Journal of Universal Computer Science, vol. 12, no. 11 (2006), 1521-1550
submitted: 1/5/06, accepted: 15/10/06, appeared: 28/11/06 © J.UCS

Process Equivalences as Global Bisimulations'

David de Frutos Escrig
Department of Sistemas Informéaticos y Programacién
Universidad Complutense de Madrid, Spain
defrutos@sip.ucm.es

Carlos Gregorio Rodriguez
Department of Sistemas Informéticos y Programacién
Universidad Complutense de Madrid, Spain
cgr@sip.ucm.es

Abstract: Bisimulation can be defined in a simple way using coinductive methods,
and has rather pleasant properties. Ready similarity was proposed by Meyer et al. as
a way to weakening the bisimulation equivalence thus getting a semantics defined in a
similar way, but supported for more reasonable (weaker) observational properties.

Global bisimulations were introduced by Frutos et al. in order to study different variants
of non-determinism getting, in particular, a semantics under which the internal choice
operator becomes associative. Global bisimulations are defined as plain bisimulations
but allowing the use of new moves, called global transitions, that can change the
processes not only locally in its head, but anywhere.

Now we are continuing the study of global bisimulation but focusing on the way dif-
ferent semantics can be characterised as global bisimulation semantics. In particular,
we have studied ready similarity, on the one hand because it was proposed as the
strongest reasonable semantics weaker than bisimulation; on the other hand, because
ready similarity was not directly defined as an equivalence relation but as the nucleus
of an order relation, and this open the question whether it is also possible to define it
as a symmetric bisimulation-like semantics.

We have got a simple and elegant characterisation of ready similarity as a global bisim-
ulation semantics, that provides a direct symmetric characterisation of it as an equiva-
lence relation, without using any order as intermediate concept. Besides, we have found
that it is not necessary to start from a simulation based semantics to get an equivalent
global bisimulation. What has proved to be very useful is the axiomatic characterisa-
tion of the semantics. Following these ideas we have got also global bisimulation for
several semantics, including refusals and traces. That provides a general framework
that allows to relate both intensional and extensional semantics.

Key Words: bisimulation, ready simulation, refusal, traces, concurrent process equiv-
alences and preorders, comparative semantics.

Category: F.1.2, F.3.2, D.3.1

1 Introduction

A cornerstone for the Theory of Concurrent Processes is to determine whether
two processes are equivalent, that is, whether the behaviour of two given processes

! Partially supported by the projects TERMAS TIC2003-07848-C02-01, MIDAS
TIC2003-01000, PAC-03-001 and MRTN-CT-2003-505121/TAROT

1522 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

is essentially the same.

There exist in the literature many different proposals defining process equiv-
alences. Park and Milner’s bisimulation equivalence [Park, 1981, Milner, 1989]
has been recognised as a fundamental notion in the theory of concurrency and
has set up by itself a large and fertile field of study. Bisimulation is a mathe-
matically elegant concept, it is recursively defined over the intensional definition
of processes, and captures some (relatively) natural logical properties of the
processes.

However, several objections have been made to this equivalence relation on
the grounds of its excessive discriminatory power. Following similar formulations
to that of bisimulation other weaker equivalences have been proposed, amongst
them 2-nested simulation equivalence [Groote and Vaandrager, 1992] and ready
simulation equivalence [Bloom et al., 1995], also called ready similarity, that was
independently presented in a different context, with the name of %—bisimulation
in [Larsen and Skou, 1991]

Ready simulation equivalence, enjoys many interesting properties: it is the
finest equivalence that is a congruence with respect to all the languages defined
in GSOS format; has a characterisation in terms of a modal logic; and, as there
have been largely argued, it has a characterisation, in terms of testing or button-
pushing scenario, that is more reasonable than that necessary to characterise the
bisimulation equivalence.

These relations provide further identification of processes, but they are still
quite far from the identification power of the usual equivalence relations based
on extensional models. Extensional, or denotational, models provide semantic
equivalences in a quite different way to bisimulation. Processes are represented in
terms of mathematical objects that are defined in terms of the observations made
on the behaviour of each process. Trace equivalence [Hoare, 1985] and failures
equivalence [Brookes et al., 1984] are probably the most well known extensional
semantics.

Also extensional are the semantics defined by using the testing methodol-
ogy [Hennessy, 1988] in which two processes are said to be equivalent if they
pass the same tests. This formulation provides an strong metaphor? and is
quite appealing and intuitive. It is easy to find into this framework equiva-
lences which raise the distinction power from traces and failures, increasing the
range of possible equivalences: readiness, refusal, ready trace... [Pnueli, 1985,
Olderog and Hoare, 1986, Phillips, 1987, Gregorio-Rodriguez and Nufez, 1999).

There have been several works trying to connect somehow intensional and
extensional approaches to define equivalences on processes. In [Abramsky, 1987,
Abramsky exposed clearly one of the links: bisimulation equivalence can be view

2 This testing scenario was also used by Milner to motivate his equivalence, but the
definition of bisimulation equivalence definition is clearly intensional.

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1523

has an special kind of testing equivalence. Classical equivalences, as that induced
by traces and failures, could also be described in the same framework.

In [Cleaveland and Hennessy, 1992] it is shown how to decide some testing
equivalences for finite-state processes using bisimulation equivalence checkers. To
achieve that, the intensional definition of concurrent processes, that is, the label
transition system, is transformed in such a way that deciding testing equivalence
is reduced to deciding a slightly generalisation of bisimulation equivalence.

A fundamental work on the comparison between semantics of processes is
the paper by Van Glabbeek [Glabbeek, 2001]. There, all the inclusion relations
between twelve different semantics are proved, see Figure 1. Besides, for each
equivalence a motivating testing scenario is presented and a complete axiomati-
zation is provided.

blslmulatlon
ready sunulatlon
0551ble worlds

complete simulation ready trace

failure trace readiness

\/

failure

complete trace

l

trace

simulation

Figure 1: Semantics with an Axiomatic Characterisation in the Linear Time-
Branching Time Spectrum I

One of the goals of our work is to define a general framework based on bisimu-
lation semantics where weaker equivalences (both intensionally and extensionally
defined [Cleaveland and Smolka, 1996]) can be defined, preserving the coinduc-
tive flavour of bisimulation, in order to be able to use, as a tool for their study,
coalgebraic methods that have proved to be mathematically powerful and ele-
gant.

For that, we propose a generalisation of the idea of bisimulation, that we

1524 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

call global bisimulation. Global bisimulation is not a single notion but a general
scenario in which we can define several concrete instances, that we have proved
to be equivalent to many of the most useful and well known classical equivalences
between processes, such as:

Strong bisimulation equivalence [Milner, 1989

— Ready similarity equivalence [Bloom et al., 1995, Larsen and Skou, 1991]
— Failures equivalence [Brookes et al., 1984, Hoare, 1985, Hennessy, 1988]
— Trace equivalence [Hoare, 1985]

The power of global bisimulation to express these four equivalences demonstrates
its versatility (originally, strong bisimulation and ready similarity are intension-
ally defined while failures and traces are extensional) but, what is more impor-
tant, it provides us with the framework to study under a new light the similarities
and differences between several semantics.

The key idea underlying global bisimulation is the combination of two kind
of transitions when describing the evolution of a process. We will consider dy-
namic transitions, which correspond to the execution of visible actions, and
static transitions, which have to do with the partial resolution or delaying of
non-determinism. Changing the allowed static transitions we will define differ-
ent notions of equivalence.

The ideas in which global bisimulation are based were introduced, in a slightly
different context, in [de Frutos-Escrig et al., 1999]. In that paper an equivalence
coarser than the weak timed bisimulation is proposed, under which the internal
choice operator becomes associative.

There have been in the literature other generalisations of the notion of bisim-
ulation. Let us just cite here [Gardiner, 2003] where power simulation is elegantly
described in terms of predicate transformers providing an alternative character-
isation to trace and failure orders and equivalences; however, it is strange that
bisimulation equivalence itself cannot be achieved as a power simulation.

The paper is structured as follows. In Section 2 we recall the definition of
bisimulation equivalence and introduce the main ideas of global bisimulation in
the framework of our research on comparative semantics. In Section 3 we face
the problem of defining a global bisimulation equivalence relation with the same
discriminatory power as ready simulation equivalence. We discuss the difficulties
encountered and the possibilities global bisimulation offers to overcome them. In
Section 4 we formally define a global bisimulation that induces an equivalence
relation equivalent to the ready similarity, proving this result. In Section 5 we
shift the focus from intensional semantics to extensional ones. We prove that it
is also possible to define global bisimulations to characterise failure equivalence
and trace equivalence. In Section 6 we extend the results of previous sections to

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1525

infinite finitary tree processes. To achieve this we use continuity arguments: we
define the notion of level continuity and we prove how the global bisimulations are
level continuous. Finally, in Section 7 we present some conclusions and directions
for further work.

2 Preliminaries and Goals

The behaviour of processes is usually described using the well established for-
malism of labelled transition systems [Plotkin, 1981], or lts for short.

Definition 1. A labelled transition system is a structure (P, Act, —) where
— P is a set of process, agents or states,
— Act is a set of actions and

— —»C P x Act x P is a transition relation.

Act is the set of actions that processes can perform and the transition relation
— describes the process transitions after the execution of actions. The triple
(p,a,q) €— is represented by p -, ¢, indicating that process p performs action
a evolving to process q.

Some usual notation on lts is used. We write p — if there exists a process
q such that p % ¢ and, on the contrary, we write p /= if there exists no
process ¢ such that p —— q. For a string of actions o = ajag---an, a; € Act,
p -2 ¢ means that there exist processes ¢i ...g¢n_1, such that p —> ¢4 —=
G2 =5 i guo1 2 . The function I calculates the set of initial actions of a
process, I(p) = {a | a € Actand p —*5}. A process ap’ is a summand of the
process p if and only if p —— p'.

Labelled transition systems define the behaviour of processes in terms of
the actions they can perform, so it is natural to define a process equivalence in
terms of these action transitions. That is precisely what bisimulation does: to
inductively explore the intensionally defined behaviour of processes. Bisimulation
has became one of the fundamental notions in the theory of concurrent processes.
It can be defined as follows:

Definition 2 [Milner, 1989]. A binary relation R is called a (strong) bisimu-
lation if for all p, q processes such as p R ¢, and for all a € Act the following
properties are satisfied:

— Whenever p — p’ there exists some ¢’ such that ¢ — ¢’ and p’ R ¢'.

— Whenever ¢ — ¢’ there exists some p’ such that p — p’ and p’ R ¢'.

1526 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

Two processes p and g are bisimilar, which we denote by p =p ¢, if there exists
a bisimulation containing the pair (p, g).

Strong bisimulation states that two processes, p and ¢, are equivalent if g can
simulate p and conversely (thus the prefix bi) p can simulate ¢, both at the same
time. Process ¢ can simulate p if whenever p performs an action a and evolves to
p’ then ¢ is also able to perform action a and reach some ¢’ which is equivalent to
p’. Let us note that the definition imposes simultaneous simulations by means of
a single symmetrical definition of bisimulations. If instead, separate simulations
are considered, the induced simulation equivalence is weaker than bisimulation
equivalence (see for instance [Glabbeek, 2001] for more details).

This simple and elegant recursive definition of bisimulations induces an equiv-
alence between processes which has several nice properties: it can be charac-
terised by a simple and natural logic [Hennessy and Milner, 1985]; there exist
efficient algorithms that allow to decide bisimulation [Paige and Tarjan, 1987,
Kanellakis and Smolka, 1990]; and therefore, there are several tools that can ef-
fectively check process bisimilarity [Cleaveland et al., 1993].

Bisimulation equivalence can also be defined in terms of a game (see for
instance [Stirling, 1998]). Trying to prove or disprove the bisimilarity of two
processes we consider two players: the one who starts is the attacker and tries
to prove non-bisimilarity; in front of him we have the defender, trying to prove
bisimilarity. The board of the game is formed by the processes transition di-
agrams, where the players have to move by performing actions of them. The
attacker starts, chooses one of the processes and performs an action. Then, the
defender has to match the same action on the other process, trying to arrive to
a state which is bisimilar to that reached by the attacker. An important fact
related with the symmetry of the definition is that the attacker can make his
moves on either process transition diagram, while the defender has to find the
right movement on the other process. If the attacker is able to arrive to a state in
which he can make a move, that is, to execute an action that the defender cannot
execute in its current state, then the compared processes are not bisimilar. On
the other hand, if the defender can always simulate the attacker movements, then
the two compared processes are bisimilar. This presentation of bisimulation as
a game will be very useful to explain the main ideas of our global bisimulation.

One of the main goals of our work is to provide a framework in which to de-
fine, study and compare different equivalences on processes. The idea of starting
from the definition of bisimulation is quite appellant due to its good properties
but, as we mentioned in the introduction, bisimulation defines a quite narrow®
equivalence. Therefore, in order to get a variety of equivalences from the defini-
tion of bisimulation it is necessary to relax in some way the strong restrictions
imposed in that definition.

3 For instance, none of the pairs of different processes in Figure 2 is bisimilar.

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1527

From the game-semantics point of view one possibility is to give to the de-
fender more chances to simulate any movement of the opponent. But this is not
an easy task if we want to maintain a symmetric definition, that is, the same
rules for both players: whenever the board-game is enlarged to allow more free-
dom to the defender we also give the attacker new possibilities to use in his own
profit!

ab(c+d) a(bc+bd+b(d+c)) a(bc+ bd) a(be + bd) + abe

| =, Traces =j Failures =p4 Ready similarity =p Strong bisimulation

Figure 2: Examples/Counterexamples of Equivalence Relations over Processes.

Bisimulation is based on the execution of (local) action transitions defining
the process behaviour. However, we think that, besides action transitions, there
is another fundamental concept into the definition of the behaviour of processes
which plays an essential role: non-determinism. The key idea of our work is to
study the role of non-determinism in the definition of bisimulation. Our general-
isation of bisimulations, global bisimulations will transform the transition rela-
tion of processes in order to get essentially the same action transition but adding
new transitions that introduce additional control over the non-determinism of
processes.

More technically, given a labelled transition system (P, Act,—) we will in-
troduce a new relation ~~» which captures the desired way to cope with non-
determinism in processes. Then, an extended set of states, 75, and an extended
transition relation, A>=~+"—_ will be considered, so that global bisimulation
will be just plain bisimulation over the extended system (’ﬁ, Act, =>).

1528 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

A similar strategy has been followed in [Cleaveland and Hennessy, 1992] where
the transformation of the original labelled transition system that models the
given processes is defined in such a way that the testing relations on the original
systems can be checked using bisimulations on the transformed system. How-
ever, this transformation is defined in a less operational way than ours, and it is
difficult to establish a simple relation between the added transitions and the old
ones. Even more, it is not possible to distinguish these new transitions just by
looking at the transformed system. We could say that these transformed systems
are in fact the values of a denotational semantics* which defines a normal form
for processes.

In contrast, in our approach we aim to preserve as much as possible the
operational semantics of the processes, just adding the new transitions that are
needed to capture the semantics in which we are interested, and keeping them
separate of the original transitions.

In this way, global bisimulation will establish a common framework in which
the differences between several semantics can be expressed in terms of the dif-
ferent treatment of non-determinism. In particular, when ~- is empty, global
bisimulation is just plain bisimulation and therefore our approach is conserva-
tive, in the sense that the original notion of bisimulation is a particular case of
global bisimulation.

3 Ready Similarity and Global Bisimulation (A Case Study)

In this section we consider the problem of finding a global bisimulation being
equivalent to the ready similar equivalence relation. As explained before, given a
Its £L = (P, Act,—), and the ready similarity relation =g, we want to find the
proper definition of ~» so that the extended transition system L= (ﬁ, Act, =)
is such that p =g ¢ in £ if and only if p =5 ¢ in L. First, in Section 3.1
we recall the definition of the ready simulation equivalence and we highlight the
differences between simulations and bisimulations. In Section 3.2 we discuss some
representative examples trying to synthesise the rules that generate the global
transitions needed to characterise the ready similarity as a global bisimulation.

3.1 Ready Simulation Equivalence

Bloom, Istrail and Meyer were amongst the first authors that discussed the ad-
equacy of bisimulation as a way to define the semantics of concurrent processes.
They gave several arguments supporting their opinion along an interesting col-
lection of papers where they thoroughly studied the discriminatory power of
bisimulation.

1 Denotational semantics are defined in a compositional way, that is, following a pro-

cedure which in general makes difficult to relate any specific part of the denotational
values with a simple point in the behaviour of the corresponding process.

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1529

In [Bloom et al., 1988] a quite general format of structured rules for transi-
tions among terms, the GSOS format, is defined, proving that bisimulation equiv-
alence is not a congruence with respect to the languages defined in such a format.
The finest equivalence that is a congruence with respect to all of these languages
is called GSOS trace congruence, and a characterisation in terms of a modal
logic for this equivalence was given, comparing it with the Hennessy-Milner
logic characterising bisimulation equivalence. In [Bloom and Meyer, 1992] it is
argued that in a context of testing or button-pushing scenario, the power of
bisimulation equivalence goes beyond what an external observer can really ob-
serve. Besides, the GSOS trace congruence equivalence was proved to be the same
as %—bisimulation, defined in a probabilistic context in [Larsen and Skou, 1991].
In this way, GSOS trace congruence could be defined in a bisimulation-like man-
ner, but with a coarser distinction power, because the imposed conditions were
not so restrictive as in the definition of bisimulation. This equivalence was called
ready similarity or ready simulation equivalence.

Definition 3 [Bloom et al., 1995, Larsen and Skou, 1991]. A binary rela-
tion R on processes is called a ready simulation if for all p, ¢ such as p R ¢, and
for all a € Act, the following properties are satisfied:

— Whenever p — p’ there exists some ¢’ such that ¢ — ¢’ and p’ R ¢'.
— Whenever ¢ — then p —— .

Two processes are ready similar, what we denote by p =g ¢, if there exists a
ready simulation R with p R ¢ (p Cgrs ¢) and also a ready simulation S such
that ¢ S p (¢ Crs p)-

Let us note that this intensional definition is mainly that of an asymmetric
simulation. The corresponding equivalence relation is obtained by mutual ready
simulation. So that it is defined in a similar way to simulation semantics, but
not directly in a symmetric way, as in the case of bisimulation. In terms of the
game-approach we proposed on Section 2, if we wish to decide p Crg ¢, the rules
of the game change, mainly because the attacker has to play always on p and
the defender on ¢. This introduces an asymmetry on the game which generates
an ordering relation between processes instead of an equivalence relation as in
the case of the bisimulation game. Therefore, if we want to check p =g ¢, it is
necessary to play the game twice, one for each inequality, p Ers q and ¢ Egg p.
However, we provide a direct characterisation of the ready similarity equivalence
in terms of a global bisimulation which now deserves to be called global ready
bisimulation. In terms of the corresponding game-semantics, this means that we
need just to play once to directly capture the ready simulation equivalence.

1530 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

3.2 Getting a Global Bisimulation

As we introduced in the previous sections, global bisimulations are based not
only on the original transitions of the processes, that we call dynamic since they
correspond to the evolution of the systems by executing actions, but also on the
static transitions that we introduce to control the resolution of non-determinism
in the behaviour of processes.

In this section we search for the static rules that define the static transitions
needed to extend the given lts in such a way that the ready simulation equiva-
lence becomes plain bisimulation equivalence in the extended system. Next we
will discuss the ideas and problems found when looking for the desired definition
of a global bisimulation characterising the ready similarity. The formalisation of
the corresponding definitions will be made in Section 4.

First we note that, without any loss of generality, we can consider that the
labelled transition systems are forests, or just single trees, if we fix an initial
state. Any Its can be expanded into a forest just by unlimited unfolding of the
subgraph of reachable states from each state of the original system. The so
obtained forest is equivalent to the unfolded system up to the identity of states,
in which we are not interested when defining the semantics of systems.

In order to make easier the presentation of our global bisimulation, both
at the intuitive and at the formal level, and the proof of the characterisations
we are looking for, we will restrict ourself to finite tree systems until Section 6,
where we will see how the definitions and results can be extended to infinite tree
systems and therefore, to arbitrary systems.

To be able to compare processes, or states, from different tree systems we
represent them by pairs (£, p). An action transition between the states p and ¢
of the system L, (£,p) —= (L, q) is graphically represented as in Figure 3(a).

Instead, the static transitions do not modify the states, but will change the
behaviour of the process by adding or removing some new transitions that modify
the whole system, as it is illustrated in Figure 3(b), where P’ is the system
obtained after the adequate modification of P.

As shown in Figure 4, if we consider together both types of transitions, dy-
namic and static, there are two dimensions on which the processes can evolve:
They can perform (vertical) action transitions or can resolve some of its non-
determinism by means of the (horizontal) static transitions. Now, when playing
the bisimulation game in this new board, both the attacker and the defender
will be able to move by combining both kinds of transitions.

As usual, for the sake of simplicity, we often use the sum operator (+) on
trees, that is associative and commutative. For instance, by using the sum oper-
ator we can define a tree as a summation of subtrees p = Zle a;p; where each
a; is an action and each p; is a tree.

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1531

Figure 3: Dynamic and Static Transitions

In Example 1 we present two processes that are ready similar but not bisim-
ilar.

Ezample 1. Let us consider the processes ps = a(bc + bd) and ps = a(be +
bd) 4+ abc in Figure 2. They are ready similar, po =gg¢ p3, but not bisimilar,
D2 #p p3; we prove both facts, playing the games characterising ready simulation
and bisimulation equivalences, respectively:

1. a(bc + bd) =g a(bc + bd) + abe.

(a) a(bc+ bd) Crs a(be + bd) + abe.
Obviously the second clause of the definition of ready simulations (De-
finition 3) is satisfied: po —— <= p3 —. For the first clause, when
the attacker plays on ps, a(bc + bd) —%5 be + bd, then the defender does
a(bc+bd)+abe —% be+bd and wins. Formally, the game should continue,
but when the processes are equal the defender wins just mirroring the
moves of the attacker.

(b) a(bc+ bd) + abc Egs a(be + bd).
As in the case above, we have p3 — <= py —. For the first clause
now the attacker has two possible moves

i. if he plays a(bc + bd) + abc — bc + bd, then the defender moves
a(be + bd) —* be 4 bd and wins;

1532 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

Figure 4: Combining Dynamic and Static Transitions

ii. if he chooses a(bc 4 bd) + abc — be, then the defender executes
a(bc + bd) - be + bd and wins, because clearly be C g be + bd.

2. a(bc+ bd) # 5 a(bc + bd) + abe.
If the attacker starts playing at ps by performing the transition a(be + bd) +
abc =% be, then the defender has to move on ps, and has only one way to
simulate the @ transition: a(bc + bd) —— bc + bd. But then, the attacker can
change to the other side of the board playing bc+ bd . d and the defender

can only execute bc L, ¢, losing the game, since, obviously, ¢ # 5 d.

Now, let us look for a modification of the rules of the bisimulation game that
would allow the defender to win in Example 1. The defender lost when he was
obliged to reach the state bc + bd after executing a. He is reaching a non-
deterministic state whose too large offering is then used by the attacker to win
the game. Therefore, the defender would win if he were allowed to remove the
offering of bd in advance, that is, to move from a(bc 4 bd) to bc, when perform-
ing the action a. This is possible if he can perform an static move in which
non-determinism is partially solved.

So, the general form of the global rule G,4, G after global and nd after

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1533

non-determinism, is
ap+aq+r~aq+r (Gna)

graphically represented in Figure 5.

Figure 5: Global Rule G4, Removing of Non-determinism.

Sometimes we will need to apply the rule G, 4 really globally, that is, not only
in the head of processes but anywhere inside the processes, what is expressed
in the graphical representation by the separation of the actual state p and the
state r below, where the reduction of non-determinism is done.

Let us consider again the processes p2 and ps in Figure 2, but where action a
is refined into ajaq, getting the processes ph = ajaz(be+ bd) and ps = ajaz(bc+
bd) + ajasbe. Rephrasing the explanations in Example 1, if the attacker starts on
p3 by executing aq, now the defender playing in ps has the possibility of resolving
in advance its non-determinism.

Now, if together with the transition relation —, we take as the relation ~~ the
one defined by rule G4, then we will denote by =, the equivalence relation
induced by the bisimulation equivalence over the lts including both — and ~~.

But a new example points out that this rule alone is not enough to achieve
the discriminatory power of ready similarity.

Ezample 2. Let us consider the processes p = d(abc + abd) + da(bc + bd) and
q = da(bc + bd) in Figure 6.

Ready similarity of p and ¢, p =pg ¢, can easily be proved by using the ax-
iomatization for the ready simulation equivalence in [Glabbeek, 2001]): Applying

1534 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

the axiom a(z + y) =pg a(z + y) + ay, then it follows

a(be + bd) =g a(be + bd) + abe
=pg a(bc+ bd) + abc + abd

Therefore, for the process p, and the application of the previous equivalence to
the underlined subprocesses we get

p = d(abc + abd) + da(bc + bd) =p¢
d(abe + abd) + d(a(bc + bd) + abc + abd)

If we continue applying the axiom in the opposite direction to the underbraced
named subterms, we get

d(abc + abd) + d(a(bc + bd) + abe + abd) =g ¢
—_——— \) ————
y

Y T

d(a(bc + bd) + abc + abd)

N) N——
T Y

And finally, the derived axiom a(bc + bd) =pg a(bc + bd) + abe + abd applied to
the underlined subprocess produces the desired result

d(a(be + bd) + abe + abd)) =p¢ d(a(be + bd))

=Rrs ¢

However p #, q. Taking ¢’ = a(bc + bd) and p' = abc + abd, if we play
the global bisimulation game for ~» induced by the rule G4, then the attacker

can start playing on p, performing the move p N p’, and then the defender has
only three possible moves:

1. Either he plays action transition ¢ 4, ¢’, and then he loses, since the at-
tacker can play on ¢/, ¢ — bc+ bd, and then the defender can only choose
between p' — be or p' —— bd, and obviously no one of these processes is
global bisimilar to bc + bd;

2. Or he plays a combination of an action transition and a static transition

q 4, q' ~ abc, getting a process that is not global bisimilar to p’;

3. Or, symmetrically, plays the action transition and the other possible static

transition ¢ 4, q' ~ abd, getting also a process not global bisimilar to p’.

This means that the defender loses and therefore the global bisimilarity between
p and q is disproved.

Let us study why processes p and ¢ in Example 2 are ready similar, p =54 ¢,
but not p = ¢. The problem arises when ¢ tries to simulate p. In fact, the

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1535

d(abc + abd) + da(bc + bd) da(bc + bd)

Figure 6: p =5 ¢ but p 7éGnd q-

key point is how to simulate the move p 4, p’, as we have that p Crg q,
since p’ Crg ¢'. This can be proved using the axiom ax Crs ax + ay in the
following way: From abc Cgrs a(bc + bd) and abd Crg a(bc 4+ bd) we obtain
p' = abc + abd Crs ¢ + ¢’ and because ¢’ + ¢ =5 ¢ we can conclude that
P Ersq +q Crs .

It is a bit surprising to find that the use of the equivalence axiom g + q = ¢,
which is even satisfied by strong bisimulation equivalence, and therefore by any
equivalence relation coarser than it, is crucial in that proof.

We conclude that adding a new rule we could solve situations like that in the
example above. The reader can easily check that applying G4, once, and then
Gra two times, the defender can turn ¢’ into p’, thus winning the game. This
new rule Ggp,, G after global and dp after duplication, is given by

p~p+p (Gap)

which is represented in our tree graphic style in Figure 7.

As we will prove in the following section, taking as global (static) transitions
those defined by G4 and Gy, the corresponding global bisimulation equivalence
coincides with ready similarity, thus getting the desired characterisation.

Therefore, we can conclude that to get a global bisimulation equivalence with
the same discriminatory power as ready simulation equivalence we need mainly
to be able to remove non-determinism in an adequate way: Either in a direct
way, using the rule G,q4, or in a, let us say, partial way, by applying G,q to

1536 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

AN\ A

Figure 7: Global Rule Gg),, Duplication.

remove non-determinism in different ways from several copies of a process, first
duplicated by using the rule Gg,,.

For the sake of clarity, we have presented our ideas in a rather intuitive way.
But the paths to explore are full of pitfalls. We conclude this section with an
example that shows that the introduction of global transitions could be quite
harmful.

Ezample 3. The global equivalence defined using only the G4 rule, =, , is not
weaker than bisimulation equivalence. Let us consider ¢ = a(bc + bd), as in
Example 2, and processes dq’ and d(¢' + ¢').

Given that p + p = p is the axiom that defines bisimulation equivalence dg’
is bisimilar to d(¢' + ¢'). However, d¢’ # d(q¢' + ¢'): If the attacker begins

with d(¢" + ¢') 4, q + ¢ ~ abc + abd, then the defender can only perform d
arriving to a(bc 4 bd). Then, as we have already seen in detail in Example 2, we
have abc + abd #¢, , a(bc + bd).

This example shows how the introduction of global rules is not an easy task.
A symmetric definition of global bisimulation sets the bases for a game with the
same rules for both players, attacker and defender, and therefore, when we add
global rules trying to give more power to the defender, they can also be used by
the attacker.

4 Ready Similarity as a Global Bisimulation

In order to formally define the global ready bisimulation generating an equiva-
lence relation ~grs which coincides with the ready simulation equivalence, =5,
we recall Figure 4.

Both types of transitions can be put together by considering an extended

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1537

Its whose states are the pairs (£,p) and its transition relation ~> is defined®
as A&>=~+"— where ~~" is the reflexive and transitive closure of ~». That is,
¢ VAR x (1 a roo

Definition 4. Given a lts £ = (P, Act,—), and G, a set of global rules defining
a global transition relation ~-, we define the global labelled transition system
L = (P, Act,~>), where ~>=~~*— and P is the set of states reachable via
/> starting from the initial system L. By putting together the systems L’s
corresponding to the trees L£’s in a forest-like system F we would obtain the
corresponding global lts F.

Let us note that every state in F, (£,p), is reachable, and therefore it is
included in F, so that the following definition makes sense.

Definition 5. Given a lts, F = (P, Act,—) and the corresponding global lts
F= (75, Act,=>>), we define the global equivalence relation ~¢gp as follows: For
all (L,p),(L',p") € P, (L,p) =agp (L',p') (in F) iff the corresponding states
(L,p) and (L')p') € P are strongly bisimilar (in .7?)7 (L,p) =5 (L, P).

Definition 6. If we consider the set of global rules Grs = {Gna,Gap}, then
the corresponding global equivalence defined by Definition 5 is called the global
ready equivalence relation, denoted by ~ggs.

In order to simplify the proof of Theorem 10 below, we introduce the following
lemmata.

Lemma 7. Let us consider the set of global rules Grs = {Gna,Gap}- If p ~" q
then we have ¢ Egrg p.

Proof. Tt is enough to see that if p ~» ¢ then ¢ Crg p. We have two cases:

— Either we use the static rule G4, ap+aq+1r ~» aqg+r, but then ag+7r Crs
ap + aq + r (see, for instance, [Glabbeek, 2001] for an axiomatization of the
preorder Crg);

— Or we use the static rule Ggp,, p ~ p+p, but then p and p + p are bisimilar,
p+ p =g p, and therefore p 4+ p Crgs p.

Definition 8. The restriction to action a on process p, p|,, defines the (sub)-
process we get by adding all the a-summands of p. That is, if p =), a;p; then
Pla =Y a;p; where J={ieI|a; =a}.

Lemma9. If p ~ps q then for all a € I(p) we have that pl, ~gs qla-

5 It is easy to see that for the ready simulation equivalence ~» and — commute, so
that it would be equivalent to define /2> as —~~" or even as ~»*—~~".

1538 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

Proof. Let us assume that p|, %grs q|a, then there exists p’ such that p|, AN P’

and p’ is not global ready equivalent to any ¢’ such that ¢|, > q'. Given that
the rules in Grs do not introduce any new action it is not possible to ¢ to use
~* to arrive to a state that can perform action a and that is not in ¢|,, so that
we also have p %ggs ¢.

Theorem 10. Given a lts L = (P, Act,—), we have
P=prs 4 P ~Rrs q

Proof. We only need to prove the following three statements:

) . .
P=ps ¢ = (p~"qand g ~" p)

@
= P~RS 4
@)

To make it more readable, along the proof we will occasionally index the global
transitions by the name of the rule used to generate them.

(1) We will use the axioms that characterise the ready similarity, see for in-
stance [Glabbeek, 2001]. The axioms for Its that define the equivalence =p¢
are the following:

—p=p+p

= I(z) € I(y) = a(z +y) = a(z +y) + ay,
If p =R¢ g then there exists a finite sequence of applications of the axioms
above such that p =g p1 =pg P2--- =g ¢- The proof that p =ps ¢ =
(p ~" q and g ~" p) can be done by induction on the axiomatic derivation
of p =g ¢, proving that we also have p ~* ¢ and ¢ ~* p. We analyse the

use of each of the axioms in the derivation and show how ~* is powerful
enough to simulate any of them:

— A substitution of p by p + p can be simulated by p ~»4, p + p.
— A substitution of p + p by p can be simulated by p + p ~>pnq p.

— A substitution of a(z + y) + ay by a(x + y) can be simulated by a(z +
y) + ay ~na a(z +y).
— A substitution of a(z + y) by a(z + y) + ay can be simulated by a(z +
y) ~ap alx +y) + alz +y) ~na a(z +y) + ay, since I(z) C I(y).
(2) To prove that (p ~" g and ¢ ~" p) = p ~gg ¢ is immediate: If p > Da
then, by definition, p ~* p’ == p, and therefore g ~* p ~* p’ =% p,, thus
getting ¢ RS Da-

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1539

(3) Finally, we have to prove that p ®rs ¢ = p =pg ¢. It is enough to show
that ploe =rs qle = Pla =pgg qla, because =p¢ is a congruence wrt the
sum operators on trees. We proceed by induction on the depth of trees. For
processes of depth 0 it is trivial. Otherwise, by Lemma 9 we have that if
P ~Rs q Pla ®rs qla, then whenever p|, —— p’ we have that q|, ~* ¢ ——
¢, By applying the induction hypothesis we have p’ =, ¢, and therefore
ap’ =pg ag,. On the other hand, by Lemma 7 we know that ¢’ Crg ¢|, and,
given that ~* does not introduce any new action, I(¢’) = I(q|s) = {a}.
That is, ¢ = ag), + r for some r with I(r) = {a} and therefore we have
that aq), Crs ¢'. All together, ap’ Cgrs aql, Crs ¢ Crs ¢la and therefore
Pla Ers ¢la, as we wanted to prove.

5 Extensional Semantics as Global Bisimulations

Through sections 3 and 4 we have seen how to characterise ready simulation
equivalence as a global bisimulation. However, the suspicious reader may think
that ready simulation and bisimulation have a rather similar coinductive flavour.
Also, looking at Figure 1, he may think that our results were possible because
both equivalences are rather close in the linear time-branching time spectrum.
In this section we will show how global bisimulations can also characterise
other semantics. To show the strength of the formalism, we have chosen two well
known semantics, traces and failures, that are defined in an extensional way and
that are quite far from bisimulation in the linear time-branching time spectrum.

5.1 Failure Equivalence

For the kind of processes we are considering, a suitable definition of failure
equivalence [Brookes et al., 1984, Hoare, 1985, Hennessy, 1988] is the following:

Definition 11. A pair (0, X) € Act® x P(Act) is a failure pair of process p if
there exists some ¢ such that p -7 ¢ and for all a € X we have ¢ /. Let F(p)
be the set of failures of p. Two processes, p, q, are failure equivalent if they have
the same set of failures, that is, F'(p) = F(q).

Failure semantics was first introduced in [Brookes et al., 1984] and it was
then widely spread when Hoare used it in the definition of the description lan-
guage CSP [Hoare, 1985]. Failure semantics has also aroused in other different
contexts; for instance, the testing equivalence defined by De Nicola and Hen-
nessy [Hennessy, 1988] coincides with failure equivalence. Failure semantics is
finer than the well known trace semantics that we are going to study in Sec-
tion 5.2.

1540 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

As we already done in Section 4 for the ready similarity, our goal is to find
the set of global rules that allow to define a global bisimulation with the same
distinction power as the failure equivalence.

In order to motivate the rules we are going to introduce we start with an
illustrative example.

Ezample 4. Let us consider the processes p1 = a(bc + bd + b(d + ¢)) and py =
a(be + bd) that appear in Figure 2. They are failure equivalent, p1 =5 pa, but
they are not bisimilar. For instance, if the attacker starts performing in p; the
transition, p; — p} = bc + bd + b(d + ¢) then the defender can only replicate
this movement by performing in ps the transition ps — ph = be + bd. But now
the attacker has the possibility to perform b on pj by means of p} Ld+e
Then, the defender can still perform action b, but reaching either an state where
action d is possible or an state where action c is possible, however, a state in
which both actions ¢ and d are possible is not reachable from p.

There are a number of different runs that show that pl #5 p2, but all of them
explode the fact that p; has an state in which it can choose to perform ¢ or
d; process ps can also perform these actions but separately. If we want ps to
be able to bisimulate p; we should allow a global transition to delay the non-
deterministic choice on action b. The new rule that we introduce is Gg,, dy after
delaying.

Figure 8: Global Rule Gy, Delaying.

Definition 12. If we consider the set of global rules Gr = {Gpna,Gap,Gay }, then
the corresponding global equivalence defined by Definition 5 is called the global
failure equivalence relation, denoted by ~p.

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1541

Once we have defined ~p, we want to establish the equivalence between our
global bisimulation and the failure semantics.

As we did in Section 4, in the proof we will use Definition 8 and the following
lemmata:

Lemma13. Let us consider the set of global rules Gr = {Gna,Gap,Gay}. If
p ~* q then we have q Cp p.

Proof. Tt is enough to prove that if p ~» ¢ then ¢ Ep p. We can distinguish the
following cases:

— The use of the static rules G4 and Ggp; then, as we already saw in Lemma 7
we have p~ ¢ = qCErsp=qLCFp.

— Or the use of the static rule Gqy, ap+a(g+r) ~» a(p+q), but then a(p+q) Cp
ap+a(q+r), see for instance [Glabbeek, 2001] for an axiomatization for the
preorder Cp.

Lemma 14. If p ~p q then for all a € I(p) we have pl, =F qlq-

Proof. Let us assume that pl, #F ¢la, then there exists p’ such that p|, AN P’
and p’ is not global ready equivalent to any ¢’ such that ¢|, > q'. Given that
the rules in Gr do not introduce any new action, it is not possible to ¢ to use
~* to arrive to a state where it can perform action a and that is not in ¢|, so
that we also have p #p q.

Theorem 15. Given a lts L = (P, Act,—), we have

p=rqiff p=rq

Proof. As we did in the proof of Theorem 10, we only need to prove the following
three statements:
_) * *
p=pq=(p~"qand g ~"p)
2
% P~Fq
()
= P=rq
The proof of (2) is the same to that in Theorem 10, but the proofs of state-
ments (1) and (3) have to be rewritten for this case.

(1) We will use the axiomatization for the failure equivalence, see for instance
the one in [Glabbeek, 2001]. The axioms that characterise the equivalence
= for lts are the following:

—ar+aly+z)=ar+alx+y)+aly+2)

— a(bx 4+ u) + a(by + v) = a(bz + by + u) + a(by + v)

1542 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

If p =5 ¢ then there exists a finite sequence of applications of the axioms
above such that p =p p1 =p p2--+ =g ¢. The proof that p = ¢ = (p ~"
q and ¢ ~* p) can be done by induction on the axiomatic derivation of
p =g ¢ proving that we also have p ~" ¢ and ¢ ~" p. We analyse the use of
each of the axioms in the derivation and show how ~~* is powerful enough
to simulate any of them.

— A substitution of az+a(y+2) by az+a(x+y)+a(y+z) can be simulated
by az+a(y+z) ~g, ar+ar+a(y+z)+a(y+z) ~ay art+a(r+y)+a(y+z).

— A substitution of az+a(z+y)+a(y+2) by az+a(y+z) can be simulated
by 0z + (@ + y) + aly +) ~ond az -+ a(y + 2).

— A substitution of a(bx +u)+a(by+v) by a(bz+by+u)+a(by+v) can be
simulated by a(bx+u)+a(by+v) ~>qp a(bz+u)+a(by+v)+a(by+v) ~>qy
a(bx + by + u) + a(by + v).

— A substitution of a(bz + by +u) + a(by +v) by a(bx + u) + a(by +v) can
be simulated by a(bx + by + u) + a(by + v) ~>nq a(bz + u) + a(by + v).

(3) Finally, we have to prove that p ~p ¢ = p = ¢. The proof is similar to that
for the ready simulation. It is enough to show that pl, =r ¢la = Ple =F ¢la
because = is a congruence wrt the sum operators on trees. We proceed
by induction on the depth of trees. For processes of depth 0 it is trivial.
Otherwise, by Lemma 14 we have that if p = ¢ we also have p|, =~ ¢l,.
Then whenever p|, —% p’ we have that ¢|, ~* ¢ —% ¢,. By applying
the induction hypothesis we have p’ = ¢}, and therefore ap’ =5 aq),. On
the other hand, by applying Lemma 13 we know that ¢’ Cr ¢|, and, given
that ~~* does not introduce any new action, I(¢’) = I(ql,) = {a}. That is,
¢ = ag,,+r for some r with I(r) = {a} and therefore we have ag), Crs ¢'. All
together, ap’ Cp aq), Crs ¢’ CF q|, and, since Crs=LCp, we can conclude
Dla EF qla, as we wanted to prove.

5.2 Trace Equivalence

A definition of trace equivalence [Hoare, 1985] for the processes we are consid-
ering is the following;:

Definition 16. We say that o € Act® is a trace of process p if there exists a
process g such that p —— g. Let T (p) be the set of all traces of p. Two processes,
D, ¢, are trace equivalent if they have the same set of traces, that is T'(p) = T'(q).

Trace equivalence is based on the idea that two processes should be identified
if they are able to perform the same sequences of actions. This equivalence
is the coarsest one in Figure 1 and, therefore, is quite far from bisimulation

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1543

equivalence, that is the finest one. Nevertheless it is still possible to define a
global bisimulation than characterises the trace equivalence. Of course we need
a new global rule that has not appeared yet: G, rt after removal of traces (see
Figure 9).

Figure 9: Global Rule G, Removal.

Definition 17. If we consider the set of global rules Gr = {Gap,GayGri }, then
the corresponding global equivalence defined by Definition 5 is called the global
trace equivalence relation, denoted by .

Lemma 18. Let us consider the set of global rules Gr = {Gap,GayGri}. If p ~*
q then we have q Cr p.

Proof. 1t is enough to prove that if p ~» ¢ then ¢ Cp p. Since we proved in
Lemma 13 that using G4, and Gg, we preserve failure preorder and Cp=Cr
we get that Gg, and Gg, preserve trace preorder.

As for the new static rule Gy, © + y ~» z, but then x Ty x + y, see for
instance [Glabbeek, 2001] for an axiomatization for the preorder Cr.

Lemma19. If p =7 q then for all a € I(p) we have that p|, ~7 ¢la.

Proof. The proof follows the same lines as those in proof of Lemma 14.

Theorem 20. Given a lts L = (P, Act,—), we have

p=rqiff p=rq.

1544 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

Proof. As we did in the proof of theorems 10 and 15 we prove the following three

statements:

) . .
p=rq= (p~"qand ¢ ~" p)

@

= p=rq

O

= pP=7rq
The proof of (3) follows the same lines as the corresponding in Theorem 15; the
proof of (2) is the same to that in Theorem 10. The proof for (1) follows similar
reasonings to that of theorems 10 and 15 but needs to be tailored for each set of
global rules, in this case for the set Grp.

We will use the axiomatization for the trace equivalence, see [Glabbeek, 2001].

The axioms that characterise the equivalence =, for Its are the following:
—zCzxz+y
—ar+ay=a(z+y)

If p =, ¢ then there exists a finite sequence of applications of the axioms above
such that p =5 p1 =1 p2--- =1 ¢. The proof that p =, ¢ = (p ~" ¢ and ¢ ~"
p) can be done by induction on the axiomatic derivation of p =;. ¢ proving that
we also have p ~* ¢ and g ~* p. We analyse the use of each of the axioms in
the derivation and show how ~~* is powerful enough to simulate any of them.

— A substitution of z + y for « can be simulated by x + y ~,; .
— A substitution of az+ay for a(z+y) can be simulated by az+ay ~~qy a(z+y).

— A substitution of a(x + y) for ax + ay can be simulated by a(x + y) ~~ap
alz +y) +alz +y) ~r ax + ay.

6 Infinite Processes

Let us now conclude commenting on the results for infinite tree systems. The
essence of global bisimulations is captured by the definitions and results for the
finite case. They can be extended to the infinite case without substantial changes,
but some care is needed at the technical level.

Let us motivate the changes needed in the definition of global bisimulation
by means of a simple example. Consider the processes in Figure 10. It is easy
to check that p =R ¢, therefore we would like that also p ~rs ¢. But if the
first player executes the move p — p/, then the defender should remove all the
offerings of bd in the infinite copies of the state ¢/ in its completely unfolded
presentation. Therefore, the defender needs to apply G,q4 infinitely many times,
and not just a finite number of times as in the finite case. So that we get as ~>

the relation /R2>=~~°—_ where ~»>=~>" U ~>%.

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1545

P q
\ a a
a
P’ q
c b\ d b\ e

Figure 10: Infinite Processes

Fortunately the formal definition of ~~“ the adequate denumerable iteration
of ~~, is simpler than could be expected, whenever we restrict ourselves to finitely
branching trees. In this case, any tree £ can be finitely approximated by its
finite cuts £*, that are obtained just cutting the tree at depth k. Then we can
formally define ~~* by £ ~~* L' if and only if £’ is the infinite tree such that £'*
is defined by £F ~~7 LV ~3 L5+ LF = L£'* where all the global transitions in
~-] are applied only to nodes at depth [, and for all & > [the sequence ~» in the
corresponding global computation is the same. Intuitively, this means that each
finite approximation £’* of £’ is obtained after a finite number of applications
of global transitions, so that once fixed, the following applications will continue
the construction of the following levels of £’ without changing its finite cut £'%.

The definition of global bisimulation can also be extended to infinitary trees,
but in this case we would need a generalised copy rule making an arbitrary
number of copies of a system, and it is possible that we will have to apply rule
G q infinitely many times at the same depth. This, together with the fact that
finite approximations of infinitary trees should grow both in depth and width,
makes the proof of continuity rather involved.

In order to prove that our global bisimulaton relation ~rg also characterise
ready similarity for infinite finitary trees we need to apply a continuity argument.
We start by defining the adequate continuity concept.

Definition 21. A behaviour preorder is level continuous if p C ¢ if and only if

1546 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

for all n p|,C ¢ ln, where p |, is the result of pruning process p below level n,
that is:

—plo=0
= (22 apa) lny1= Y- a(pa) In

Note that p |, is always a finite process having depth at most n. The proof
of level continuity of ~pg is much more complicated that the corresponding one
in [de Frutos-Escrig and Gregorio-Rodriguez, 2005], since for any finite depth we
have now infinitely many different trees (although most of them are bisimilar
to each other, of course!). Thus we have to prove that whenever using global
transitions to simulate plain transitions we can limit the use of the duplication
rule at any depth.

The expansion of ¢ wrt p is a process that is obtained by reiterated replication
of some subterms of ¢, taking into account the form of p.

Definition 22. Let p ;Lnd q be finite processes, with p = > _ 404> icr. ap’, and
4= 0cAct ZjeJQ ag?. We define the expansion of ¢ with respect to p, Xp(p, q),
as follows:

Xp(0,p) =0 , 4 o
Xp(Xaedct ZjeJa aqy s g Act 2aicl, Wa) = 2ae Act ZjeJmielj a Xp(q},py)
where I is defined by I} = I, if I, # 0, otherwise I,]” = {*} and p} = 0.
Proposition 23. If k C 1 then Xp(pli,qli) lx= Xp(plr,p k)

Using the proposition above we can extend Definition 22 to finitely branching
tree processes as follows:

Definition 24. Let p and ¢ be infinite finitely branching tree processes. We
define Xp(q,p) as the process whose finite cuts are given by

Xp(q,p) k= Xp(qlr,plr)

Using the relative expanded form of processes we can limit the use of the
duplication rule G4, when proving =5 by means of global bisimulations. This
is done using the following proposition.

Proposition 25. Let p and q be finite processes, then we have p Tgrs q iff
Xp(q:p) ~ra P

Proof. For the right to left side, we have ¢ =5 Xp(q,p) and, since ~»" is correct
with respect to Crg, we can conclude that p Crg q.

For the left to right side we will proceed by induction on the depth of
processes.

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1547

— If p = 0 then ¢ = 0 and therefore Xp(q,p) = 0.

—If p = 3. apl, we know that for all i € I, there exists j; € J, such
that p! Cgrs ¢J. Then, by induction hypothesis Xp(qli,pl) ~*, pi, and

therefore,
Xp(¢:0) = XacAct jernicrs OXP(@G:PL)
ZaEACt Zje{ji\iel;*'},ielj' aXp(qgi,pfz) "
acAct Eieli apy =p

Corollary 26. Let p and q be finite processes. If p Cre q and p ~* p' - p,
then we have q ~* Xp(q,p) ~* p ~* p' - p".

Corollary 27. Let p and q be infinite finitely branching tree processes, then we
have

p Ers q if and only if Xp(q,p) ~pa P

Proof. Since C g is level continuous we have p Crg g iff for all k p |,CErs q |, iff
Xp(qle,plk) ~rqa pli. We could have several ways to make this reduction, but
we are interested in the one that will be consistent with the reductions needed
to get Xp(qli,pli) ~nq pli for any I > k.

Such a consistent way exists indeed since if we just consider the applications
of ~+,4 in nodes that are at depth less or equal than k in any such a reduction and
cut the involved trees at that depth, we get another reduction Xp(q|;,pl;) k=
Xp(q lk,plk) ~rg pli. Since we have such a reduction for any [> k, ¢ |x is a
finite tree, and the application of ~», 4 reduces the size of the tree, we conclude by
a compactness argument, that there exists such a consistent reduction. Clearly,
by projecting any such consistent reduction over a lower level we get another
consistent reduction, and since for any level there are only a finite number of
possible reductions, by applying Koéning’s lemma we obtain an infinite sequence
of nested reductions, whose limit is the desired reduction Xp(q, p) ~>rg p.

Theorem 28. The equivalence relation ~ggs is level continuous, that is p Xgrs q
iff Yk ple~rs qlk.

Proof. Left to right implication. It is clear that if S is a bisimulation in F then
Sy ={(plk,qlr) | pSq} is also a bisimulation in F.

Right to left implication. Let p and g be processes such that for all k£ we have
plr=rs qli. Applying Proposition 25 we have that Xp(q |k, plr) ~hg 0Lk, and
then we can repeat the reasonings in the proof of Corollary 27 to conclude that
Xp(g,p) ~o% p and therefore ¢ ~~>° p. Symmetrically, we can obtain p ~~> ¢
and then, by definition of F , we immediately conclude that p ~gs ¢.

After these previous results we can now conclude that global ready bisimu-
lation characterises ready simulation also for infinite finitary trees.

1548 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

Theorem 29. Both for finite and infinite finitely branching tree processes p and
q we have p =pg q iff p ~Rs q.

Proof. It is an immediate consequence of the fact that =54 is level continuous,
Theorem 28, together with the results in Theorem 10.

7 Conclusions and Future Work

In this paper we have presented the notion of global bisimulation, that are just
plain bisimulations that take into account new global transitions together with
the original action transitions.

We have found the set of global transitions needed to define a global bisimu-
lation that generates an equivalence relation with the same discriminatory power
as the ready similarity. This global bisimulation is a direct symmetric characteri-
sation of the ready similarity, which was originally defined as the kernel of a ready
simulation ordering. As a consequence, we have now the possibility of proving
ready similarity of two processes in a direct way, using coinductive methods.

Ready similarity was a good candidate when looking for a semantics differ-
ent to bisimulation to be characterised using global bisimulation, because it is
quite close to it both in the way it is defined, and in the discriminatory power.
However, studying this example we have found that it is not necessary to start
from a simulation based semantics to get an equivalent global bisimulation. The
reason for this is that in order to define the adequate global bisimulation what
has proved to be very useful is the axiomatic characterisation of the original
semantics. We have used it both to define the global transitions and to prove the
equivalence between the original semantics and the defined global bisimulation
semantics. Following these ideas we have also obtained global bisimulations char-
acterising other semantics, such as refusals and traces, that are quite different,
both in formulation and in discriminatory power, from bisimulation.

Therefore, we have proved that global bisimulations provide a general frame-
work to relate both intensional and extensional semantics. We have seen that
the differences between the semantics are expressed in terms of the correspond-
ing way to treat non-determinism, expressed by the global rules we need to
characterise them.

Recently, following a slightly different approach, we have found that indeed
is possible to systematically generate coalgebraic definitions of the different se-
mantics of concurrent processes by means of what we call bisimulations up-
to [de Frutos-Escrig and Gregorio-Rodriguez, 2005].

The main differences between both approaches is that global bisimulations
have a more operational flavour, since global transitions are defined by simple
transformations of the original transition system, such as duplication of transi-
tions, removal or simple combinations, as delaying. By means of them we express

de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ... 1549

how non-determinism is treated in each case. Instead, bisimulations up-to incor-
porate an arbitrary preorder which can be used to transform the simulating
process ¢ before the emulation of the corresponding transition. In this way, we
use mainly algebraic arguments instead of the operational ones in the global
bisimulation framework, and we do not stress the symmetric definition as plain
bisimulation in a modified transition system, although it is indeed possible, to
get such a characterisation, but not needed for the formal developments.

Non-determinism also appears when internal moves are allowed. Some rela-
tions between global bisimulations and weak bisimulations were already studied
in [de Frutos-Escrig et al., 1999] and now we plan also to continue this research
in a more systematic way taking advantage of the new ideas that we have exposed
in this paper.

References

[Abramsky, 1987] Abramsky, S. (1987). Observational equivalence as a testing equiv-
alence. Theoretical Computer Science, 53(3):225-241.

[Bloom et al., 1988] Bloom, B., Istrail, S., and Meyer, A. R. (1988). Bisimulation can’t
be traced. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 229-239. ACM Press.

[Bloom et al., 1995] Bloom, B., Istrail, S., and Meyer, A. R. (1995). Bisimulation can’t
be traced. Journal of the ACM, 42(1):232-268.

[Bloom and Meyer, 1992] Bloom, B. and Meyer, A. R. (1992). Experimenting with
process equivalence. Theoretical Computer Science, 101(2):223-237.

[Brookes et al., 1984] Brookes, S. D., Hoare, C., and Roscoe, A. W. (1984). A theory
of communicating sequential processes. J. ACM, 31(3):560-599.

[Cleaveland and Hennessy, 1992] Cleaveland, R. and Hennessy, M. (1992). Testing
equivalence as a bisimulation equivalence. Formal Aspects of Computing, 3:1-21.

[Cleaveland et al., 1993] Cleaveland, R., Parrow, J., and Steffen, B. (1993). The con-
currency workbench: a semantics-based tool for the verification of concurrent systems.
ACM Trans. Program. Lang. Syst., 15(1):36-72.

[Cleaveland and Smolka, 1996] Cleaveland, R. and Smolka, S. A. (1996). Strategic di-
rections in concurrency research. ACM Computing Surveys., 28(4):607-625.

[de Frutos-Escrig and Gregorio-Rodriguez, 2005] de Frutos-Escrig, D. and Gregorio-
Rodriguez, C. (2005). Bisimulations up-to for the linear time-branching time spec-
trum. In CONCUR 2005 - Concurrency Theory, 16th International Conference,
volume 3653 of Lecture Notes in Computer Science, pages 278-292. Springer.

[de Frutos-Escrig et al., 1999] de Frutos-Escrig, D., Lépez, N., and Nuifiez, M. (1999).
Global timed bisimulation: An introduction. In Formal Methods for Protocol Engi-
neering and Distributed Systems, FORTE XII / PSTV XIX, pages 401-416. Kluwer
Academic Publishers.

[Gardiner, 2003] Gardiner, P. (2003). Power simulation and its relation to traces and
failures refinement. Theoretical Computer Science, 309:157—176.

[Glabbeek, 2001] Glabbeek, R. J. v. (2001). Handbook of Process Algebra, chapter The
Linear Time — Branching Time Spectrum I: The Semantics of Concrete, Sequential
Processes, pages 3-99. Elsevier.

[Gregorio-Rodriguez and Nufiez, 1999] Gregorio-Rodriguez, C. and Nuiiez, M. (1999).
Denotational semantics for probabilistic refusal testing. In PROBMIV’98 First Inter-
national Workshop on Probabilistic Methods in Verification, volume 22 of FElectronics
Notes in Theoretical Computer Science, page 27. Elsevier.

1550 de Frutos Escrig D., Rodriguez C.G.: Process Equivalences ...

[Groote and Vaandrager, 1992] Groote, J. F. and Vaandrager, F. W. (1992). Struc-
tured operational semantics and bisimulations as a congruence. Information and
Computation, 100(2):202-260.

[Hennessy, 1988] Hennessy, M. (1988). Algebraic Theory of Processes. MIT Press.

[Hennessy and Milner, 1985] Hennessy, M. and Milner, R. (1985). Algebraic laws for
nondeterminism and concurrency. J.ACM, 32:137-161.

[Hoare, 1985] Hoare, C. (1985). Communicating Sequential Processes. Prentice Hall.

[Kanellakis and Smolka, 1990] Kanellakis, P. C. and Smolka, S. A. (1990). CCS ex-
pressions, finite state processes, and three problems of equivalence. Information and
Computation, 86(1):43-68.

[Larsen and Skou, 1991] Larsen, K. G. and Skou, A. (1991). Bisimulation through
probabilistic testing. Information and Computation, 94(1):1-28.

[Milner, 1989] Milner, R. (1989). Communication and Concurrency. Prentice Hall.

[Olderog and Hoare, 1986] Olderog, E. R. and Hoare, C. (1986). Specification-oriented
semantics for communicating processes. Acta Inf., 23(1):9-66.

[Paige and Tarjan, 1987] Paige, R. and Tarjan, R. E. (1987). Three partition refine-
ment algorithms. SIAM Journal of Computing, 16(6):973-989.

[Park, 1981] Park, D. M. (1981). Concurrency and automata on infinite sequences. In
Theoretical Computer Science, 5th GI-Conference, volume 104 of Lecture Notes in
Computer Science, pages 167—183. Springer.

[Phillips, 1987] Phillips, I. (1987). Refusal testing. Theoretical Computer Science,
50(3):241-284.

[Plotkin, 1981] Plotkin, G. D. (1981). A structural approach to operational semantics.
Technical Report DAIMI FN-19, Computer Science Department, Aarhus University.

[Pnueli, 1985] Pnueli, A. (1985). Linear and branching structures in the semantics
and logics of reactive systems. In 12th Int. Collog. on Automata, Languages and
Programming ICALP’85, volume 194 of Lecture Notes in Computer Science, pages
15-32. Springer.

[Stirling, 1998] Stirling, C. (1998). The joys of bisimulation. In MFCS’98, volume
1450 of Lecture Notes in Computer Science, pages 142—151. Springer-Verlag.

