the example, agents
ignore the exact time when they are executing. Although the model could be
extended to make the time explicit, it is not necessary for this example.

wEnter

sDown

wConfirmDown wLeave

sUp

wConfirmUp

near?

down!

confirm?

out?

up!

confirm?
bCross

approaching
y<300

enter
y<20

leave

aCross

near!
y:=0

y:=0 out!

wDown

gDown
y<=100

wUp

gUp
y<=100

confirm!

down?
y:=0

up?
y:=0

confirm!

Figure 3: Timed automata for the controller, train and gate processes.

In Figure 3, we show the timed automata corresponding to the agents of the
railway crossing example produced by Uppaal. Variables y in processes train
and gate are local clocks used to store the current value of time. Observe that
clocks may be assigned values to fix a local initial time which is subsequently (im-
plicitly) incremented. The automaton may use the clock values in the constraints
attached to the states to temporally suspend the firing of a transition. Automata
synchronize through input and output actions near?/near!, down?/down!, etc.

1560 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

In Section 5.2, we will show how we have extended the considered temporal
logic so that we are able to fix the current time instant when the formula is
evaluated and then easily check time constraints in tccp.

4 Introducing Explicit Time in the Logic LTL

The linear temporal logic defined in [de Boer, Gabbrielli and Meo 2001] uses
modalities in order to distinguish between the information assumed by agents
prior to their execution (the belief information, which is supposed to be produced
by the environment), and the information produced by the execution of agents
(the known information). However, when analyzing programs by model checking,
it is usual to assume that models are completely specified, i.e., the environment
is considered a part of the model to be analyzed. Therefore, in this paper, we
consider a simplified version of [de Boer, Gabbrielli and Meo 2001] where we get
rid of modalities.

Given a constraint system (C,), the syntax of the temporal formulae is

φ ::= c | ¬φ | φ ∧ φ | ∃xφ | � φ | φ U φ

The rest of the standard propositional connectives and linear temporal op-
erators are defined in terms of the above operators in the usual way: φ1 ∨ φ2 =
¬(¬φ1 ∧¬φ2), φ→ ψ = ¬φ∨ψ, ♦φ = true U φ and �φ = ¬♦¬φ. Observe that,
as formally defined below, the existential quantifier in the temporal formula ∃xφ
is used to make variable x local to φ.

Definition 6. Consider the constraint system (C,), and a sequence of stores
s = s0 · s1 · · · . The truth value of temporal formulae is defined as follows, where
s(i) = si · si+1 · · · is the suffix sequence of s starting at store si:

(1) s(i) |= c iff si 	 c
(2) s(i) |= ¬φ iff s(i) �|= φ

(3) s(i) |= φ1 ∧ φ2 iff s(i) |= φ1 and s(i) |= φ2

(4) s(i) |= ∃xφ iff s′ |= φ, for some s′ such that ∃xs
(i) = ∃xs

′

(5) s(i) |= �φ iff s(i+1) |= φ

(6) s(i) |= φ1Uφ2 iff ∃k ≥ i.s(k) |= φ2 and ∀i ≤ j < k, s(j) |= φ1

Next, we refine the LTL logic of [de Boer, Gabbrielli and Meo 2001] by means
of three improvements specially tailored to work within tccp. First, we adapt
the LTL logic to deal with structured stores. Then, we formulate a notation for
streams which eases the reasoning about a new, convenient class of constraints
that we call just entailed constraints.

1561Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

4.1 Augmented LTL Logic

In the following, we take advantage of structured stores in order to extend the
expressiveness of LTL when modeling tccp program properties.

Definition 7. Given t ∈ N, consider the constraint system (Cω,	t) and a struc-
tured store st. We define the timed satisfaction relation |=t as follows:

(1’) st |=t c iff st 	t c

(2’) st |=t ¬φ iff st �|=t φ

(3’) st |=t φ1 ∧ φ2 iff st |=t φ1 and st |=t φ2

(4’) st |=t ∃xφ iff st′ |=t φ, for some st′ such that ∃xst = ∃xst
′

(5’) st |=t �φ iff st |=t+1 φ

(6’) st |=t φ1Uφ2 iff ∃i ≥ t.st |=i φ2 and ∀t ≤ j < i, st |=j φ1

Note that subindex t in |=t is variable; it represents the time instant where
the temporal formula is evaluated. In the original logic, formulae are evaluated
making a recursion on stores. This is possible since traces contain stores which
grow monotonically. However, in order to retrieve the computed information, in
the new logic, we need all the stores in the sequence. For this reason, we evaluate
temporal formulae by making a recursion on time.

The following proposition demonstrates that the new satisfaction relation
|=t is equivalent to the original one while being able to handle time in temporal
formulae, as we will show later.

Proposition8. Given a tccp sequence of stores s = s0 ·s1 · · · , a structured store
st, i ∈ N and a temporal formula φ, then

1. s(i) |= φ iff s |=i φ

2. st |=i φ iff mon(st)(i) |= φ

The new satisfaction relation |=t will be used for two main tasks: 1) to ask
the accumulated store at a given time instant, as seen above; 2) to refine the
constraint processing within the structured stores, as described in Section 4.3.

Let us illustrate the new satisfaction relation by means of an intuitive exam-
ple. In [Alpuente et al. 2004a], we used LTL to express the properties of inter-
est by using the constraints of the underlying constraint system as the atomic
propositions of the logic. Assume that Figure 4 shows a structured store that is
produced by the execution of a program that runs under the new operational
semantics given in Figure 1. As already explained, streams are used to repre-
sent variables whose values may change during the program execution. In the
example, streams X and Z range over Z, and Y ranges on natural numbers.
Moreover, 0 < n < m is the range of indices of the structured store.

1562 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

X=[-1|X’]

n m m + 1 m + 2

X’=[1|X’’]
Y=2

X’’=[2|X’’’]
Z=[-2|Z’]

X’’’=[3|X’’’
Z’=[-3|Z’’]....

0

....

Figure 4: A Structured Store

Note that LTL allows us to reason about computation paths in terms of
sequences of stores, which is a notion that (almost) coincides with the notion
of structured store. If we use the new entailment relation (t) over structured
stores, the two notions actually do coincide. In other words, the structured store,
which is represented as an array, can be seen as a sequence of stores representing
a specific execution.

Let us now consider the original, non–timed tccp semantics O and the prop-
erty P which establishes: “if Y = 2 then, from the next time instant on, the
value of X will always be positive”. This property P holds for the structured
store shown in the example. However, it is difficult to express this property in
temporal logic unless we introduce an explicit notion of time, sinceX is a stream.
For instance, we could naively try to write P as the formula F given by

((Y = 2) → ��(¬∃X ′, N(X ′ = [N |] ∧ N ≤ 0)))

However, this expression does not match the property for two main reasons:

– F does not hold since there exists an old value of X that is negative (specif-
ically the one given by X in the example). This happens because the store
grows in a monotonic way; hence, within the original logical framework, we
cannot distinguish if that instantiation occurred before or after the time
instant m (when Y = 2).

– In addition, formula F is too restrictive since it imposes that the values of all
streams (including those modeling variables that are different from variable
X) must be positive from the time instant m + 1. This also makes F false
since variable Z has a negative value in the time instant m+ 1.

The augmented satisfaction relation |=t empowers the logic with the ability
to effectively handle streams. For instance, in the case of the previous property
P , we can simply express it as Y = 2 → ��X > 0.

1563Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

If we want to model the evolution of variables values along the time, in pure
tccp we have to deal with streams. In the next section, we introduce a mechanism
that drastically simplifies the handling of streams in tccp. In particular, we show
how to handle them as imperative variables, that is, the current value of the
variable is directly accessible without recurring over the list.

4.2 Modeling Streams

When streams are used to represent variables whose values may change, then,
at each time instant, the current value of a stream is the last value added to its
tail, as formalized in the next definition.

Definition 9. Let X be a stream, st a structured store and t ∈ N. Then, A is
the value of X in st at instant t, denoted by st |=t X = [· · ·A|As] (or simply
st |=t X = A), iff ∃m > 0 such that:

st |=t ∃A1 · · · ∃Am−1∃As.X = [A1, · · · , Am−1, A|As] and
st �|=t ∃A′∃As′.As = [A′|As′]

In addition, under these conditions, we also say that the length of stream X

in st at time t is m, in symbols len(X, st, t) = m.

For instance, if we call st the trace shown in Figure 4, then it holds that
st |=m X = 1 and st |=m+1 Z = −2.
The following notation is helpful to easily express constraints involving streams.

Definition 10. Assume that cons(X1, · · · , Xn) is a constraint regarding the cur-
rent values of streams X1, · · · , Xn, and st is a structured store. Then, st satisfies
cons(X1, · · · , Xn) in the time instant t, in symbols st |=t cons(X1, · · · , Xn), iff
st |=t X1 = A1 ∧ · · · ∧Xn = An ∧ cons(A1, · · · , An).

For instance, considering the sequence of stores in Figure 4, it holds that
st |=m+1 X + Z = 0 and st |=m+1 �(X + Z = 0).

Note that, in the temporal formulae above, we use the original names for
streams X and Z, that is, the same variable identifiers that were used when
variables were created. The auxiliary names created during the execution are
hidden, which clearly simplifies the representation of the temporal formulae.

Now, considering the trace in Figure 4 again, it holds that st |=m Y = 2 →
��X > 0 and this formula represents the property P described above in a very
concise and exact way.

1564 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

4.3 Just Entailed Constraints

Unfortunately, with this new logic, we cannot yet distinguish whether a given
property is satisfied for the first time at a given time instant; i.e., whether or
not it is a consequence of the information added to the store at a previous time
instant. This is a desirable feature to have since we sometimes want to detect
whether a specific situation is true as a consequence of an agent’s action that
has just been executed. This might help us to prevent an invalid behavior of the
system when this event is detected in advance. On the other hand, by recording
the time instant when a constraint has been added or entailed, we will be able
to verify real–time properties, as shown in the next section.

The problem we face here is that, even if we have structured the store in such
a way that the sequence of stores is not monotonic, we are dealing with a notion
of entailment (t) that makes the whole store monotonic again. This is because
we accumulate all the information added to the store up to a given instant of
time. In order to overcome this problem, we define a more refined version of the
simple constraints. These new constraints are, in some sense, more demanding
and more difficult to fulfill than the standard ones. Formally, given a constraint
c ∈ C, we introduce the new constraint c, which represents that constraint c is
now true for the first time. Note that when t = 0, all constraints are just entailed
constraints. Thus, we extend Definition 7 by adding the following two rules:

(1′′) st |=t c iff st |=t c and st �|=t−1 c

(1′′′) st |=t cons(X1, · · · , Xn) iff st |=t cons(X1, · · · , Xn) and
∃1 ≤ i ≤ n.len(Xi, st, t) > len(Xi, st, t− 1)

The above definition establishes that it is possible for a constraint c that
was just entailed in the previous time instant, to be again just entailed in the
subsequent time instant whenever a variable occurring in the constraint changes
its value. This is because we are interested in modeling all interactions among
processes through constraints, including the fact that a computation is eventually
redone.

Note that, by definition, constraints that are just entailed at a certain instant
then hold at that instant. However, the opposite is clearly not true.

5 Analysis of Real–Time Properties in tccp

In this section, we first propose a simple real–time extension for the refined LTL

logic given so far, and show how to use it for the analysis of real–time properties.

5.1 A Simple Real–Time Logic

Let us first introduce some helpful definitions. Consider the timed cylindric con-
straint system 〈CT ,≤T , true, false ,VarT , ∃〉 where CT is a set of (unstructured)

1565Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

stores that introduces a distinguished class of timing constraints that consists of
boolean expressions with the usual arithmetic operators. VarT is an infinite set
of variables used only to record times, such that Var ∩VarT = ∅, with Var being
the set of variables used in tccp programs. Let us denote with 	T the correspond-
ing entailment relation. Roughly speaking, CT stores will be constructed along
the evaluation of temporal formulae to record the precise time instants where
certain constraints of interest are proven. They will typically include expressions
of the form t = m, or t ≤ t′ +m where t, t′ ∈ VarT and m ∈ N.

Definition 11. Let F be the set of temporal formulae constructed with the
elements of C ∪ C, the usual boolean connectives and the temporal operators.
An annotated formula is an element of E = F × CT × VarT , where the first
component is a classic temporal formula, the second one is a timing constraint
to be evaluated together with the temporal formula, and the last one is used to
record the time instant when the temporal formula is proven.

The semantics of annotated temporal formulae is formalized as follows. Con-
sider 〈st, τ〉, where st is a structured store, τ ∈ CT , and 〈φ, r, t〉 ∈ E . Then,

〈st, τ〉|=m 〈φ, r, t〉 ⇐⇒ st |=m φ and τ � {t = m} 	T r

〈st, τ〉 |=m ¬〈φ, r, t〉 ⇐⇒ 〈st, τ〉 �|=m 〈φ, r, t〉
〈st, τ〉 |=m 〈φ1, r1, t1〉 ∧ 〈φ2, r2, t2〉 ⇐⇒ 〈st, τ〉 |=m 〈φ1, r1, t1〉 and

〈st, τ〉 |=m 〈φ2, r2, t2〉
〈st, τ〉 |=m ∃x〈φ, r, t〉 ⇐⇒ 〈st′, τ〉 |=m 〈φ, r, t〉 for some st′

such that ∃xst = ∃xst
′.

〈st, τ〉 |=m �〈φ, r, t〉 ⇐⇒ 〈st, τ � {t = m}〉 |=m+1 〈φ, r, t′〉
where t′ ∈ VarT is a fresh variable

〈st, τ〉 |=m 〈φ, r, tm〉U〈φ′, r′, t′〉 ⇐⇒ ∃k ≥ m.∀m ≤ j < k.

〈st, τ �j−1
i=m (ti = i)〉 |=j 〈φ, r, tm〉

〈st, τ �k−1
i=m (ti = i) |=k 〈φ′, r′, t′〉

The following proposition establishes the precise relation between LTL and
the real–time extension that we introduced.

Proposition12. Consider st ∈ Store, τ ∈ CT , φ ∈ F , t ∈ V arT , m ∈ N and
r1, r2 ∈ C. Then,

(a) 〈st, τ〉 |=m 〈φ, true, t〉 ⇐⇒ st |=m φ

(b) r1 	 r2, 〈st, τ〉 |=m 〈φ, r1, t〉 ⇒ 〈st, τ〉 |=m 〈φ, r2, t〉

Note that, as an easy consequence of (a) and (b) above, if r 	 true and
〈st, τ〉 |=m 〈φ, r, t〉, then st |=m φ.

1566 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

5.2 Case study: A railway crossing (II)

Consider again the tccp model for the railway crossing example given in Sec-
tion 3.3. We can now specify different timed properties for this model by using
the real–time logic outlined in Section 5. For instance:

Property 1: “When the train is near the crossing, it takes less than 300 seconds
to lower the gate”.

�〈toC = near,true, t〉 → �♦〈G = down, t′ ≤ t+ 300, t′〉

Observe that in this annotated formula we are imposing two important real–
time constraints which are difficult to express with other formalisms. On the
one hand, the state where gate is downmust occur after train sends message
near (down must be a new value just given to stream G). On the other hand,
even if many future states may exist where gate has just got down, we are
only interested in a future state occurring before time passes 300 seconds.

Property 2: “When the train enters the crossing, the gate is down, and it
remains down at least 20 seconds”.

�(〈T = enter, true, t0〉 → 〈G = down, true, t1〉U〈G = up, t0 + 20 ≤ t2, t2〉)

Note that time variables in these examples correspond to clocks in the timed
automata–based approach. In our case, time variables store the time instant
when a particular formula is evaluated, and we are able to reason about time
constraints regarding their values in a very natural way.

In order to verify these properties on tccp programs, it suffices to extend
the standard model–checking algorithms by recording how every layer of the
structured store represents a clock tick.

5.3 Verification of Real–Time Properties by Model Checking

It is mostly technical and not difficult to adapt the model–checking methodology
introduced in [Falaschi and Villanueva 2006] to deal with the new tccp model
and real–time formulae. The explicit model–checking algorithm described there
works as follows:

1. A tccp program following the syntax defined in Section 2 is translated into
a tccp Structure, which is similar to a Kripke structure.

2. The temporal formula to be verified, following the syntax given in Defini-
tion 6 is used to construct an extension of the tccp Structure called the
model–checking graph.

1567Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

3. This graph is explored while looking for a counterexample of the formula.

Some aspects which are specific to tccp must be considered. tccp programs
can have an infinite number of states. For a specific kind of infinite–state sys-
tems and properties, the algorithm is able to find the counterexample in a finite
number of steps. However, in some cases, the algorithm might not finish. For
this reason, a time bound is introduced so that when such a bound is reached,
the execution of the algorithm is stopped. For a detailed description, we refer to
[Falaschi and Villanueva 2006].

The construction of the tccp Structure relies on the operational semantics of
the language. When we consider the real–time extension proposed in this work we
need to deal with structured stores and then substitute the traditional entailment
relation by the new one augmented with time. Nevertheless, both modifications
are straightforward due to the fact that the states of the tccp Structure are
explicit. Once we have introduced the temporal component in the model (i.e.,
in the tccp Structure), and by using a constraint system empowered to deal
with arithmetic constraints as we described in Definition 11, the construction
of the model–checking graph is merely technical. The rest of procedures such
as computing the strong connected components and finding the counterexample
remain unchanged.

6 Conclusions

In this work, we propose an approach to deal with real–time properties within
the timed concurrent constraint programming framework tccp. This allows us to
improve the model–checking methodology previously developed for tccp so that
more sophisticated, quantitative properties can be verified by model–checking
tools. Since we find that the essential drawback of the original tccp framework is
that tccp stores are unstructured, first we structured the store and then consis-
tently adapted the operational semantics of the language as well as the LTL logic
to deal with time instant marks. We have also proposed a simple methodology to
handle streams within LTL formulae which is based on the notion of just entailed
constraint. Finally, we have refined the LTL logic in order to model real–time
properties, and we have illustrated our method by means of a leading example.

We are currently working on a prototype implementation of our methodology.
As future work, we plan to explore the possibility of also dealing with past real–
time formulae.

1568 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

Acknowledgments

This work has been partially supported by the EU (FEDER) and the Spanish
MEC under grant TIN2004-7943-C04, and the ICT for EU-India Cross-Cultural Dis-
semination ALA/95/23/2003/077-054 project.

References

[Alpuente et al. 2004a] M. Alpuente, M.M. Gallardo, E. Pimentel, and A. Villanueva.
Abstract Model Checking of tccp programs. In Proc. of the 2nd Works. on Quan-
titative Aspects of Programming Languages (QAPL 2004), volume 112 of ENTCS,
pages 19–36. Elsevier Science, 2004.

[Alpuente et al. 2005a] M. Alpuente, M. Falaschi, and A. Villanueva. A Symbolic
Model checker for tccp Programs. In Proc. of the Int. Works. on Rapid Integration
of Software Ingeneering techniques (RISE’04), LNCS 3475, pages 45–56. Springer
Verlag, 2005.

[Alpuente et al. 2005b] M. Alpuente, M.M. Gallardo, E. Pimentel, and A. Villanueva.
A Semantic Framework for the Abstract Model Checking of tccp programs. Theo-
retical Computer Science, 346:58–95, 2005.

[Alur and Dill 1994] R. Alur and D. L. Dill. A theory of timed automata Journal of
Theoretical Computer Science, 126(2):183–235, 1994.

[Alur and Henzinger 1994] R. Alur and T. A. Henzinger. A really temporal logic.
Journal of the ACM, 41(1):181–204, 1994.

[de Boer, Gabbrielli and Meo 1999] F. S. de Boer, M. Gabbrielli, and M. C. Meo. A
Timed Concurrent Constraint Language. Information and Computation, 161:45–83,
2000.

[de Boer, Gabbrielli and Meo 2001] F. S. de Boer, M. Gabbrielli, and M. C. Meo. A
Temporal Logic for reasoning about Timed Concurrent Constraint Programs. In
Proc. of 8th Int. Symp. on Temporal Representation and Reasoning, pages 227–233.
IEEE Computer Society Press, 2001.

[Clarke, Emerson and Sistla 1993] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Au-
tomatic verification of finite-state concurrent systems using temporal logic specifi-
cations. In Proc. of the 10th ACM Symp. on Princ. of Progr. Languages, pages
117–126. ACM Press, 1983.

[Falaschi and Villanueva 2006] M. Falaschi and A. Villanueva. Automatic Verification
of Timed Concurrent Constraint programs. Theory and Practice of Logic Program-
ming, 6(3):265–300, 2006.

[Larsen, Petterson and Yi 1997] K.G. Larsen, P. Petterson, and W. Yi. Uppaal in a
nutshell Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[Manna and Pnueli 1992] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems - Specification. Springer-Verlag, New York, 1992.

[Saraswat 1993] V. A. Saraswat. Concurrent Constraint Programming Languages.
The MIT Press, Cambridge, MA, 1993.

[Schneider 2000] S. Schneider. Concurrent and Real–time Systems. The CSP Ap-
proach. Wiley, 2000.

[Yovine 1997] S. Yovine. KRONOS: A Verification Tool for Real–Time Systems Jour-
nal on Software Tools for Technology Transfer, 1(1-2):123–133, 1997.

A Proofs

This appendix contains the proofs of all technical results, and the original oper-
ational semantics of tccp (Figure 5) used to prove Theorem 5.

1569Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

r1 〈tell(c), s〉 −→ 〈stop, s � c〉

r2 〈∑n
i=0 ask(ci) → Ai, s〉 −→ 〈Aj , s〉 if 0 ≤ j ≤ n

and s 	 cj
r3

〈A, s〉 −→ 〈A′, s′〉
〈now c thenA elseB, s〉 −→ 〈A′, s′〉 if s 	 c

r4
〈B, s〉 −→ 〈B′, s′〉

〈now c thenA elseB, s〉 −→ 〈B′, s′〉 if s �	 c

r5
〈A, s〉 �−→

〈now c thenA elseB, s〉 −→ 〈A, s〉 if s 	 c

r6
〈B, s〉 �−→

〈now c thenA elseB, s〉 −→ 〈B, s〉 if s �	 c

r7
〈A, s〉 −→ 〈A′, s′〉 and 〈B, s〉 −→ 〈B′, s′′〉

〈A||B, s〉 −→ 〈A′||B′, s′ � s′′〉
r8

〈A, s〉 −→ 〈A′, s′〉 and 〈B, s〉 �−→
〈A||B, s〉 −→ 〈A′||B, s′〉

r9
〈A, s1 � ∃x s2〉 −→ 〈A′, s′〉

〈∃s1xA, s2〉 −→ 〈∃s′xA′, s2 � ∃x s′〉
r10 〈p(x), s〉 −→ 〈A, s〉 if p(x) : −A ∈ D

Figure 5: Original operational semantics of tccp

Theorem 5 Consider a tccp agent A and an initial store s0 ∈ C. Let st0 =
s0 · trueω. Then

1. If st ∈ OT (P)[〈A, st0〉], then mon(st) ∈ O(P)[〈A, s0〉].
2. If s ∈ O(P)[〈A, s0〉], then ∃st ∈ OT (P)[〈A, st0〉]

such that ∀i ≥ 0.si = �j≤istj .

Proof. 1. The proof follows trivially from the definitions of 	t andmon(s) given
above.

2. If s = s0 · . . . sn · · · ∈ O(P)[〈A, s0〉] then there exists a sequence of agents
A = A0, A1, . . . , such that 〈A0, s0〉 −→ 〈A1, s1〉 −→ . . . is an execution trace
produced by the original semantics of tccp.

Let us prove the following assertion: Given stn = st00 · st11 · · · · · stnn · trueω

such that ∀i ≤ n.si = �j≤ist
j
j then there exists c ∈ C such that we have a

transition 〈An, stn〉n −→ 〈An+1, stn+1〉n+1 in the timed semantics of tccp

where stn+1 = st00 · st11 · · · · · stnn · c · trueω and sn+1 = �i≤n+1st
i
i.

1570 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

Note that since st0 = s0 · trueω, the previous result allows us to construct
an structured store st = st00 · st11 · · · · ∈ OT (P)[〈A, st0〉] satisfying that
∀i ≥ 0.si = �j≤isti as stated in the Theorem.

We prove the previous assertion by induction structural induction on An.

An = tell(c). Then, following the classical operational semantics, sn+1 =
sn �c. Now, using rule R1 of the timed semantics, we have that stn+1 =
st0

0 . . . st
n
n · c · trueω. Since, by hypothesis sn = �i≤nst

i
i, we obtain that

sn+1 = sn � c = �i≤n+1st
i
i.

An =
∑n

j=0 ask(cj) → Aj. Let us assume that store sn entails any of the
guards cj . The original tccp semantics gives us that sn+1 = sn. Now,
since by hypothesis sn = �i≤nst

i
i and sn 	 cj , we deduce that stn 	t

cj . Thus, applying rule R2 of the timed tccp semantics, we have that
stn+1 = st00 · · · · · stnn · true · trueω, and clearly sn+1 = sn = �i≤n+1st

i
i.

An = now c thenA1 elseA2. We may consider two cases for this agent. One
is the case when the store entails the constraint c, and the other is the
opposite (the constraint is not entailed). However, since both cases are
proved similarly, we only deal with one of them.

Let us assume that sn 	 c, and that 〈A1, sn〉 −→ 〈An+1, sn+1〉. Then,
by structural induction, there exists d ∈ C such that 〈A1, st

n
n〉 −→

〈An+1, stn+1〉 where stn+1 = st00 · · · ··stnn ·d·trueω and sn+1 = �i≤n+1st
i
i.

Since by hypothesis, sn = �i≤nst
i
i, we have that stn 	t c too. Thus, ap-

plying rule R3 of the timed semantics, we obtain the desired result.

The case when sn 	 c and 〈A1, sn〉 �−→ is proved as in the choice agent
above.

An = A1 || A2. We have two cases, one when both A1 and A2 progress, and
the second case when only one of the agents does. As before, we describe
the reasoning for the first case since the second one is similar. Thus, let
us assume that 〈A1, sn〉 −→ 〈A′

1, s
A1
n+1〉 and that 〈A2, sn〉 −→ 〈A′

2, s
A2
n+1〉.

Then applying the standard semantics of tccp, we deduce that An+1 =
A′

1||A′
2 and sn+1 = sA1

n+1�sA2
n+1. By structural induction onA1 and A2, we

have that there exist c1, c2 ∈ C such that 〈A1, st
n〉n −→ 〈A′

1, st
n+1
A1

〉n+1,
〈A2, st

n〉n −→ 〈A′
2, st

n+1
A2

〉n+1 and for i = 1, 2 stn+1
Ai

= st00 · · · · · stnn ·
ci · trueω, and sAi

n+1 = �j≤nst
j
j � ci. Now, applying rule R7 of the

timed semantics, we obtain that 〈An, stn〉n −→ 〈An+1, stn+1〉n+1, where
stn+1 = stnA1

� stnA2
. Thus, by definition of � for structured stores, we

have that stn+1 = st00 ·· · ··stnn ·c1�c2 ·trueω, and since sn+1 = sA1
n+1�sA2

n+1,
using the expressions obtained for sA1

n+1 and sA2
n+1 by the induction step,

we deduce that sn+1 = �i≤n+1st
i
i.

1571Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

An = ∃xA1. Let us assume that the information generated by the execution
of A1[y/x] (y fresh variable) is sA1 . Then, following the standard seman-
tics, the configuration at instant n+ 1 is 〈A′

1, sn �∃xsA1〉. By structural
induction hypothesis, the same information is produced by the agent A1

in the structured semantics, thus the structured configuration at instant
n+ 1 will be 〈A′

1, stn+1〉 where stn+1 = stn+1
n+1 = stnn+1 � ∃xsA1〉.

An = p(x). This case is trivial since we consider the same program under
two different semantics. By induction hypothesis, An are identical, thus
we obtain a configuration where the property does hold.

Proposition 8 Given a tccp sequence of stores s = s0 · s1 · · · , a structured
store st, i ∈ N and a temporal formula φ, then

1. s(i) |= φ iff s |=i φ

2. st |=i φ iff mon(st)(i) |= φ

Proof. 1. We proceed by structural induction on the formula φ.

φ ≡ c: By definition, we know that s |=i c ⇔ s 	i c ⇔ �0≤j≤isj 	 c. Since
sequence s0 · s1 · . . . is monotonic �0≤j≤isj = si. Thus, �0≤j≤isj 	 c ⇔
si |= c⇔ s(i) |= c.

φ ≡ ¬ψ: By definition, we know that s(i) |= ¬ψ ⇔ s(i) �|= ψ and that s |=i

¬ψ ⇔ s �|=i ψ. We assume by induction hypothesis that s(i) |= ψ ⇔ s |=i

ψ, thus the property trivially holds.

φ ≡ ψ1 ∧ ψ2: By definition, s(i) |= ψ1 ∧ ψ2 ⇔ s(i) |= ψ1 and s(i) |= ψ2. On
the other hand, s |=i ψ1 ∧ ψ2 ⇔ s |=i ψ1 and s |=i ψ2. By applying
induction hypothesis the property trivially holds.

φ ≡ ∃xψ: Let us assume that s |=i ∃ψ. Then, by definition, there exists
a structure store s′ such that ∃xs

′ = ∃xs, and s′ |=i ψ. By induction
hypothesis, this implies that s′(i) |= ψ. Now, since ∃xs

′ = ∃xs we deduce
that ∃xs

′(i) = ∃xs
(i), which, by definition, implies that s(i) |= ∃xψ.

Inversely, let us assume that s(i) |= ∃xψ then, by definition, s′ |= ψ for
some s′ such that ∃xs

(i) = ∃xs
′. Let us construct the structured store

s′′ = s0 · s1 · · · si−1 · s′0 · s′1 · · · , that is, the first i− 1 stores of s′′ are the
first i−1 stores of s, and the suffix s′′i is s′. By construction, ∃xs = ∃xs

′′,
and s′′ |=i ψ, which by definition, means that s |=i ψ.

φ ≡ �ψ: By definition s(i) |= �ψ ⇔ s(i+1) |= ψ and s |=i �ψ ⇔ s |=i+1 ψ.
Therefore, it suffices to see that s(i+1) |= ψ ⇔ s |=i+1 ψ, which is true
by induction hypothesis.

1572 Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

φ ≡ ψ1Uψ2: We know that s(i) |= ψ1Uψ2 ⇔ ∃j ≥ i, s(j) |= ψ2 and ∀i ≤ k <

j, s(k) |= ψ1. By induction hypothesis, we have that ∃j ≥ i, s |=j ψ2 and
∀i ≤ k < j, s |=k ψ1, or equivalently that s |=i ψ1Uψ2.

2. By definition of mon, the proof of this claim is similar to the previous one.

Proposition 12 Consider st ∈ Store, τ ∈ CT , φ ∈ F , t ∈ V arT , m ∈ N and
r1, r2 ∈ C. Then,

(a) 〈st, τ〉 |=m 〈φ, true, t〉 ⇐⇒ st |=m φ

(b) r1 	 r2, 〈st, τ〉 |=m 〈φ, r1, t〉 ⇒ 〈st, τ〉 |=m 〈φ, r2, t〉

Proof. a) ⇒ holds by definition. Inversely, if st |=m φ, since τ�{t = m} 	T true,
we have that 〈st, τ〉 |=m 〈φ, true, t〉.

b) By definition, 〈st, τ〉 |=m 〈φ, r1, t〉 implies st |=m φ and τ � {t = m} 	T r1.
Since r1 	T r2, we deduce that τ � {t = m} 	T r2 which, by definition,
means that 〈st, τ〉 |=m 〈φ, r2, t〉

1573Alpuente M., del Mar Gallardo M., Pimentel E., Villanueva A.: Verifying ...

