
Operational/Interpretive Unfolding

of Multi-adjoint Logic Programs

Pascual Julián, Ginés Moreno and Jaime Penabad
University of Castilla-La Mancha, Spain

{Pascual.Julian,Gines.Moreno,Jaime.Penabad}@uclm.es

Abstract: Multi-adjoint logic programming represents a very recent, extremely flex-
ible attempt for introducing fuzzy logic into logic programming. In this setting, the
execution of a goal w.r.t. a given program is done in two separate phases. During the
operational one, admissible steps are systematically applied in a similar way to classi-
cal resolution steps in pure logic programming, thus returning a computed substitution
together with an expression where all atoms have been exploited. This last expression
is then interpreted under a given lattice during the so called interpretive phase, hence
returning a value which represents the fuzzy component (truth degree) of the computed
answer.

On the other hand, unfolding is a well known transformation rule widely used in declar-
ative programming for optimizing and specializing programs, among other applications.
In essence, it is usually based on the application of operational steps on the body of
program rules. The novelty of this paper consists in showing that this process can
also be made in terms of interpretive steps. We present two strongly related kinds of
unfolding (operational and interpretive), which, apart from exhibiting strong correct-
ness properties (i.e. they preserve the semantics of computed substitutions and truth
degrees) they are able to significantly simplify the two execution phases when solving
goals.

Key Words: fuzzy logic programming, program transformation, unfolding

Category: D.1.6, I.2.2, I.2.3

1 Introduction

Multi-adjoint logic programming [Medina et al.2001a, Medina et al.2004] is an
extremely flexible framework combining fuzzy logic and logic programming,
which largely improves older approaches previously introduced in this field (see,
for instance, the Prolog–Elf system of [Ishizuka and Kanai1985], the Fril Prolog
system of [Baldwin et al.1995] and the F–Prolog languages of [Li and Liu1990,
Vojtáš and Pauĺık1996, Arcelli and Formato1999], and [Guadarrama et al.2004],
where different fuzzy variants of Prolog have been proposed). The fuzzy dialect
of Prolog presented in [Guadarrama et al.2004] deserves a special mention since,
at least syntactically, it is very close to the language used here. However, we find
a slight difference: whereas the multi-adjoint approach is based on “weighted”
clauses whose truth degrees are elements of any appropriate lattice, in the Fuzzy
Prolog of [Guadarrama et al.2004], truth degrees are based on Borel Algebras
(union intervals).

Journal of Universal Computer Science, vol. 12, no. 11 (2006), 1679-1699
submitted: 1/5/06, accepted: 15/10/06, appeared: 28/11/06 © J.UCS

Informally speaking, a multi-adjoint logic program can be seen as a set of
rules each one annotated by a truth degree and a goal is a query to the system
plus a substitution (initially the identity substitution). In the multi-adjoint logic
programming framework, given a program, goals are evaluated in two separate
computational phases. During the operational one, admissible steps (a general-
ization of the classical modus ponens inference rule) are systematically applied
by a backward reasoning procedure in a similar way to classical resolution steps
in pure logic programming, thus returning a computed substitution together
with an expression where all atoms have been exploited. This last expression is
then interpreted under a given lattice during what we call the interpretive phase,
hence returning a pair 〈truth degree; substitution〉 which is the fuzzy counterpart
of the classical notion of computed answer traditionally used in logic program-
ming.

Program transformation is an optimization technique for computer programs
that starting with an initial program P0 derives a sequence P1, . . . ,Pn of trans-
formed programs by applying elementary transformation rules (fold/unfold)
which improve the original program. The fold/unfold transformation approach
was first introduced in [Burstall and Darlington1977] to optimize functional pro-
grams and then used for logic programs [Tamaki and Sato1984] and (lazy) func-
tional logic programs [Alpuente et al.2004]. Program transformation also can be
seen as a methodology for software development, hence its importance. The ba-
sic idea is to divide the program development activity, starting with a (possibly
naive) problem specification written in a programming language, into a sequence
of small transformation steps.

Unfolding is a well-known, widely used, semantics-preserving program trans-
formation rule. In essence, it is usually based on the application of operational
steps on the body of program rules [Pettorossi and Proietti1996]. The unfold-
ing transformation is able to improve programs, generating more efficient code.
Unfolding is the basis for developing sophisticated and powerful programming
tools, such as fold/unfold transformation systems or partial evaluators, etc.

The main contribution of this paper consists in showing that, in the frame-
work of multi-adjoint logic programming, the unfolding process can be better
understood, if resembling the two separate phases of the underlaying proce-
dural semantics of multi-adjoint logic programming languages, we distinguish
between operational and interpretive unfolding steps. Therefore, we present
two strongly related kinds of unfolding: the operational (firstly introduced in
[Julián et al.2005a]) an the interpretive. It is important to remark that in the
original (multi-adjoint logic) language proposed in [Medina et al.2004] and then
used in [Julián et al.2005a], the interpretive phase is not modeled in terms of
an state transition system, which prevents the definition/application of the (in-
terpretive) unfolding rule by means of interpretive steps. As a consequence, all

1680 Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

results presented there are restricted to the operational phase. In this paper
we overcome all these limitations, and we prove that the interpretive unfold-
ing, apart from exhibiting the analogous strong correctness properties (i.e. it
preserves the semantics of computed substitutions and truth degrees) of the op-
erational unfolding originally presented in [Julián et al.2005a], is able to simplify
and accelerate the interpretive phase when solving goals w.r.t. a given program.

On the other hand, we have recently introduced in [Julián et al.2005b] a
transformation rule, the so-called T-Norm replacement, which can be seen as a
primitive precedent of the present interpretive unfolding. In fact, the four vari-
ants of T-Norm replacements, also perform low-level manipulations on fuzzy
expression involving T-Norm operations on program rules. However, our new
approach improves this poorer technique in the following points:

• It manages a much more powerful and expressive language (the multi-adjoint
logic programming language) but with a simpler syntax, a clearer procedural
(operational/interpretive) semantics and, in general, a better formalization.

• Now, neither interpretive steps, nor interpretive unfolding, are dependent of
a selection function (computation rule), as it does occur with any other fuzzy
unfolding-based transformation rule described in the literature, since the evalu-
ation order of expressions is fixed by the interpretive semantics.

• As a co-lateral consequence of the previous point and, as we will see when
presenting Theorem 12, it is the first time that our correctness results admit a
clearer proof scheme which is not linked to previous instrumental results about
the independence of any kind of computation rule.

• Moreover, it is also the first time that our fuzzy variants of unfolding rules,
recover the source-to-source language nature lost in [Julián et al.2005a] and
[Julián et al.2005b], where some auxiliary intermediate languages (with complex
constructors and intricate artifices with no sense for the final user) were manda-
tory to code residual programs obtained after performing operational unfolding
or T-Norm replacement.

The structure of the paper is as follows. In Section 2, we summarize the main
features of the programming language we use in this work. Section 3 defines the
procedural semantics of the language, establishing a clean separation between
the operational and the interpretive phase of a computation. In Section 4 we
recall the definition of operational unfolding and we define the new notion of
interpretive unfolding. Section 5 focuses in the properties relative to the correct-
ness of the unfolding transformations. While considering some implementation
issues, we analyze in Section 6 some related works. Finally, we end in Section 7,
by giving our conclusions and proposing some lines of future work.

1681Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

2 Multi-Adjoint Logic Programs

This section is a short summary of the main features of our language. Contrary to
other previous work [Julián et al.2005a] we start from the scratch by manipulat-
ing an extended version of the multi-adjoint logic programing language presented
in [Medina et al.2001a, Medina et al.2004]. We refer the reader to these works
for a complete formulation.

We work with a first order language, L, containing variables, function sym-
bols, predicate symbols, constants, quantifiers, ∀ and ∃, and several (arbitrary)
connectives to increase language expressiveness. In our fuzzy setting, we use im-
plication connectives (←1,←2, . . . ,←m) and also other connectives which are
grouped under the name of “aggregators” or “aggregation operators”. They are
used to combine/propagate truth values through the rules. The general def-
inition of aggregation operators subsumes conjunctive operators (denoted by
&1, &2, . . . , &k), disjunctive operators (∨1,∨2, . . . ,∨l), and average and hybrid
operators (usually denoted by @1, @2, . . . , @n). Although the connectives &i, ∨i

and @i are binary operators, we usually generalize them as functions with an
arbitrary number of arguments. In the following, we often write @(x1, . . . , xn)
instead of @(x1, @(x2, . . . , @(xn−1, xn) . . .)). Aggregation operators are useful to
describe/specify user preferences. An aggregation operator, when interpreted as
a truth function, may be an arithmetic mean, a wighted sum or in general any
monotone application whose arguments are values of a complete bounded lattice
L. For example, if an aggregator @ is interpreted as [[@]](x, y, z) = (3x+2y+z)/6,
we are giving the highest preference to the first argument, then to the second,
being the third argument the least significant. By definition, the truth function
for an n-ary aggregation operator [[@]] : Ln → L is required to be monotonous
and fulfills [[@]](, . . . ,) = 	, [[@]](⊥, . . . ,⊥) = ⊥.

Additionally, our language L contains the values of a multi-adjoint lattice,
〈L,�,←1, &1, . . . ,←n, &n〉, equipped with a collection of adjoint pairs 〈←i, &i〉,
where each &i is a conjunctor1 intended to the evaluation of modus ponens. In
general, the set of truth values L may be the carrier of any complete bounded
lattice, but, in the examples, we shall select L as the set of real numbers in the
interval [0, 1].

A rule is a formula A←i B, where A is an atomic formula (usually called the
head) and B (which is called the body) is a formula built from atomic formulas
B1, . . . , Bn — n ≥ 0 —, truth values of L and conjunctions, disjunctions and
aggregations. Rules with an empty body are called facts. A goal is a body sub-
mitted as a query to the system. Variables in a rule are assumed to be governed
by universal quantifiers.
1 It is noteworthy that a symbol &j of L does not always need to be part of an adjoint

pair.

1682 Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

Roughly speaking, a multi-adjoint logic program is a set of pairs 〈R; α〉, where
R is a rule and α is a truth degree (a value of L) expressing the confidence which
the user of the system has in the truth of the rule R. Often, we will write “R
with α” instead of 〈R; α〉. Observe that, truth degrees are axiomatically assigned
(for instance) by an expert.

3 Procedural Semantics

The procedural semantics of the multi-adjoint logic language L can be thought as
an operational phase followed by an interpretive one. Although this point of view
is present in [Medina et al.2001a, Medina et al.2004], in this section we establish
a cleaner separation between both phases. We also give a novel definition of
the interpretive phase, with a procedural taste, useful not only for clarify the
whole computational mechanism, but also crucial for formalizing the concept of
interpretive unfolding in Section 4.2.

3.1 Operational phase

The operational mechanism uses a generalization of modus ponens that, given
a goal A and a program rule 〈A′←iB; v〉, if there is a substitution θmgu({A =
A′})2, we substitute the atom A by the expression (v&iB)θ.

In the following, we define the concepts of admissible computation step, ad-
missible derivation and admissible computed answer, associated to the oper-
ational phase. In the formalization of these concepts, we write C[A], or more
generally C[A1, .., An], to denote a formula where A, or A1, .., An respectively,
are sub-expressions (usually atoms) which arbitrarily occur in the —possibly
empty— context C[]. Moreover, expression C[A/A′] (and its obvious general-
ization) means the replacement of A by A′ in context C[]. Also we use Var(s)
for referring to the set of distinct variables occurring in the syntactic object s,
whereas θ[Var(s)] denotes the substitution obtained from θ by restricting its
domain, Dom(θ), to Var(s).

Definition 1 Admissible Steps. Let Q be a goal and let σ be a substitution.
The pair 〈Q; σ〉 is an state and we denote by E the set of states. Given a program
P , an admissible computation is formalized as a state transition system, whose
transition relation→AS ⊆ (E×E) is the smallest relation satisfying the following
admissible rules:
2 Let mgu(E) denote the most general unifier of an equation set E (see

[Lassez et al.1988] for a formal definition of this concept).

1683Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

Rule 1.

〈Q[A]; σ〉→AS〈(Q[A/v&iB])θ; σθ〉 if

⎧⎪⎪⎨
⎪⎪⎩

(1) A is the selected atom in Q,
(2) 〈A′←iB; v〉 in P , B is not

empty, and
(3) θ = mgu({A′ = A}).

Rule 2.

〈Q[A]; σ〉→AS〈(Q[A/v])θ; σθ〉 if

⎧⎨
⎩

(1) A is the selected atom in Q,
(2) 〈A′←i; v〉 in P , and
(3) θ = mgu({A′ = A}).

Rule 3.

〈Q[A]; σ〉→AS〈(Q[A/⊥]); σ〉 if

⎧⎨
⎩

(1) A is the selected atom in Q,
(2) there is no rule in P whose

head unifies with A.

Formulas involved in admissible computation steps are renamed before being
used. Note also that Rule 3 is introduced to cope with (possible) unsuccessful
admissible derivations. When needed, we shall use the symbols→AS1,→AS2 and
→AS3 to distinguish between computation steps performed by applying one of
the specific admissible rules. Also, when required, the exact program rule used in
the corresponding step will be annotated as a super–index of the →AS symbol.

Definition 2. Let P be a program and let Q be a goal. An admissible derivation
is a sequence 〈Q; id〉 →∗

AS 〈Q′; θ〉. When Q′ is a formula not containing atoms,
the pair 〈Q′; σ〉, where σ = θ[Var(Q)], is called an admissible computed answer
(a.c.a.) for that derivation.

We illustrate these concepts by means of the following example.

Example 3 Let P be the following program and let ([0, 1],≤) be the lattice where
≤ is the usual order on real numbers.

R1 : 〈p(X)←prodq(X, Y)&G r(Y); α = 0.8〉
R2 : 〈q(a, Y)←prods(Y); α = 0.7〉
R3 : 〈q(Y, a)←lukar(Y); α = 0.8〉
R4 : 〈r(Y)←luka; α = 0.7〉
R5 : 〈s(b)←luka; α = 0.9〉

The labels prod, G and luka mean for product logic, Gödel intuitionistic logic
and �Lukasiewicz logic, respectively. That is, [[&prod]](x, y) = x · y, [[&G]](x, y) =
min(x, y), and [[&luka]](x, y) = max(0, x + y − 1). In the following admissible
derivation for the program P and the goal ←p(X)&Gr(a), we underline the se-

1684 Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

lected expression in each admissible step:

〈p(X)&Gr(a); id〉 →AS1
R1

〈(0.8&prod(q(X1, Y1)&Gr(Y1)))&Gr(a); {X/X1}〉 →AS1
R2

〈(0.8&prod((0.7&prods(Y2))&Gr(Y2)))&Gr(a); {X/a, X1/a, Y1/Y2}〉 →AS2
R5

〈(0.8&prod((0.7&prod0.9)&Gr(b)))&Gr(a); {X/a, X1/a, Y1/b, Y2/b}〉 →AS2
R4

〈(0.8&prod((0.7&prod0.9)&G0.7))&Gr(a); {X/a, X1/a, Y1/b, Y2/b, Y3/b}〉→AS2
R4

〈(0.8&prod((0.7&prod0.9)&G0.7))&G0.7; {X/a, X1/a, Y1/b, Y2/b, Y3/b, Y4/a}〉.

So, since σ5[Var(Q)] = {X/a}, the a.c.a. for this admissible derivation is the
pair: 〈(0.8&prod((0.7&prod0.9)&G0.7))&G0.7; {X/a}〉.

3.2 Interpretive phase

If we exploit all atoms of a goal, by applying admissible steps as much as needed
during the operational phase, then it becomes a formula with no atoms which
can be then directly interpreted in the multi-adjoint lattice L. This justifies the
following notions of interpretive computation step, interpretive derivation and
interpretive computed answer.

Definition 4 Interpretive Step. Let P be a program,Q a goal and σ a substi-
tution. We formalize the notion of interpretive computation as a state transition
system, whose transition relation →IS⊆ (E × E) is defined as

〈Q[@(r1, r2)]; σ〉→IS〈Q[@(r1,r2)/[[@]](r1,r2)];σ〉

where [[@]] is the truth function of connective @ in the lattice 〈L,�〉 associated
to P .

Definition 5. Let P be a program and 〈Q; σ〉 an a.c.a., that is, Q is a goal not
containing atoms. An interpretive derivation is a sequence 〈Q; σ〉 →∗

IS 〈Q′; σ〉.
When Q′ = r ∈ L, being 〈L,�〉 the lattice associated to P , the state 〈r; σ〉 is
called an interpretive computed answer (i.c.a.).

Usually, we refer to a complete derivation as the sequence of admissible/inter-
pretive steps of the form 〈Q; id〉 →∗

AS 〈Q′; σ〉 →∗
IS 〈r; σ〉, where 〈Q′; σ[Var(Q)]〉

and 〈r; σ[Var(Q)]〉 are, respectively, the a.c.a. and the i.c.a. for the derivation.
Sometimes, we denote it by 〈Q; id〉 →∗

AS/IS 〈r; σ〉 and we say that 〈r; σ〉 is the
final computed answer of the derivation.

1685Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

Example 6 We complete the previous derivation of Example 3 by executing the
necessary interpretive steps to obtain the interpretive computed answer (i.c.a.)
with respect to lattice ([0, 1],≤).

〈(0.8&prod((0.7&prod0.9)&G0.7))&G0.7; {X/a}〉 →IS

〈(0.8&prod(0.63&G0.7))&G0.7; {X/a}〉 →IS

〈(0.8&prod0.63)&G0.7; {X/a}〉 →IS

〈0.504&G0.7; {X/a}〉 →IS

〈0.504; {X/a}〉

Then the i.c.a for this complete derivation is the pair 〈0.504; {X/a}〉.

4 Fuzzy Unfolding Transformations

The unfolding transformation traditionally considered in pure logic programming
consists in the replacement of a program clause C by the set of clauses obtained
after applying a symbolic computation step in all its possible forms on the body
of C [Pettorossi and Proietti1996].

As detailed in [Julián et al.2005a], we have adapted this transformation to
deal with multi-adjoint logic programs by defining it in terms of operational steps
(see Definition 1). Also, in [Julián et al.2005a], we proved that the application
of unfolding transformation step to multi-adjoint logic programs is able to speed
up goal evaluation by reducing the length of admissible derivations during the
operational phase.

The main objective of the present section is to recall the definition of opera-
tional unfolding and to define and unfolding rule for interpretive steps. Note that
our new notion of interpretive unfolding is intended to facilitate the evaluation
of truth degrees during the interpretive phase.

4.1 Operational Unfolding

The following definition is recalled from [Julián et al.2005a], but we have slightly
simplified it in the sense that now, the operational unfolding is formulated as
a source-to-source language transformation instead of a (more involved) source-
to-object language transformation.

Definition 7 Operational Unfolding. Let P be a program and let R : (A←i

B with α = v) ∈ P be a (non unit) program rule. Then, the operational unfolding
of rule R in program P is the new program P ′ = (P − {R}) ∪ U where U =
{Aσ ←i B′ with α = v | 〈B; id〉→AS〈B′; σ〉}.

1686 Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

There are some remarks to do regarding our definition. Similarly to the classical
SLD-resolution based unfolding rule presented in [Tamaki and Sato1984], the
substitutions computed by admissible steps during the operational unfolding,
are incorporated to the transformed rules in a natural way, i.e., by applying
them to the head of the rule. On the other hand, regarding the propagation
of truth degrees, we solve this problem in a very easy way: the unfolded rule
directly inherits the truth degree α of the original rule.

However, a deeper analysis of the operational unfolding transformation shows
us that the body of transformed rules also contains ’compiled–in’ information
coming from both components of a partial computed answer (i.e., truth degree
and substitution). Regarding truth degrees, we observe that the body of the
transformed rule includes symbol ⊥ if we performed a →AS3 admissible step,
or the truth degree together with the corresponding adjoint conjunction of the
second rule involved in the unfolded step when the applied admissible step was
based on →AS2 or →AS1, respectively. So, the propagation of truth degrees
during unfolding is done at two different levels:

1. by directly assigning the truth degree of the original rule as the truth degree
of the transformed one, and

2. by introducing new truth degrees (of other rules or alternatively ⊥) in its
body.

We illustrate the definition of operational unfolding and its advantages by means
of the following example.

Example 8 Consider again program P shown in Example 3. It is easy to see
that the unfolding of rule R2 in program P (exploiting the second admissible rule
of Definition 1) generates the new program (P −{R2})∪ {R6}, where R6 is the
new unfolded rule q(a, b)←prod0.9 with α = 0.7.

On the other hand, if we want to unfold now rule R1, we must firstly build
the following one–step admissible derivations:

〈q(X, Y)&Gr(Y); id〉→AS1
R6〈(0.7&prod0.9)&Gr(b); {X/a, Y/b}〉,

〈q(X, Y)&Gr(Y); id〉→AS1
R3〈(0.8&lukar(Y1))&Gr(a); {X/Y1, Y/a}〉.

So, the resulting unfolded rules are R7: p(a)←prod(0.7&prod0.9)&Gr(b) with α =
0.8, and R8 : p(Y1)←prod(0.8 &luka r(Y1)) &G r(a) with α = 0.8.

Moreover, by performing a new admissible step with the second rule of Def-
inition 1 on the body of rule R7, we obtain the new unfolded rule R9 : p(a)←prod

(0.7&prod0.9)&G0.7 with α = 0.8. So, the final program is the set of rules
{R3,R4,R5,R6,R8,R9}. It is important to note that the application of this
last rule to the goal proposed in Example 3 simulates the effect of the first four
admissible steps shown in the derivation of the same example, which evidences
the improvements achieved by operational unfolding on transformed programs.

1687Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

4.2 Interpretive Unfolding

The present section defines the notion of interpretive unfolding. This kind of
unfolding is devoted to accelerate truth degree calculations during the second,
interpretive, phase of the procedural semantics. In Definition 4 we have opted for
a procedural characterization of the interpretive phase (by formalizing it in terms
of an state transition system), thus avoiding the use of semantic concepts (which
were necessary, for instance, in [Medina et al.2004] and [Julián et al.2005a]).
This fact allows us to clarify the formalization of our interpretive unfolding
rule as follows.

Definition 9 Interpretive Unfolding. Let P be a program and let R : (A←i

B with α = v) ∈ P be a (non unit) program rule. Then, the interpretive unfold-
ing of rule R in program P with respect to the lattice 〈L,�〉 associated to P is
the new program P ′ = (P − {R}) ∪ {A←i B′ with α = v′} such that:

[IU 1]. If expression r1@r2 appear in B then B′ = B[r1@r2/[[@]](r1, r2)], where @
is a connective, and v′ = v.

[IU 2]. If B = r, where r ∈ L, then B′ is empty and v′ = [[&i]](v, r), where
(←i, &i) is an adjoint pair in 〈L,�〉.

Observe that the first variant of the interpretive unfolding rule (IU1), simply
consists in applying an interpretive step on the body of a rule. In this sense, an
alternative formalization, more similar to Definition 7, but replacing the use of
→AS by →IS , might be: P ′ = (P − {R}) ∪ U where U = {A ←i B′ with α =
v | 〈B; id〉 →IS 〈B′; id〉}. In fact, both formulations simply consists in replacing
a program rule R whose body contains a connective @, by an analogous rule,
with the same truth degree, but with the calculated truth degree of @ (w.r.t. the
lattice associated to the program) in its body. Anyway, it is important to compare
the IU1 transformation (in any of its alternative formats), with the T-Norm
replacement rule of [Julián et al.2005b], since our new transformation compacts
in a single formulation three low-level variants of this primitive transformation.

Focusing now in the IU2 case, we observe that the second alternative proposed
before for formalizing IU1, can not be applied now: not only the truth degree of
the transformed rule differs from the original one, but also, and what is better,
the IU2 transformation is able to simplify program rules by directly eliminating
its bodies, and hence, producing facts.

The following example illustrates the application of interpretive unfolding
and some of their advantages.

Example 10 Let’s perform now some interpretive unfolding steps on the rules
obtained by operational unfolding in Example 8. By interpretive unfolding –of
kind IU1– of rule R9 (note that [[&prod]](0.9, 0.7) = 0.63) we obtain the new un-
folded rule R10 : p(a) ←prod0.63&G0.7 with α = 0.8. Moreover, by applying a new

1688 Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

IU1 interpretive unfolding step on this last rule, we obtain R11 : p(a)←prod0.63
with α = 0.8. Finally, rule R11 becomes the fact R12 : p(a) ←prod with α = 0.504
after a final IU2 interpretive unfolding step. So, the final program is the set of
rules {R3,R4,R5,R6,R8,R12} and now the derivation shown in example 3 can
reduce its length in six steps thanks to the use of clause R12, as follows:

〈p(X)&Gr(a); id〉 →AS2
R12

〈(0.504&Gr(a)); {X/a}〉 →AS2
R4

〈0.504&G0.7; {X/a}〉 →IS

〈0.504; {X/a}〉

Observe that we have avoided three admissible and three interpretive steps, thanks
to the fact that rule R12 comes from R1 after having been modified by three op-
erational plus three interpretive unfolding operations. Again, this shows the im-
provements achieved by the combined use of operational/interpretive unfolding,
on transformed programs.

5 Properties of the Transformations

In this section, we formalize and prove the best properties one can expect of a
transformation system like ours, which is based on the two kinds of unfolding
described before. Namely,
• on the theoretical side, the total correspondence between i.c.a.’s for goals ex-
ecuted against original/transformed programs, and
• on the practical side, the gains in efficiency on unfolded programs by reducing
the number of (both, admissible and interpretive) steps needed to solve a goal.
Before presenting our combined, global result, we proceed separately with the
particular properties of each kind of unfolding. We start by recalling from
[Julián et al.2005a] the benefits of using operational unfolding in isolation.

Theorem 11 Strong Correctness of Operational Unfolding. Let P be a
program, and let Q be a goal. If P ′ is a program obtained by operational unfolding
of P, then, 〈Q; id〉 →n

AS 〈Q′; θ〉 in P iff 〈Q; id〉 →m
AS 〈Q′; θ′〉 in P ′, where

1. Q′ does not contain atoms,

2. θ = θ′[Var(Q)], and

3. m ≤ n.

The proof of this theorem is detailed in [Julián et al.2005a]. It is important to
note that the main advantages of operational unfolding can be already appreci-
ated during the first (operational or admissible) phase of goal executions. The

1689Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

first two claims of the theorem imply the exact correspondence between a.c.a.’s
in both programs, which also implies that i.c.a.’s are preserved with indepen-
dence of the lattice 〈L,�〉 used to interpret the a.c.a.’s. Besides this, profit is
also achieved in efficiency, by diminishing the length of admissible derivations
(claim 3).

Now we proceed with the interpretive unfolding, where we obtain the cor-
relate of the previous theorem. Advantages in this case are only appreciated
during the second (interpretive) phase of goal executions. In this sense, although
we can not properly speak about a.c.a.’s preservation, we prove that it is possible
to maintain the set of i.c.a’s associated to a given goal (when a.c.a.’s are inter-
preted with respect to the same lattice used during the interpretive unfolding
process). Regarding the reduction of the length of derivation in transformed pro-
grams, interpretive unfolding is able to reduce the number of interpretive steps
needed to solve a goal, similarly as operational unfolding did w.r.t. admissible
steps.

Theorem 12 Strong Correctness of Interpretive Unfolding. Let P be a
program and let Q be a goal. If P ′ is a program obtained by interpretive unfolding
of P, then, 〈Q; id〉 →n

AS/IS 〈r; θ〉 in P, iff 〈Q; id〉 →m
AS/IS 〈r; θ〉 in P ′, where

1. r ∈ L, being 〈L,�〉 the lattice associated to P used during the interpretive
unfolding process, and

2. m ≤ n.

Proof. In order to prove this theorem, we treat separately both claims of the
double implication.

Strong Soundness (⇐). Let D′ : [〈Q; id〉 →k
AS 〈e′; θ〉 →l

IS 〈r; θ〉], where
k + l = m, be the (generic) complete derivation for Q in P ′ that we plan
to simulate by using rules of program P . Consider also that rule R′ : (A ←i

B[r1@r2/[[@]](r1, r2)] with α = v) has been obtained by interpretive unfolding
of rule R : (A ←i B with α = v). Remember that R ∈ P and R′ ∈ P ′, but
R /∈ P ′ and R′ /∈ P . Since interpretive unfolding only affects expressions with
connectives and elements belonging to L, the set of atoms in the heads and
bodies of both R and R′ are exactly the same. This implies that we can safely
construct the following complete admissible derivation D : [〈Q; id〉 →k

AS 〈e; θ〉]
in P , where:

– the length of D coincides with the number of admissible steps, k, applied in
D′,

– the atom reduced in the i-th step of D coincides with the atom reduced in
the i-th step of D′, for 1 ≤ i ≤ k, and

1690 Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

– the rule used in the i-th step of D is the same that the one used in the i-th
step of D′, for 1 ≤ i ≤ k, except when this last one is R′: in this case, we
use R in D.

Observe that the a.c.a.’s associated to both derivations are not exactly the same
(which reveals that interpretive unfolding is not able to preserve a.c.a.’s, as op-
erational unfolding does) but they are strongly related: both share the same
substitution θ, whereas expressions e and e′ are very similar. In fact, any admis-
sible step done with rule R′ in D′, introduces a (just interpreted) value of the
form [[@]](r1, r2) in e′, whereas the corresponding steps done with rule R in D,
leaves descendants of the (non yet interpreted) expression r1@r2 in e. Formally,
if Pj is the set of positions of the j occurrences of r1@r2 introduced in e by the
application of j admissible steps using R in D (or, equivalently, Pj is the set of
positions of the j occurrences of [[@]](r1, r2) introduced in e′ by the application
of j admissible steps using R′ in D′), then e′ = e[r1@r2/[[@]](r1, r2)]Pj . Hence, e′

can be seen as a partially interpreted version of e, and then it is easy to see that,
by simply applying several interpretive steps on the corresponding j occurrences
of r1@r2 in e, we can replace them by [[@]](r1, r2), until reaching the intended ex-
pression e′. From here, we can finish the complete derivations in both programs
by applying the same interpretive steps, until obtaining the same i.c.a. 〈r, θ〉.

Regarding the reduction of the length of the derivation on transformed pro-
grams, we have seen that any step done with the unfolded rule R′ in derivation
D′, avoids a later interpretive step which, on the other hand, is unavoidable when
building a derivation using rules of the original program P . So, the complete
derivation simulating D′ in P has the form: [〈Q; id〉 →k

AS 〈e; θ〉 →j
IS 〈e′; θ〉 →l

IS

〈r; θ〉], where k + j + l = n, which implies that m ≤ n (remember that m = k + l)
as we wanted to prove.

Strong Completeness (⇒). Although this direction can be proved in a similar
way to the previous one, we prefer to detail it since it introduces some subtleties
regarding the order in which computation steps are performed in the original
derivation. Let D : [〈Q; id〉 →k

AS 〈e; θ〉 →l
IS 〈r; θ〉], where k + l = n, be the

(generic) complete derivation forQ in P that we plan to simulate by constructing
a new derivation D′ in P ′. Consider also the rule R : (A←i B[r1@r2] with α =
v) ∈ P such that, by interpretive unfolding of R in program P , we obtain
R′ : (A ←i B[r1@r2/[[@]](r1, r2)] with α = v). Remember that R ∈ P and
R′ ∈ P ′, but R /∈ P ′ and R′ /∈ P . Since interpretive unfolding only affects
expressions with connectives and elements belonging to L, the set of atoms
in the heads and bodies of both R and R′ are exactly the same. Moreover,
since interpretive steps are not dependent of any kind of selection function (or
computation rule), we can assume w.l.o.g. that the first steps in the interpretive
phase in D are applied to each expression of the form r1@r2 introduced in e by

1691Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

previous admissible steps done with rule R. That is, we can safely suppose that
derivation D has the form D : [〈Q; id〉 →k

AS 〈e; θ〉 →l1
IS 〈e′; θ〉 →l2

IS 〈r; θ〉], with
l1 + l2 = l. This implies that we can easily construct the following admissible
derivation D′ : [〈Q; id〉 →k

AS 〈e′; θ〉] in P ′, where:

– the length of D′ coincides with the number of admissible steps, k, applied in
D,

– the atom reduced in the i-th step of D′ coincides with the atom reduced in
the i-th step of D, for 1 ≤ i ≤ k, and

– the rule used in the i-th step of D′ is the same that the one used in the i-th
step of D, for 1 ≤ i ≤ k, except when this last one is R: in this case, we use
R′ in D′.

Observe that the a.c.a.’s associated to both derivations are not exactly the same
(which reveals that interpretive unfolding is not able to preserve a.c.a.’s, as op-
erational unfolding does) but they are strongly related: both share the same
substitution θ, whereas expressions e and e′ are very similar. In fact, any admis-
sible step done with rule R′ in D′, introduces a (just interpreted) value of the
form [[@]](r1, r2) in e′, whereas the corresponding steps done with rule R in D,
leaves descendants of the (non yet interpreted) expression r1@r2 in e. Formally,
if Pj is the set of positions of the j occurrences of r1@r2 introduced in e by the
application of j admissible steps using R in D (or, equivalently, Pj is the set of
positions of the j occurrences of [[@]](r1, r2) introduced in e′ by the application
of j admissible steps using R′ in D′), then e′ = e[r1@r2/[[@]](r1, r2)]Pj . Hence, e′

can be seen as a partially interpreted version of e, and then it is easy to see that,
by simply applying several interpretive steps on the corresponding j occurrences
of r1@r2 in e, we can replace them by [[@]](r1, r2), until reaching the intended ex-
pression e′. From here, we can finish the complete derivations in both programs
by applying the same interpretive steps, until obtaining the same i.c.a. 〈r, θ〉.

Similarity to the soundness proof, the length of the derivation on transformed
programs is reduced. We have seen that any step done with the unfolded rule
R′ in derivation D′ avoids a later interpretive step which, on the other hand,
is unavoidable when building a derivation using rules of the original program
P . So, the complete derivation simulating D in P ′ has the form: [〈Q; id〉 →k

AS

〈e′; θ〉 →l2
IS 〈r; θ〉], where as we said l2 ≤ l, which implies that m = k + l2 ≤

k + l = n what completes the proof of the strong completeness.
Finally, the strong correctness of interpretive unfolding follows from both, the
strong soundness (⇐) and the strong completeness (⇒), as we wanted to prove.

To finish this section, we present the following result which combines the use
of operational/interpretive unfolding by considering a transformation sequence
of programs (P0, . . . ,Pk), k ≥ 0. The following theorem formalizes the best

1692 Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

properties of the resulting transformation system, namely, its strong correctness
and the guarantee for producing improvements on residual programs. The whole
result directly follows as a simple corollary from Theorems 11 and 12.

Theorem 13 Strong Correctness of the Transformation System. Let
(P0, . . . ,Pk) be a transformation sequence where each program in the sequence,
except the initial one P0, is obtained from the immediately preceding one by ap-
plying operational/ interpretive unfolding. Then, 〈Q; id〉 →n

AS/IS 〈r; θ〉 in P0 iff
〈Q; id〉 →m

AS/IS 〈r; θ′〉 in Pk, where

1. r ∈ L, being 〈L,�〉 the lattice associated to P0 used during the interpretive
unfolding process,

2. θ′ = θ[Var(Q)], and

3. m ≤ n.

6 Related Work and Implementation Issues

Although unfolding is a classical transformation rule which is well-known in other
declarative paradigms (pure functional, pure logic and integrated functional-logic
languages), to the best of our knowledge there exist no precedents of such tech-
nique (apart from our approaches in [Julián et al.2004, Julián et al.2005b] and
[Julián et al.2005a]) in the specialized literature related to fuzzy logic program-
ming. The present work, culminates the efforts we initiated three years ago, by
providing a simple, clean and powerful scheme for unfolding fuzzy logic programs
with a high level of flexibility.

At the very beginning of our developments, when we analyzed different fuzzy
variants of Prolog in order to adapt the classical unfolding transformation to
the new paradigm,we found two major and rather different approaches based
on similarity relations and weighted rules, respectively. The first approach, rep-
resented by languages such as Likelog [Arcelli and Formato1999], replaces the
syntactic unification mechanism of classical SLD-resolution by a fuzzy unifica-
tion algorithm, based on similarity relations (over constants and predicates). In
this context, the fuzzy unification algorithm provides an extended most general
unifier as well as a numerical value, called unification degree. Intuitively, the uni-
fication degree represents the truth degree associated with the (query) computed
instance. Programs written in this kind of languages consist, in essence, in a set
of ordinary (Prolog) clauses jointly with a set of “similarity equations” which
plays an important role during the unification process. Unfortunately, when we
try to unfold a Likelog program, it is mandatory to extend the language if we
really want to code the residual program. Both, the syntax and the operational

1693Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

principle require important manipulations in its design to cope with the ele-
ments that unfolding introduces in the body of transformed clauses. This fact
prevented us from developing our work in this direction.

For the second approach, fuzzy logic programs are sets of weighted formu-
las, where the truth degree of each clause is explicitly annotated. The task of
computing and propagating truth degrees relies on an extension of the res-
olution principle, whereas the (syntactic) unification mechanism remains un-
touched. Examples of this kind of languages are the pioneer one described
in [Vojtáš and Pauĺık1996], and the most modern and flexible ones shown in
[Medina et al.2004] and [Guadarrama et al.2004]. In contrast with Likelog, fuzzy
languages based on weighted rules admit, in general, a much more natural formal-
ization of unfolding, without the need of modifying the procedural mechanism
(even when an extended syntax is needed for coding transformed programs), as
we have shown in the following previous works:

– In [Julián et al.2004] we proposed our first attempt of operational unfolding
for programs written with the language of [Vojtáš and Pauĺık1996], where
all clauses of a given program obey the same fuzzy logic.

– The language used in our second approach, [Julián et al.2005b], enriches the
previous one by allowing the use of different fuzzy logics inside the same
program. Now, operational unfolding is complemented with a set of low-
level, interpretive-based, transformation rules called T-Norm replacement.

– In [Julián et al.2005a] we try once more again to reinforce the power of the
underlying language by adopting the extremely flexible multi-adjoint ap-
proach of [Medina et al.2004] (where, among other extensions, it allows to
cohabit different fuzzy logics even inside a same program rule) when defining
an unfolding rule strictly based on operational steps.

The present work completes the research line initiated in [Julián et al.2005a] by
introducing a complement of the unfolding rule in terms of interpretive steps.
Doing this, we have clarified the proper notion of interpretive step and we have
removed noisy instrumental elements such as selection functions or indepen-
dence results. In our context, one remarkable fact is that, for the first time,
the requirement of using and auxiliary extended syntax for coding residual pro-
grams is dropped out. This allow us to recover, in an elegant way, the classical
source-to-source nature of the unfolding transformation.

Regarding the Fuzzy Prolog language of [Guadarrama et al.2004], we have
just recognized (see for instance the introduction section) that its level of flexi-
bility and expressiveness are perfectly comparable with the one obtained by the
multi-adjoint approach and, what is better, an interpreter conceived using Con-
straint Logic Programming over real numbers (CLP (R)) has been efficiently im-

1694 Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

plemented (where source programs are translated into directly executable CLP -
based Prolog code). However and similarly to the case of Likelog, the adequacy
of this language for being used as the basis of an unfolding rule is rather lim-
ited, as we are going to explain. The real problem does not appear only at the
syntactic level (although we have solved similar difficulties for other languages
like in [Julián et al.2004, Julián et al.2005b]), but what is worse, the major in-
convenience is the need for redefining the core of its procedural mechanism to
cope with constraints possibly mixed with atoms.

The notion of multi-adjoint lattice (as well as the use of aggregation opera-
tions and truth degrees) has a direct correspondence with the notion of constraint
domain in the CLP (R) representation of [Guadarrama et al.2004]. Computa-
tion steps are described by means of an state transition system where, instead of
two elements, each state contains three components 〈atoms, substitution, cons-
traints〉. Initial states have the first component (input) fulfilled with a set of
atoms of a given goal and the two last components (outputs) are empty. Vice
versa, in final states the goal component is empty whereas the two last ones repre-
sents the fuzzy computed answer (substitution and truth degree) for the original
goal. Remember that the notion of state used in the present work avoids the last
component since atoms, aggregators and truth degrees can safely cohabit (as
part of an extended language) inside the first component of an state, and also in
the body of (transformed) program rules, which enables the effective definition of
unfolding in our setting. Conversely, in the language of [Guadarrama et al.2004],
the strict separation of atoms and constraints (in both, computation states and
clause bodies) represents a severe obstacle for the adaptation of our notion of
unfolding rule (it is neither easy to execute nor to code on the body of un-
folded clauses the constraints generated by those computation steps performed
at transformation time).

On the other hand, the approach of [Guadarrama et al.2004] represents a
real and interesting inspiration for implementation issues, specially taking into
account that there is not yet available an interpreter for the language originally
described in [Medina et al.2004] that we have been using in this work. In fact,
due to the parallelism of both proposals, the multi-adjoint language also admits a
“constraint solving”-based implementation when considering Borel lattices (i.e.,
union of intervals of real numbers), by simply following the guidelines detailed
in [Guadarrama et al.2004]. Moreover, if we focus in the simpler case of our ex-
amples (which uses a multi-adjoint lattice whose carrier set L is the real interval
[0, 1] and the connectives are collected from the product, �Lukasiewicz and Gödel
intuitionistic logic), then it is easy to translate program rules to (pure) Prolog
code as follows:
• The role of aggregator operators can be easily played by standard Prolog

clauses defining “aggregator predicates” as follows:

1695Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

and_prod(X,Y,Z):- Z is X * Y.

and_godel(X,Y,Z):- (X=<Y,Z=X;X>Y,Z=Y).

and_luka(X,Y,Z):- H is X+Y-1,(H=<0,Z=0;H>0,Z=H).

• Each atom appearing in a fuzzy rule is translated into a Prolog atom
extended with an extra argument, called truth variable, which is intended to
contain the truth degree obtained after the subsequent evaluation of such atom.

• Program facts (i.e., fuzzy rules with no body) are expanded at compilation
time to Prolog facts, where the additional argument of the (head) atom, instead
of being a truth variable, is just the truth degree of the corresponding rule. For
instance, rules R4 and R5 in Example 3, can be represented by the Prolog facts
r(Y,0.7) and s(b,0.9), respectively.

• Program rules are translated into Prolog clauses by performing the appro-
priate calls to the atoms presented in its body. Regarding the calls to aggregator
predicates, they must be postponed at the end of the body, in order to guaran-
tee that the truth variables used as arguments be correctly instantiated when
needed. In this sense, it is also important to respect an appropriate ordering
when performing the calls. In particular, the last call must necessarily be to
the “aggregator predicate” modeling the adjoint conjunction of the implication
operator of the rule, by also using its truth degree. For instance, rules R1,R2

and R3 in Example 3, can be represented by the Prolog clauses:

p(X,TV0) :- q(X,Y,TV1),r(Y,TV2),

and_godel(TV1,TV2,TV3), and_prod(0.8,TV3,TV0).

q(a,Y,TV0) :- s(Y,TV1),and_prod(0.7,TV1,TV0).

q(Y,a,TV0) :- r(Y,TV1),and_luka(0.8,TV1,TV0).

• A goal is translated into a Prolog goal where the corresponding calls appear
in their textual order before the “aggregator predicates”. Since aggregators are
not associative in general, they must appear in an appropriate sequence, as also
occurred with the translation of clause bodies explained before. For instance,
the goal ←p(X)&Gr(a) in Example 3, can be represented by the Prolog goal
?- p(X,TV1), r(a,TV2), and godel(TV1,TV2,TV3).

Following this method, we have just translated to standard Prolog code each
one of the multi-adjoint logic programs shown in this paper. In particular, the
Prolog version of the transformed program obtained in Example 10, contains the
clauses previously seen defining aggregators and rules R3, R4 and R5, together
with the following clauses representing respectively the unfolded rules R12, R8

and R6:

1696 Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

p(a,0.504).

p(Y,TV0) :- r(Y,TV1),r(a,TV2),and_luka(0.8,TV1,TV3),

and_godel(TV3,TV2,TV4),and_prod(0.8,TV4,TV0).

q(a,b,TV0) :- and_prod(0.7,0.9,TV0).

The experimental results we have obtained after the execution of such code
in SICStus Prolog, confirm the benefits we have largely reported in this work.
Nowadays, we are just implementing a prototype of the tool.

7 Conclusions and Future Work

The present paper can be seen as a final step in the development of the re-
search line we started in [Julián et al.2004, Julián et al.2005b] and continued in
[Julián et al.2005a], where we have tried to adapt and to study the role played
by a classical transformation rule like unfolding, in the setting of fuzzy logic pro-
gramming whit labeled rules. In our investigations, we have dealt with different
fuzzy logic programming languages sharing all of them the common feature that
they are based on program clauses/rules with “weights” expressing the truth
degree or confidence factor one may have in their application. The present paper
condenses and improves all our contributions on this research line, by considering
one of the most recent and flexible languages in the field [Medina et al.2004]. We
have highlighted that, our unfolding-based transformation rules for multi-adjoint
logic programs, inherit both the simplicity and computational power of the orig-
inal language. The main contributions of the present paper can be summarized
as follows:

– We have introduced the notion of interpretive unfolding, which greatly en-
hances the T-Norm replacement rules of [Julián et al.2005b] and comple-
ments the operational unfolding for multi-adjoint logic programs described
in [Julián et al.2005a].

– In this setting, we have clarified the procedural semantics of the underlaying
language, by formalizing its interpretive phase in terms of an state transition
system.

– As a consequence, this is the first time that all our formalizations do not
depend of auxiliary languages and other intermediate elements, which largely
clarifies and empowers our approach.

– We have accompanied our fuzzy unfolding definitions with representative
examples, correctness results (including formal proofs verifying the gains in
efficiency that they produce on transformed programs) and links to related
works.

1697Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

For future work, there are many topics to undertake, closely connected with
this research line. Some of them, in which we are working nowadays, are the
definition of: fuzzy unfolding semantics and their equivalences with fix-point
semantics, and fuzzy variants of other transformation rules like folding (see
[Moreno2006] for some preliminary results). Also, in [Julián et al.2006] we have
started a new research line introducing partial evaluation techniques applied to
reductant calculi. Reductants are an useful theoretical tool introduced for proving
correctness properties in the context of generalized annotated logic programming
[Kefer and Subrahmanian1992]. This concept was adapted to the framework
of multi-adjoint logic programming in [Medina et al.2001b, Medina et al.2004],
aiming to solve a problem of incompleteness that arises when working with some
lattices. In order to be complete, multi-adjoint logic programs must be extended
with their set of reductants. In [Julián et al.2006] we provide an improved def-
inition of reductant which uses (threshold) partial evaluation techniques and is
able to obtain computed answers for a given goal with a lesser computational
effort than by using other simpler formulations of reductants. In the near fu-
ture we want to investigate the formal properties of partial evaluation (in the
multi-adjoint framework) and reductants.

Finally, following the ideas sketched at the end of Section 6, we want to put
in practice the transformation techniques developed in this paper.

Acknowledgments

We are grateful to Susana Muñoz for providing us free access to worthy material.
We also thank to anonymous referees their suggestive judgments on fuzzy dialects
of Prolog which helped us to largely improve this paper.

This work has been partially supported by EU under FEDER and the Spanish
Science and Education Ministry (MEC) under grant TIN 2004-07943-C04-03.

References

[Alpuente et al.2004] Alpuente, M., Falaschi, M., Moreno, G., and Vidal, G. (2004).
Rules + Strategies for Transforming Lazy Functional Logic Programs. Theoretical
Computer Science, 311:479–525.

[Arcelli and Formato1999] Arcelli, F. and Formato, F. (1999). Likelog: A logic pro-
gramming language for flexible data retrieval. In Proceedings of the 1999 ACM Sym-
posium on Applied Computing (SAC’99), February 28 - March 2, 1999, San Antonio,
Texas, USA, pages 260–267. ACM, Artificial Intelligence and Computational Logic.
Electronic Edition (DOI: 10.1145/298151.298348).

[Baldwin et al.1995] Baldwin, J. F., Martin, T. P., and Pilsworth, B. W. (1995). Fril-
Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley & Sons, Inc.

[Burstall and Darlington1977] Burstall, R. and Darlington, J. (1977). A Transforma-
tion System for Developing Recursive Programs. Journal of the ACM, 24(1):44–67.

1698 Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

[Guadarrama et al.2004] Guadarrama, S., Muñoz, S., and Vaucheret, C. (2004). Fuzzy
Prolog: A new approach using soft constraints propagation. Fuzzy Sets and Systems,
Elsevier, 144(1):127–150.

[Ishizuka and Kanai1985] Ishizuka, M. and Kanai, N. (1985). Prolog-ELF Incorporat-
ing Fuzzy Logic. In Joshi, A. K., editor, Proceedings of the 9th International Joint
Conference on Artificial Intelligence (IJCAI’85). Los Angeles, CA, August 1985.,
pages 701–703. Morgan Kaufmann.

[Julián et al.2004] Julián, P., Moreno, G., and Penabad, J. (2004). Unfolding Fuzzy
Logic Programs. In Proc. of the Fourth International Conference on Intelligent Sys-
tems Design and Applications, ISDA’04 (Sponsored by IEEE). Budapest (Hungary),
August 26-28, pages 595–600.

[Julián et al.2005a] Julián, P., Moreno, G., and Penabad, J. (2005a). On Fuzzy Un-
folding. A Multi-Adjoint Approach. Fuzzy Sets and Systems, Elsevier, 154:16–33.

[Julián et al.2005b] Julián, P., Moreno, G., and Penabad, J. (2005b). Unfolding-based
Improvements on Fuzzy Logic Programs. In Lucas, S., editor, Electronic Notes in
Theoretical Computer Science, volume 137, pages 69–103. Elsevier.

[Julián et al.2006] Julián, P., Moreno, G., and Penabad, J. (2006). Evaluación Par-
cial de Programas Lógicos Multi-adjuntos y Aplicaciones. In Fernández, A., editor,
Proc. of Campus Multidisciplinar en Percepción e Inteligencia, CMPI-2006, Albacete,
Spain, July 10-14, pages 712–724. University of Castilla-La Mancha.

[Kefer and Subrahmanian1992] Kefer, M. and Subrahmanian, V. (1992). Theory of
generalized annotated logic programming and its applications. Journal of Logic Pro-
gramming, 12:335–367.

[Lassez et al.1988] Lassez, J.-L., Maher, M. J., and Marriott, K. (1988). Unification
Revisited. In Minker, J., editor, Foundations of Deductive Databases and Logic Pro-
gramming, pages 587–625. Morgan Kaufmann, Los Altos, Ca.

[Li and Liu1990] Li, D. and Liu, D. (1990). A fuzzy Prolog database system. John
Wiley & Sons, Inc.

[Medina et al.2001a] Medina, J., Ojeda-Aciego, M., and Vojtáš, P. (2001a). Multi-
adjoint logic programming with continuous semantics. Proc of Logic Programming
and Non-Monotonic Reasoning, LPNMR’01, Springer-Verlag, LNAI, 2173:351–364.

[Medina et al.2001b] Medina, J., Ojeda-Aciego, M., and Vojtáš, P. (2001b). A proce-
dural semantics for multiadjoint logic programing. Progress in Artificial Intelligence,
EPIA’01, Springer-Verlag,LNAI, 2258(1):290–297.

[Medina et al.2004] Medina, J., Ojeda-Aciego, M., and Vojtáš, P. (2004). Similarity-
based Unification: a multi-adjoint approach. Fuzzy Sets and Systems, Elsevier,
146:43–62.

[Moreno2006] Moreno, G. (2006). Building a Fuzzy Transformation System. In Wie-
dermann, J., Tel, G., Pokorn, J., Bielikov, M., and Stuller, J., editors, Proc. of
the 32nd Conference on Current Trends in Theory and Practice of Computer Sci-
ence, SOFSEM’2006. Merin, Czech Republic, January 21-27, pages 409–418. Springer
LNCS 3831.

[Pettorossi and Proietti1996] Pettorossi, A. and Proietti, M. (1996). Rules and Strate-
gies for Transforming Functional and Logic Programs. ACM Computing Surveys,
28(2):360–414.

[Tamaki and Sato1984] Tamaki, H. and Sato, T. (1984). Unfold/Fold Transformations
of Logic Programs. In Tärnlund, S., editor, Proc. of Second Int’l Conf. on Logic
Programming, pages 127–139.

[Vojtáš and Pauĺık1996] Vojtáš, P. and Pauĺık, L. (1996). Soundness and complete-
ness of non-classical extended SLD-resolution. In et al, R. D., editor, Proc. ELP’96
Leipzig, pages 289–301. LNCS 1050, Springer Verlag.

1699Julian P., Moreno G., Penabad J.: Operational/Interpretive Unfolding ...

