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Abstract: We present a novel approach to the verification of functional-logic pro-
grams. For our verification purposes, equational reasoning is not valid due to the pres-
ence of non-deterministic and partial functions. Our approach transforms functional-
logic programs into Maude theories and then uses the Rewriting Logic logical frame-
work to verify properties of the transformed programs. We propose an inductive proving
method based on the length of the computation on the Rewriting Logic framework to
cope with the non-deterministic and non-terminating aspects of the programs. We illus-
trate the application of the method on various examples, where we analyze the sequence
of steps to be performed by the proof in order to get expertise for the automatization
of the process. Then, since the proposed transformation process is also amenable of
automatization, we will obtain a tool for proving properties of CRWL programs. An-
other advantage of our methodology, that distinguish it from other approaches, is that
it does not confuse the original functional-logic program with the subjects we want to
talk about in the properties, but it allows the equational definition of observations on
top of the transformed programs which simplifies the obtained proofs.
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1 Introduction

Functional-logic (FL) languages like Toy [López and Sánchez 1999] or Curry
[Hanus 2003] combine the use of non-strict and non-deterministic functions,
which are quite useful for practical declarative programming. However, for ver-
ification purposes such non-deterministic and non-terminating functions make
equational reasoning not valid for this purpose.

For this reason the CRWL logic has been proposed [González et al. 1996,
González et al. 1999] as a suitable framework for FL programs. In this calculus
we can derive reducibility relations e → t between evaluable expressions and
constructed terms. There exist some extensions of this calculus to cope with
HO, objects, failure, etc. [Rodŕıguez 2001], but in this paper we restrict our
proposal to first-order functional-logic programming.

CRWL as a logical framework for rewrite systems shows many similarities
with the rewriting logic (RL) proposed by Meseguer [Bruni and Meseguer 2003,
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Meseguer 1992]. Rewriting logic has been implemented in the specification and
programming language Maude [Clavel et al. 1999]. There are also some verifica-
tion tools developed for Maude programs, like the ITP prover [Clavel 2001], the
LTL model checker [Clavel et al. 1999] or the VLRL logic [Mart́ı et al. 2005] for
proving modal and temporal properties. In this paper we explore how to trans-
form a CRWL program into an equivalent Maude program so that we can use
the existing tools to prove properties of functional-logic programs.

The goal of our paper is to improve the verification methods for FL programs
proposed in other works. In [Cleva et al. 2004], verification of FL programs is
done by transforming them into logic programs in different ways. But in many
cases the method is not as effective as one would desire. One of the problems
arising there is that we have to translate the original program first into a logic
program and then we need a translation between such logic program and the
language accepted by the proving tool. In this paper we propose a transfor-
mation between CRWL programs and Maude programs. This transformation
process is straightforward and it can be automated easily as we take advantage
of the properties of Maude as a semantic framework for the specification; in this
sense there are many works where Maude is used as the semantic framework
to represent other logics [Mart́ı and Meseguer 1999]. We also propose a proof
mechanism that seems to be simpler in many interesting cases and that can be
easily automated. We propose an inductive method for proving properties based
on the length of the computation. This method complements the ITP prover
and can be used in coordination with it. This coordination is done adapting the
observations used in [Mart́ı et al. 2005] for our purposes. Therefore, in order to
prove any property we distinguish between the CRWL program itself and the
observations we could define over it. Such observations correspond to the equa-
tional part of the resulting Maude specification and they distinguish between
the program over which we can prove a given property and the property itself.

The rest of the paper is structured as follows. In the next section we give a
brief introduction to rewriting logic. In [Section 3] we present the CRWL calculus
and we give the transformation process between CRWL and Maude programs. In
[Section 4], we define the initial model of our programs and we give the language
in which properties are expressed. [Section 5] introduces the inductive method to
prove the properties and illustrates its use on various examples. Finally, Section
6 analyzes this proof method and presents some conclusions.

2 Rewriting Logic and Maude

First, we outline some basic notions of rewriting logic and its implementation in
the Maude language. For more information on the subject see [Clavel et al. 1999,
Meseguer 1992, Meseguer 1993].
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A rewrite theory R is defined as a 4-tuple R = (Σ, E, L, R) where (Σ, E) is
an equational theory, L is a set of labels, and R is a set of possibly conditional
labeled rewrite rules, t→ t′ that are applied modulo the equations E. Intuitively,
the signature (Σ, E) of a rewrite theory describes a particular structure for the
states of a system, and the rewrite rules describe which elementary local transi-
tions are possible in the distributed state by concurrent local transformations.

The version of rewriting logic used in this paper is the one that selects mem-
bership equational logic (MEL), a generalization of order-sorted equational logic,
as the underlying equational logic [Bruni and Meseguer 2003]. MEL supports
sorts (e.g., Bool, Nat) via many-sorted signatures and the relation of sorts via
order-sorted signatures (e.g. NzNat < Nat).

A MEL signature is a triple (K, Σ, S), where K represents a set of Kinds,
Σ = {Σδ,k}(δ,k)∈K∗×K a many-kinded signature and S = {Sk}k∈K a K-kinded
family of disjoint sets of sorts. A MEL Σ-algebra A contains a set Ak for each
kind k ∈ K, a function Af : Ak1×. . .×Akn → Ak for each operator f ∈ Σk1...kn,k

and a subset As ⊆ Ak for each sort s ∈ Sk, with the meaning that elements in
sorts are well-defined, while elements without sort are errors. We write TΣ,k and
TΣ(X)k to denote respectively the set of ground Σ-terms with kind k and of
Σ-terms with kind k over variables in X , where X = {x1 : k1, . . . , xn : kn} is a
set of kinded variables.

Given a MEL signature, we may define equations of the form t = t′ or
memberships of the form t : s, with t, t′ ∈ TΣ(X)k and s ∈ Sk. Order sorted
notation s1 < s2 can be used to abbreviate the conditional membership (∀x :
k) x : s2 if x : s1.

The deduction rules for a RL theory are shown in [Tab. 2]. The rules are given
for the unconditional case, which is the one used in the paper. The extended rules
for the conditional case can be found in [Bruni and Meseguer 2003].

Systems in Maude are built out of basic elements called modules. A functional
module specifies a theory (Σ, E) in membership equational logic. Equations of
functional modules are assumed to be Church Rosser and terminating; however,
equational attributes, like assoc and comm are allowed for declaring certain kinds
of equational axioms, that would be in other case non-terminating equations. The
initial model of a functional module is the initial algebra of the theory TΣ/E.
The specific syntax of a Maude functional module is

fmod module-name is Declarations and statements endfm.

where declarations include the importation of functional modules, sort, subsort
and operator declarations, while statements include equational and membership
axioms.

A system module specifies a rewrite theory. The initial model of a system
module TR is in essence an algebraic transition system, with additional opera-
tions, including a sequential composition operation for labelled transitions. The
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Reflexivity
t ∈ TΣ(X)k

[t]→ [t]

Congruence
f ∈ Σk1,...,kn,k, ti, t

′
i ∈ TΣ(X)k for i ∈ [1 . . . n]

[t1]→ [t′1] . . . [tn]→ [t′n]
[f(t1, ..., tn)]→ [f(t′1, ..., t

′
n)]

Replacement
r : [t(x)]→ [t′(x)]

[w1]→ [w′
1] . . . [wn]→ [w′

n]
[t(w/x)]→ [t′(w′/x)]

Transitivity
[t]→ [t′] [t′]→ [t′′]

[t]→ [t′′]

Table 1: Rules of deduction for an RL-theory

data in the states of the system are provided by the underlying initial algebra
TΣ/E. The labelled state transitions are the concurrent rewrites possible in the
system by application of the rules R. System modules are written in Maude by

mod module-name is Declarations and statements endm.

where the declarations and statements include now importation of system mod-
ules and rule statements.

3 Expressing CRWL programs in Maude

3.1 The Proof Calculus for CRWL

In this section we give a brief survey on the CRWL calculus [González et al. 1996,
González et al. 1999] including the main characteristics needed in this paper.

We assume a signature Σ = DCΣ ∪ FSΣ where DCΣ =
⋃

n∈IN DCn
Σ is a

set of constructor symbols and FSΣ =
⋃

n∈IN FSn
Σ is a set of function symbols,

all of them with associated arity and such that DCΣ ∩ FSΣ = ∅. We also
assume a countable set V of variable symbols. We write ExpΣ for the set of
(total) expressions built up with Σ and V in the usual way, and we distinguish
the subset CTermΣ of (total) constructor terms or (total) c-terms, which only
make use of DCΣ symbols and variables from V . The subindex Σ will usually
be omitted. C-terms represent not further reducible data values.
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(BT) Bottom
e→ ⊥ if e = f(e1, . . . , en)

(MN) Monotonicity
e1 → e′1, ..., en → e′n

h(e1, ..., en)→ h(e′1, ..., e′n)
h ∈ CSn ∪ FSn

(RF) Reflexivity
e→ e

if e is ground

(R) Function reduction
l→ r

if l → r ∈ [P ]⊥

(TR) Transitivity
e→ e′ e′ → e′′

e→ e′′

Table 2: Rules for CRWL-provability

We extend the signature Σ with a new constant ⊥ representing the undefined
value. The extended signature is denoted by Σ⊥. Exp⊥ and CTerm⊥ denote
respectively the sets of (partial) expressions and the set of (partial) c-terms.
Partial c-terms represent the result of partially evaluated expressions; thus, they
can be seen as approximations to the value of expressions.

As usual notation we will write X, Y, Z, ... for variables, c, d for constructor
symbols, f, g for functions, e for expressions and s, t for c-terms. In all cases,
primes (’) and subindices can be used. We will use the sets of substitutions
CSubst = {θ : V → CTerm} and CSubst⊥ = {θ : V → CTerm⊥}. We denote
by eθ the result of applying θ to e.

In this paper a CRWL-program P is a finite set of rewrite rules of the form
f(t1, ..., tn) → e where f ∈ FSn, (t1, ..., tn) is a linear tuple (each variable in it
occurs only once) of c-terms, and e is an expression. Notice that e may contain
variables not occurring in f(t1, ..., tn).

From a given programP , the proof calculus considered in this work for CRWL
is a simplification of the Basic Rewrite Calculus [González et al. 1999] and can
derive reduction statements of the form e→ e′, with e, e′ ∈ Exp⊥. The intended
meaning of such statement is that e can be reduced to e′. For our purposes of
verifying properties of CRWL programs we are only interested on reductions
from expressions to possibly partial c-terms (e→ t).

When a function rule R is applied to derive statements, the calculus uses the
so called c-instances of R, defined as [R]⊥ = {Rθ | θ ∈ CSubst⊥}. We write
[P ]⊥ to denote the set of c-instances of all the rules of a program P . Parameter
passing in function calls are expressed by means of these c-instances in the proof
calculus.
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0 + Y → Y coin→ 0
s(X) + Y → s(X + Y ) coin→ s(0)
double(X)→ X + X

Figure 1: CRWL sample program Coin

[Tab. 3.1] shows the proof calculus for CRWL. We write P 
CRWL ϕ for ex-
pressing that the statement ϕ is provable from the programP with respect to this
calculus. This calculus reflects a non-strict semantics, allowing non-terminating
programs to be meaningful. The conditions imposed in the (BT) and (R) rules
and the absence of joinability statements (which are present in the original
CRWL calculus) is justified in [Cleva et al. 2004]; where a different proof cal-
culus for CRWL is used, which is proved to be equivalent in the final reduction
process to the calculus considered here [González et al. 1999].

A distinguished feature of CRWL (shared by concrete systems like Curry
or Toy) is that programs can be non-confluent, defining thus non-deterministic
functions. As a typical example, consider the program (called Coin for future
references) in [Fig.1], which assumes the constructors 0 and s for natural num-
bers. Notice that coin is a non-deterministic function, for which the previous
calculus can derive the statements coin → 0 and coin → s(0). The use of c-
instances in rule (R) instead of general instances corresponds to call time choice
semantics for non-determinism [Hussmann 1992, González et al. 1999]). In the
example, it is possible to build a CRWL-proof for double(coin) → 0 and also
for double(coin)→ s(s(0)), but not for double(coin)→ s(0). Call-time choice is
related to sharing, a well known operational technique considered essential for
the effective implementation of lazy functional languages like Haskell. Existing
functional logic programming languages like Curry or Toy also use sharing and
call-time choice semantics. The above described behaviour for the reduction of
double(coin) corresponds exactly with what happens in those systems. Run-time
choice, an alternative semantics for non-determinism with which double(coin)
can be reduced also to s(0) is investigated for the functional-logic programming
setting in [Antoy 1997].

From the point of view of verifying properties of functional-logic programs,
nondeterminism and call-time choice semantics have the unpleasant consequence
that equational reasoning is not valid for CRWL-programs. In the previous ex-
ample, if the rules for coin were understood as the equalities coin = 0 and
coin = s(0), then we could deduce 0 = s(0), which is not intended. Call-time
choice implies that not only equational reasoning, but also ordinary rewriting is
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invalid since, from the point of view of rewriting, the rule double(X)→ X + X

should be applicable to any X , and not only to c-terms. Hence, we would have
double(coin) → coin + coin, and from this, double(coin) → s(0), which is not
valid with call-time choice.

3.2 CRWL programs in Maude

Rewriting logic and CRWL exhibit clear similarities in their proof calculi, that
allow us to simulate one logic with the other [Palomino 2003]. Nevertheless,
using directly the rules of RL we cannot obtain the call-time choice semantics for
nondeterminism, since an important difference between both calculus is that in
the CRWL calculus the function reduction rule (R) is applied only to c-instances
of program rules while the RL Replacement rule is applied to any RL term. In
[Palomino 2003] this problem is solved with the use of explicit functions that
distinguish c-terms from general expressions. We adopt in this paper a different
approach by taking membership equational logic as the underlying logic of RL.

Consider the following transformation method:

1. Each CRWL program defines an RL theory which is written as a Maude
system module.

2. We define three sorts, Expr, Term and TTerm, that represent the CRWL
expressions (Exp⊥), possibly partial c-terms (CTerm⊥), and total c-terms
(CTerm) respectively, with the subsort relation TTerm < Term < Expr. The
sort FApp captures the CRWL expressions of the form f(e1, . . . , en) where
ei ∈ Exp⊥ and f ∈ FSn and it is declared as a subsort of Expr. The sort is
used to avoid the application of the CRWL BT rule on c-terms.

3. We represent the undefined value ⊥ of CRWL as a constant bottom of sort
Term. The BT rule of CRWL defines a rule rl [l] : x:FApp => bottom.

4. Every c ∈ DC0 is declared as a constant of sort TTerm, op c : -> TTerm .

5. Every c ∈ DCn with n > 0 defines an operation:

op c : Expr ... Expr -> Expr .

6. For every c ∈ DCn with n > 0 we define the following membership relations:
c(X1:TTerm,...,Xn:TTerm):TTerm

c(X1:Term,...,Xn:Term):Term

7. Every f ∈ FSn with n ≥ 0 defines an operation:

op f : Expr ... Expr -> FApp .
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8. Every CRWL program rule l(X̄) → r(X̄), where X̄ represents all the vari-
ables occurring both in l and r, defines a rewrite rule: l(X̄) ⇒ r(X̄) where
for all i, Xi is of sort Term.

For example, the CRWL program of [Fig. 1] is transformed into the following
Maude system module:

mod COIN is

sorts TTerm Term Expr .

subsort TTerm < Term < Expr .

sort FApp .

subsort FApp < Expr .

op 0 : -> TTerm .

op s : Expr -> Expr .

op coin : -> FApp .

op _+_ : Expr Expr -> FApp .

op double : Expr -> FApp .

op bottom : Term .

mb s(X:TTerm) : TTerm .

mb s(X:Term) : Term .

rl [bot] : X:FApp => bottom .

rl [coin0] : coin => 0 .

rl [coin1] : coin => s(0) .

rl [sum0] : 0 + X:Term => X:Term .

rl [sum1] : s(X:Term) + Y:Term => s(X:Term + Y:Term) .

rl [dob] : double(X:Term) => X:Term + X:Term .

endm

The following lemma shows the relation between the CRWL expressions and
the sort of the associate Maude terms of the transformed program

Lemma1. Let t, e be ground CRWL expressions and the related1 Maude terms
t, e in the transformation process. We have the following equivalences:

1. t ∈ CTerm⊥ ⇔ t : Term

2. t ∈ CTerm ⇔ t : TTerm

3. e ∈ Exp⊥ ⇔ e : Expr

4. e = f(e1, . . . , en)⇔ e : FApp for any
f ∈ FSn and ei ∈ Exp⊥.

1 We will use the same name for CRWL terms and their transformed Maude terms
when there is no ambiguity since syntactically both terms are identical except for
the ⊥.
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Proof. 1. (⇒) We proceed by induction over t ∈ CTerm⊥. If t = ⊥ by the
transformation rule (3) we obtain t : Term. If t = c for some c ∈ CS 0, by (4)
and the subsort declaration (2) TTerm < Term we obtain t : Term. For the
inductive case we consider c ∈ DC n and ti : Cterm⊥ then t = c(t1, . . . , tn).
By induction hypothesis ti : CTerm⊥ ⇒ ti : Term and applying step (6) of
the transformation process we obtain t : Term.

(⇐) We proceed by induction over t ∈ Term. We distinguish three possi-
ble cases. If t = bottom : Term, it should have been obtained through step
(3) so it represents the undefined value ⊥ of CRWL and ⊥ ∈ CTerm⊥. If
t = c(e1, . . . , en) : Term and c ∈ DCn it should have been obtained through
steps (4) or (5) depending whether n = 0 or n > 0, for the first case we obtain
c ∈ CTerm⊥. For the second case, if n > 0 t : Term can only be obtained by
the membership of step (6), therefore for every i, ei ∈ Term and by induction
hypothesis ei ∈ Cterm⊥. Now applying the definition of CTerm⊥ we obtain
t ∈ CTerm⊥. The final case, t = f(e1, . . . , en) where f ∈ FSn, is impossi-
ble as there are no membership axioms to restrict the sort to such expression.

2-4. The rest of the cases can be proved in the same way. ��

The main result of this section relates the reductions obtained using the
CRWL calculus and the reductions for the RL transformed program. The equiv-
alence of both programs is based on the restriction of the application of the RL
rules to partial c-terms in the transformation method.

Proposition2. Let P be a CRWL program and P̂ the Maude transformed pro-
gram. For any ground expressions e and e′ we have:

P 
CRWL e→ e′ ⇔ P̂ 
RL e→ e′

Proof. [⇒] Assume P 
CRWL e → e′. We proceed by induction on the rules of
the CRWL calculus.

1. Suppose that e → e′ is obtained by applying the BT rule of CRWL, then
e is of the form f(e1, . . . , en). Therefore f ∈ FSn with n > 0 and by the
transformation step (7) we obtain an RL term f(e1, . . . , en) of sort FApp.
P̂ 
RL e → e′ is obtained by applying the RL Replacement rule with the
rewrite rule bot defined in step (3) of the transformation method.

2. If e → e′ is obtained by applying the MN rule of CRWL. Then e =
h(e1, . . . en) where h ∈ DC r ∪ FSn, and by induction hypothesis, P̂ 
RL

ei → e′i for i = 1 . . . n. Therefore, P̂ 
RL e → e′ is derived with the RL
Congruence rule.
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3. Suppose that e → e′ is obtained by applying the RF rule of CRWL. Then
e′ is syntactically equal to e and P̂ 
RL e → e′ is derived with the RL
Reflexivity rule.

4. Suppose that e → e′ is obtained by applying the TR rule of CRWL. Then,
there is an expression e′′ such that P 
CRWL e→ e′′ and P 
CRWL e′′ → e′.
By induction hypothesis P̂ 
RL e → e′′ and P̂ 
RL e′′ → e′. Therefore,
P̂ 
RL e→ e′ is derived with the RL Transitivity rule.

5. If e → e′ is obtained by applying the R rule of CRWL, then e → e′ is a
c-instance of a CRWL program rule l → r. Let θ = w̄/x̄ be the substitution
used to obtain the c-instance of the rule. By lemma 1 each CRWL c-term
wi is transformed into an RL term wi of sort TTerm, we can apply the RL
replacement rule to the rewrite rule obtained from l → r by the transforma-
tion step (8) with the substitution w̄/x̄. Notice that by the RL Reflexivity
rule we always have [wi]→ [wi].

[⇐] Assume P̂ 
RL e→ e′. We proceed by induction on the rules of the RL
calculus.

1. If e → e′ is obtained by applying the RL Reflexivity rule then as in the
transformed program P̂ there are no equational rules, e′ is syntactically
equal to e and P 
CRWL e→ e′ is derived with the RF CRWL rule.

2. Suppose that e→ e′ is obtained by applying the RL Congruence rule. Then,
e = h(e1, . . . en) and by induction hypothesis P 
CRWL ei → e′i for any
i ∈ 1 . . . n. Therefore, P 
CRWL e→ e′ is derived with the MN CRWL rule.

3. Suppose that e→ e′ is obtained by applying the RL Transitivity rule. Then,
there is an expression e′′ such that P̂ 
RL e → e′′ and P̂ 
RL e′′ → e′ and
by induction hypothesis P 
CRWL e→ e′′ and P 
CRWL e′′ → e′. Therefore,
P 
CRWL e→ e′ is derived with the TR CRWL rule.

4. If e→ e′ is obtained by applying the RL Replacement rule of deduction we
distinguish two cases:

- If the RL Replacement rule is applied with the bot rewrite rule, we have
e→ ⊥ with e of sort FApp. Since the transformation method does only define
operators of sort FApp from CRWL functions f ∈ FSn we have that e is of
the form f(e1, . . . , en). Then P 
CRWL e → t can be derived using the BT
CRWL deduction rule.

- Suppose the RL Replacement rule is applied with a rule different from
bot. This rewrite rule must have been obtained from the CRWL program by
step (8) of the transformation process; then, variables can only have been
instantiated by terms wi of sort Term.
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Now, by lemma 1 terms of sort Term are always obtained from CRWL terms,
and we can derive by induction hypothesis P 
CRWL wi → w′

i, for i ∈ 1 . . . n

Then, we apply the R CRWL deduction rule and derive P 
CRWL t(w̄/x̄)→
t′(w̄/x̄).

Finally, by the repeated application of the MN CRWL deduction rule, we
can derive P 
CRWL t(w̄/x̄)→ t′(w̄′/x̄).

��

4 Expressing abstract properties of CRWL programs

In this section we give the logical framework in which properties of the functional-
logic system will be specified and proved.

4.1 Formal specification of properties

We are interested in expressing properties of all possible terms reachable from
an initial expression. For example, we may want to prove a property about the
Coin program, defined in [Section 3.2], stating that from double(T) we can only
obtain an even number.

First, we need to define the subjects we will talk about in the properties,
like, for example, that a natural number is even. We use operations, called ob-
servations, over the state of the system, that are declared in an extension of the
system module, as is done in [Mart́ı et al. 2005]. In this way the user can decide
the means by which the system will be observed without interfering with the sys-
tem specification. Since we are interested in expressing properties of transformed
CRWL terms we take observations as operations of type Term→ s or TTerm→ s

if the CRWL term we want to observe is a total term. Then we provide their
algebraic specification. The definition of the observations requires an extension
of the signature of the system in order to have available the observations and
perhaps some sorts and auxiliary operations that are related to the observations
but are not part of the original program. We denote by (Σ+, E+) the extended
signature.

For example, the previous observation about even numbers will be an op-
eration of type even : TTerm → Bool . The extended signature includes the
observation, but in this case we don’t need to extend the RL signature with new
sorts, since the CRWL original program does already define the Boolean values.

The logic we will use to express our properties is first order equational logic
with predicates that express sequences of rewrites.

ϕ ::= true | t1 = t2 | s1 →i s2 | s1 → s2 | ϕ1 ⇒ ϕ2 | ¬ϕ | ∀x : s.ϕ
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where t1, t2 ∈ TΣ+(X), are two terms of the same sort over the extended signa-
ture, s1, s2 ∈ TΣ(X) are two terms of the same sort over the original signature,
→i represents a collection of binary operators, one for each possible i ∈ IN,

and s is the sort Term or the sort TTerm. For example the previous property
about the Coin program would be expressed as

∀T, T ′ : TTerm.(double(T )→ T ′ ⇒ even(T ′))

We will make use of the usual derived propositional connectives for conjunc-
tion (∧), disjunction (∨), and logical equivalence (≡). The existential quantifier
is also defined in terms of the universal quantifier as usual. Free variables are
considered universally quantified, that is, our properties are expressed as closed
formulae.

4.2 Model semantics

The models we use to interpret our formulae are the transition systems defined
by the Maude extended rewrite theories obtained from the CRWL programs.

– The set of states is the set TΣ,Expr of ground terms of sort Expr.

– The family of state transitions is given by the one-step sequential rewrites
of the rewrite theory. Given a rewrite theory R = (Σ, E, L, R), a (Σ, E)-
sequent [t] → [t′] is called a one-step sequential rewrite [Meseguer 1993] iff
it can be derived from R by finite application of the rules 1–3 of RL [see
Section 2], with exactly one application of rule 3.

We have to provide an interpretation I which is a family of IObs : TΣ,E,Term →
TΣ+,E+,s for the observations of the system. Each interpretation of I is defined
axiomatically through sets of equations over the extended signature Σ+.

The satisfaction relation is now defined for a given transition system, a given
observation interpretation and a given initial state.

The term language is interpreted in TΣ+,E+ as follows:

– [[obs(t)]]I = IObs (t), where t is of sort Term,

– [[f(t1, . . . , tm)]]I = f([[t1]]I , . . . , [[tm]]I),
for each operation f : s1 . . . sm → s in Σ+.

Satisfaction of formulae for a given transition system K, observation inter-
pretation I and initial state e0 is

– K, I, e0 |= true,

– K, I, e0 |= t1 = t2 iff [[t1]]I = [[t2]]I ,
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– K, I, e0 |= s0 →1 s1 iff [s0] = [e0] and [s0]→ [s1] ∈ K,

– K, I, e0 |= s0 →n sn iff there are s1, . . . sn−1 ∈ TΣ and K, I, e0 |= s0 →1 s1

and K, I, si |= si →1 si+i for i = 1 . . . n− 1,

– K, I, e0 |= s0 → sn iff there is some i ∈ IN+ such that K, I, e0 |= s0 →i sn

– K, I, e0 |= ¬ϕ iff it is not the case that K, I, e0 |= ϕ,

– K, I, e0 |= ϕ1 ⇒ ϕ2 iff K, I, e0 |= ϕ1 implies K, I, e0 |= ϕ2,

– K, I, e0 |= ∀x : s.ϕ iff for all substitutions x← t′ we have K, I, e0 |= ϕ[x← t′]

where t1, t2 ∈ TΣ+,E+ and s0, . . . , sn ∈ TΣ.
Notice that K, I, s0 |= s0 →i si →j sn iff K, I, s0 |= s0 →i si and K, I, si |=

si →j sn.
A formula is valid in the initial model of the extended signature if the initial

model satisfies the formula for any initial state.

4.3 Examples of abstract properties

The framework presented in this section allows us to specify and prove properties
about semantic features of a program. For that purpose we consider the approxi-
mation relation of partial c-terms presented in CRWL [González et al. 1999]. The
approximation relation is defined as the least partial ordering over CTerm⊥ sat-
isfying: ⊥ � t for every t ∈ CTerm⊥, and for every c ∈ DC and ti, t

′
i ∈ CTerm⊥,

c(t1, . . . , tn) � c(t′1, . . . , t
′
n) if ti � t′i. This definition can be specified as an ob-

servation of the system and thus equationally. Therefore, some properties of the
original program can be stated:

– We can specify that a function is deterministic by the formula:

∀X T T ′ : Term .f(X)→ T ∧f(X)→ T ′ ⇒ ∃ T ′′ : Term . T � T ′′∧T ′ � T ′′

– A function is strict if it satisfies the formula:

∀ T : Term . f(⊥)→ T ⇒ T = ⊥

– And finally we can show that a function is totally defined proving the for-
mula:

∀X : TTerm . ∀T : Term . f(X)→ T ⇒ ∃T ′ : TTerm .T � T ′ ∧ f(X)→ T ′
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5 Inductive methods for proving properties

We can distinguish between two types of properties, those that are written using
only the first-order equational part of the logic and those that are written using
sentences of rewriting logic. The first type of properties may be proved with
Maude’s Inductive Theorem Prover (ITP) [Clavel 2001], that proves theorems
over inductive models of functional Maude modules. The ITP implements an
structural induction proving method based on the structure of the system.

We propose using induction on the length of the computation for proving the
second type of properties. The inductive proof method is as follows: to prove that
the property (t → t′) ⇒ ϕ is valid in the extended initial model it is sufficient
to show:

– (t→1 t′)⇒ ϕ is valid for all possible one-step sequential rewrites.

– Assuming (t→k t′)⇒ ϕ for k ≤ n and n ≥ 1 is valid, it must be shown that
(t→n+1 t′)⇒ ϕ is valid for all possible n + 1-step sequential rewrites.

The correctness of the inductive method is obtained from the semantics of
the →i connectives.

We illustrate the application of these ideas on the following examples.

5.1 Example: Even numbers

A CRWL program to obtain any even number is the following:

aneven → 0
aneven → s(s(aneven))

We could be interested in proving a property stating that every possible total
reduction of aneven produces an even number. First we obtain the Maude pro-
gram following the transformation process of [Section 3.2]:
mod EVEN-NUMBERS is
sorts Expr Term TTerm .
subsort TTerm < Term < Expr .
sort FApp .
subsort FApp < Expr .

op 0 : -> TTerm .
op aneven : -> FApp .
op s_ : Expr -> Expr .
op bottom : -> Term .

mb s(X:TTerm) : TTerm .
mb s(X:Term) : Term .

rl [bot] : X:FApp => bottom .
rl [init] : aneven => 0 .
rl [next] : aneven => s s aneven .

endm
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We need to observe if a natural number is even to prove our property.

mod EVEN-NUMBERS-OBSERVED is
protecting EVEN-NUMBERS .
op even : TTerm -> Bool .

eq even(0) = true .
eq even(s 0) = false .
eq even(s s T:TTerm) = even(T:TTerm) .

endm

The property is formalized as follows:

∀T : TTerm.((aneven→ T )⇒ (even(T ) = true))

For proving the property we need the following lemma about the preservation
of constructors on the rewrite process:

Lemma3. Given a Maude program P̂ obtained from a CRWL program P , an
expression e ∈ Expr and a function symbol c obtained from a CRWL expression
e and a CRWL constructor symbol c ∈ DC, we have:

∀n : IN. ∀e′ : Expr. (c(e)→n e′ ⇒ ∃e′′ : Expr.(e→n e′′ ∧ e′ = c(e′′)))

Proof. (Sketch of the proof) The proof is done by induction over the length of the
computation. The result uses the fact that since the Maude program is obtained
from a CRWL program, the rewrite process cannot affect constructors symbols
because the program does not provide any rewrite rule for such symbols. ��

Now, we prove the property by induction on the length of the computation:

– Base case: ∀T : TTerm.((aneven→1 T )⇒ (even(T ) = true)).

We can apply the rewrite rules of the program related with the function
aneven. We have three rewrite rules in the system.

1. If we apply the rule bot we obtain a state T = bottom and then the
property is true because we have reached an expression that is not of the
required sort.

2. If we apply rule init we obtain a state T = 0 and it can be proved with
the ITP tool that even(0) = true.

3. If we apply rule next we obtain a state s s aneven /∈ TTerm.

– Inductive case (n > 1): As before, we have three possible rewrite rules in
the system: bot, init and next which can constitute a one-step sequential
rewrite. We will show what happens when these rules are applied to the
initial state aneven and then the inductive hypothesis is applied for the rest
of the computation.
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1. If we apply the rule bot then we have aneven →1 bottom and then
from bottom we cannot apply more rewrite rules, therefore there is not
a n + 1-sequential rewrite.

2. If we apply rule init then we obtain aneven →1 0 and at this point
there is no rewrite rule to be applied. As in the previous case there is
not a n + 1-sequential rewrite.

3. If we apply rule next, we have to prove:

∀T : TTerm.((aneven→1 s s aneven→n T )⇒ (even(T ) = true)).

Therefore by lemma 3, T = s s T ′ for some T ′ such that aneven→n T ′.
We apply the induction hypothesis and we obtain even(T ′) and therefore
as T = s s (T ′) applying the rules of the observation part we obtain
even(T ).

5.2 Example: Lists of naturals

Now, we translate the following CRWL specification of lists of naturals

insert(X,nil) → X : nil
insert(X, Y : Xs)→ X : (Y : Xs)
insert(X, Y : Xs)→ Y : insert(X,Xs)
permute(nil) → nil
permute(X : Xs) → insert(X, permute(Xs))

into a Maude module:

mod NAT-LIST is
sorts TTerm Term Expr .
subsort TTerm < Term < Expr .
sort FApp .
subsort FApp < Expr .

op bottom : -> Term .

op 0 : -> TTerm .
op s : Expr -> Expr .

op nil : -> TTerm .
op _:_ : Expr Expr -> Expr .
op permute : Expr -> FApp .
op insert : Expr Expr -> FApp .

mb (s (X:TTerm)) : TTerm .
mb (s (X:Term)) : Term .

mb ((X:TTerm) : (Xs:TTerm)) : TTerm .
mb ((X:Term) : (Xs:Term)) : Term .
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rl [bot] : X:FApp => bottom .
rl [insert1] : insert(X:Term, nil) => X:Term : nil .
rl [insert2] : insert(X:Term, Y:Term : Xs:Term)

=> X:Term : (Y:Term : Xs:Term) .
rl [insert3] : insert(X:Term, Y:Term : Xs:Term)

=> Y:Term : insert(X:Term, Xs:Term) .
rl [permute1] : permute(nil) => nil .
rl [permute2] : permute(X:Term : Xs:Term)

=> insert(X:Term, permute(Xs:Term)) .
endm

We define an observation member, that says if a given natural number belongs
to a list. Observe that the observation, like in the previous example, is only
defined on the TTerm sort.

mod NAT-LIST-OBSERVED is
protecting NAT-LIST .

op member : TTerm TTerm -> Bool .

vars X Y : TTerm .
var Xs : TTerm .

eq member(X, nil) = false .
eq member(X, X : Xs) = true .
ceq member(X, Y : Xs) = member(X, Xs) if X =/= Y .

endm

The property we want to prove is:

∀X : TTerm ∀L L′ : TTerm .

(permute(L)→ L′ ⇒ (member (X, L) = true ⇒ member(X, L′) = true))

For proving the property, we need the following auxiliary lemma:

Lemma4. For all x, t : TTerm and T, T ′ : TTerm we have:

1. insert(t, T )→ T ′ ⇒ member(t, T ′).

2. insert(t, T )→ T ′ ⇒ (member(x, T ) = true ⇒ member(x, T ′) = true).

Proof. (Proof sketch)

1. We proceed by induction on the length of the computation, distinguishing
cases between the rewrite rules applied at the one step sequential rewriting.
The obtained cases are proved straightforward by pattern matching with the
program rules bot, insert1, insert2 and insert3 and equational reasoning
for the observations.
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2. We also proceed by induction on the length of the computation, and like the
above case, the proof is obtained straightforward. ��

Now, to prove the property, we also proceed by induction on the length of
the computations.

1. Base case.

∀X : Nat ∀L L′ : Term .(permute(L)→1 L′(member (X, L) = true ⇒
member(X, L′) = true))

The rewrite theory defines 5 rewrite rules, but only two of them can be
applied in a state permute(L). Notice that since L is of sort Term , it cannot
be of the form insert(x,Xs) or permute(Xs). The two possible rewrite
rules are applied at the top, that is, the congruence rule of the logic is not
necessary. Reflexivity can always be applied in a one-step sequential rewrite,
but it does not affect the result of the execution, permute(L) →1 L′. The
replacement rule of the logic gives raise to the following two cases:

(a) if we can apply the rule

rl [permute1] : permute(nil) => nil

to the state permute(L) is because L = nil.

Then, since member(x,nil) = false the property is fulfilled because its
premise is false.

(b) if we can apply the rule

rl [permute2] : permute(X : Xs) => insert(x, permute(Xs))

we obtain the state insert(X, permute(Xs)) which is not of sort Term
as it is required by the left-hand side of the property.

2. For the inductive case, assume

∀X :Nat , L L′ :Term .(member(X, L)∧permute(L)→n L′ ⇒ member(X, L′))

and prove

∀X :Nat , L L′ :Term.(member (X, L)∧permute(L)→n+1 L′⇒member(X, L′))

We will apply the induction hypothesis in the last part of the computation,
that is, we will explore the computations

permute(L)→1 T →n L′
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Like in the base case, we can only apply the system rewrite rules in the top,
hence congruence is not applied. Let’s see what happens when replacement
is applied to the two possible system rewrite rules.

(a) When we apply the system rewrite rule

rl [permute1] : permute(nil) => nil

to the state permute(L) we obtain the state nil. Since there is no possible
one-step sequential rewrite defined for this state, we are in the base case.

(b) Lets now consider the second system rewrite rule

rl [permute2] : permute(X : Xs) => insert(X, permute(Xs)) .

When this rule is applied we obtain the state insert(l, permute(L)),
where the initial list is of the form l : L. We can now apply the replace-
ment rule of the logic only to the subterm: permute(L). and we obtain
an execution of the form

permute(l : L)→1 insert(l, permute(L))→m insert(l, L′)→n−m L′′

with m < n, since the rules insert1, insert2 and insert3 can only be
applied over terms of sort Term. Then, by induction hypothesis:

∀X : Nat .(member(X, L)⇒ member(X, L′)).

Now, by Lemma 1(b) we have:

∀X : Nat .(member(X, L′)⇒ member(X, L′′)).

And by Lemma 1(a) we have member(l, L′′).

Since member(x, l : L) ≡ x == l ∨member(x, L) we have the result.

5.3 Repeating elements

As a final example we consider a function building lists formed by the repetition
of one element. The CRWL program is the following:

repX → X : rep(X)

The semantics of call-time choice produces that the possible reductions from
rep(coin) should be 0:0:0... or 1:1:1... and it is impossible to obtain any
other reduction containing 0’s and 1’s at the same time. One property to be
proved could be the following: only zero is a member of the list obtained from
rep(0). To prove such property we proceed as in the former cases considering
the translation of the CRWL program into a Maude module.
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mod LIST-REP is
sorts TTerm Term Expr .
subsort TTerm < Term < Expr .
sort FApp .
subsort FApp < Expr .

op bottom : -> Term .
op 0 : -> TTerm .
op s : Expr -> Expr .
op nil : -> TTerm .
op _:_ : Expr Expr -> Expr .
op rep : Expr -> FApp .

mb (s(X:TTerm)) : TTerm .
mb (s(X:Term)) : Term .

mb ((X:TTerm) : (Xs:TTerm)) : TTerm .
mb ((X:Term) : (Xs:Term)) : Term .

rl [bot] : X:FApp => bottom .
rl [repeat] : rep(X:Term) => X:Term : rep(X:Term) .

endm

We define the member observation for the TTerm sort.

mod LIST-REP-OBSERVED is
protecting LIST-REP .

op member : TTerm Term -> Bool .

vars X Y : TTerm .
var Xs : Term .

eq member(X, bottom) = false .
eq member(X, nil) = false .
eq member(X, X : Xs) = true .
ceq member(X, Y : Xs) = member(X, Xs) if X =/= Y .

endm

We want to prove the following property:

∀N : TTerm L : Term . (rep(0)→ L⇒ (member(N,L)⇒ (N == 0)))

We prove it by induction on the length of the computation

1. Base case:

∀N : TTerm L : Term . (rep(0)→1 L⇒ (member(N,L)⇒ (N == 0))).

We have two rewrite rules in the system.

(a) If we apply the bot rule we have rep(0) →1 bottom and therefore the
property is trivially true.
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(b) If we apply repeat we obtain the state 0 : rep(0), since it is not of
sort Term the property is fulfilled.

2. Inductive case: For the inductive step we assume that ∀N : TTerm L :
Term . (rep(0) →n L ⇒ (member(N,L) ⇒ (N == 0))). and we have to
prove that ∀N : TTerm L : Term . (rep(0) →n+1 L ⇒ member(N,L) ⇒
(N == 0)).

– We can apply the two program rules.

• If the bot rule is applied, we obtain rep(0)→1 bottom and we are in
the base case.

• If we apply the repeat rule, we obtain rep(0) →1 0 : rep(0 ). From
this expression we can only rewrite the rep(0) term and we get
rep(0) →n L′. We are only interested in the states such that L′

is of sort Term, since in other case the property is true. By induc-
tion hypothesis, we have member(N, L′) ⇒ (N == 0). Therefore,
rep(0)→1 0 : rep(0)→n 0 : L′.

We need to prove member(N, 0 : L′) ⇒ (N == 0), but since
member (N, 0 : L′) ≡ N == 0 ∨ member(N, L′) we can derive the
result.

5.4 Representing sequential rewrites in first order equational logic

In some cases, the representation of sequential rewrites in first order equational
logic is possible and it allows the use of existing theorem provers to proof the
properties.

The process to obtain the representation is the following: first we define the
sort Comp representing sequential rewrites as a list of the states of the system in
the rewriting process. We use two operators to generate the computation:

op U: Exp -> Comp .

op C: Exp Comp -> Comp .

Then, we identify one-step sequential rewrites by means of a function red de-
clared as:

op red: Exp Exp -> Bool .

that mirrors the rewrite rules of the system.
The function cvalid checks if a given computation is possible in the system.

The declaration is:

op cvalid: Comp -> Bool .
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and it is specified as:

eq cvalid(U(E)) = true .

eq cvalid(C(E1, U(E2)) = red(E1, E2) .

ceq cvalid(C(E1, C(E2, P))) = cvalid(C(E2, P))

if red(E1, E2)=true .

ceq cvalid(C(E1, C(E2, P))) = false if red(E1, E2)=false .

this function uses red to verify if the one-step sequential rewrite E1 -> E2 is
valid in the system.

Now we can express our properties in first order equational logic. For example
the formula of the example in [Section 5.1] is specified as:

∀P : Comp.(first(P ) = aneven ∧ tterm(last(P )) = true ∧ cvalid(P )⇒
even(last(P )))

where first and last are functions to obtain the first and last expressions from a
sequential rewrite, and tterm checks if a given expression is of sort TTerm.

This goal has been proved by the authors with the ITP tool v.013 and the
Isabelle theorem prover [Nipkow et al.2002].

Although the proofs follows the steps of the inductive method proposed in
[Section 5.1], the proof is complicated by the use of the above auxiliary functions.
Besides, the definition of the red operation may not be as direct as it would be
desirable.

6 Conclusions

This paper continues the research initiated by M. Palomino in [Palomino 2003]
of relating the CRWL logic with RL. However, our process for simulating CRWL
programs with RL theories uses membership equational logic as the underlying
logic for RL bringing off clearer Maude programs.

Nevertheless, our main goal behind simulating CRWL programs with Maude
programs has been to study the benefits of applying the verification framework
of RL to the non-terminating and non-deterministic CRWL programs. The ob-
tained results are encouraging in the sense that proofs can be done using existing
theorem provers in an easier way than in previous approaches and the transfor-
mation process from CRWL programs to Maude theories can be easily automa-
tized. The possibility of integrating the proposed proving method with the ITP
tool would increment significantly power of the verification process. This paper
illustrates the proposed methodology on non-terminating and non-deterministic
examples, taking into account the laziness of the functions.

On the other hand, the use of observations on the properties allows the user
to decide the means by which the system will be observed without interfering
with the system specification, and facilitates the verification of the properties.
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We have in mind to implement the transformation process and the induc-
tive method, in such a way that the use of RL will be transparent for the user.
Furthermore we will explore new methods for automatize the given inductive
proving method in a more direct way. We are also proving other kind of prop-
erties to study the potential of the proposed inductive method and to compare
it with other approaches to the verification of nonterminating programs such as
the different variants of temporal logics.
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