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Abstract: Functional-logic programming amalgamates some of the main features of
both functional and logic styles into a single paradigm. Nevertheless, negation is a
widely investigated feature in logic programming that has not received much attention
in such programming style. It is not difficult to incorporate some kind of negation as
finite failure for ground goals, but we are interested in a constructive version able to
deal with non-ground goals. With this aim, in previous works we have built a formal
framework for checking (finite) failure of reduction. In this paper we adapt it for im-
plementing a prototype for a functional-logic language with constructive failure as the
natural counterpart to negation in logic programming.
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1 Introduction

Functional-logic programming (FLP, for short) tries to incorporate the most rel-
evant features of both functional and logic programming styles (FP and LP, for
short) such as lazy evaluation and non-deterministic computations into a unified
paradigm (see [Hanus 1994] for a survey). Negation is an important feature that
has been widely studied from the beginning of LP [Apt et al. 1994], but it has
not received much attention in FLP with the exception of [Moreno 1996], that
does not consider non-deterministic functions, an essential feature of modern
FLP languages. Curry [Antoy et al. 2002, Hanus 2003] and the latest version
of T OY [López et al. 1999] incorporate finite failure as a direct counterpart of
negation as failure used in Prolog. Such kind of failure is easy to implement
but, as in the case of Prolog, it is not suitable for goals with free variables, i.e.,
it is not constructive, using a standard terminology of LP. Constructive nega-
tion has also been studied in LP [Chan 1998, Drabent 1995] and implemented
[Moreno et al. 2004, Álvez et al. 2004]. In the FLP setting, constructive failure is
a difficult issue due to the combination of laziness, sharing and non-determinism.
The problem of binding variables while evaluating functions which collect values
of a search space (an issue somehow related to our constructive failure) has been
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addressed in [Braßel et al. 2004]. But this work focuses only on operational ques-
tions (sometimes system dependant), while our approach also provides a logical
semantics that allows to prove soundness and completeness results.

We address the problem from a general point of view: the natural counterpart
of logic negation, in FLP is failure in reduction. Such a notion can be expressed
by means of a function fails with a clear meaning:

fails(e) =

⎧⎨⎩ true if e can not be reduced
to a head normal form

false otherwise

FLP follows a constructor discipline, and therefore by head normal form we
mean a variable or a constructor-rooted term. The important fact is that fails
can not be defined within the language, but it requires a theoretical frame-
work in order to provide a formal semantics for it. We have investigated this
construction in previous papers, taking the well established framework CRWL
[González et al 1999, Rodŕıguez 2001] as starting point. Following this approach
we have developed a specific framework for dealing with failure: the rewriting
logic is introduced in [López et al. 2000, López et al. 2004] and transformed into
a set oriented logic in [López et al. 2001]; the narrowing relation is presented
in [López et al. 2002] and extended with built-in equality in [López et al. 2003a,
López et al. 2003b]. In this paper, we incorporate a redex-selection mechanism
to the narrowing relation and implement the prototype OOPS based on such a
relation.

OOPS is not intended to replace T OY or Curry, but to motivate the intro-
duction of constructive failure in such systems. It is designed as a research tool
for studying failure in FLP and incorporates an interesting tracing tool that
generates a LATEX file with the detailed computation steps (formally justified by
the narrowing relation DDSNarr that we will show). This prototype has been
very useful for developing the theoretical narrowing mechanism and for explor-
ing the potential that failure can offer to FLP by means of simple but not trivial
running examples. Moreover, apart from failure, the set-oriented view used in
the prototype is itself an interesting and clean way for a better understanding
of relevant features of FLP such as non-determinism and sharing.

The paper is organized as follows: in Section 2 we present some examples
motivating the use of failure in FLP, Section 3 introduces the set-oriented view.
Section 4 briefly presents rewriting logic SRLF and the narrowing relation SNarr.
The main contributions of this work are Sections 5 and 6. In the first one we
modify the relation SNarr to get a demand driven mechanism for selecting re-
dexes and show the soundness and completeness results for it. In the next Sec-
tion we point out some implementation details of the system OOPS (available
at http://babel.dacya.ucm.es/jaime/systems.html) based on the new rela-
tion. Finally, Section 7 contains some conclusions.
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2 Using Failure in FLP

Failure in FLP allows to use negative information within programs in many
situations, as it happens with negacion in LP. Moreover, there are problems for
which to use this kind of information is the natural way for solving them. In this
section we show a couple of examples that use failure as a natural resource (the
reader may try to solve these problems in FLP without using failure).

Example 1: consider the problem of searching paths in a graph. We assume the
nodes a, b, c and d, the non-deterministic function next to define arcs and the
function path for deciding if there is a path between two given nodes:

next(a) → b next(b) → c

next(a) → c next(b) → d

path(X, Y ) → if (X == Y ) then true
else path(next(X), Y )

Now we use failure to define the function safe, understanding that a node is safe
if there is not a path from it to the node d:

safe(X) → fails(path(X, d))

With this program we can evaluate safe(a) to false and safe(c) to true. This
simple function can not be programmed in FLP without using failure (of course
it would be possible by changing the full program, in particular the definition of
next).

This example can be programmed in Curry or T OY using negation as finite
failure (that works appropriately for ground expressions), but they can not re-
duce a non-ground expression like safe(X) for which OOPS gets true with the
substitution [X/c], and false with [X/a], [X/b] and [X/d].

Example 2: failure may be used for programming two-person finite games in
an easy and elegant way [López et al. 2004] (following the idea of [Apt 2000] in
LP). Assume such a two-person game in which players make a move in turn,
until it is not possible to continue. At this stage, the player that cannot move
loses, so the winner is the one that makes the last movement. We assume a
function move such that move(State) produces (in a non-deterministic way) a
new state from the given State, using a legal movement. A winning movement
can be found using fails with a function like:

winMove(S ) → let S ′ == move(S )
in if fails(winMove(S ′)) then S ′
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The idea is to find a legal movement, S ′, such that the other player fails to find
a winning movement from it. This scheme can be used for the Nim’s game for
instance: we have a set of rows with sticks and a movement consists in dropping
one or more sticks from a single row. We can represent a state by a list of natural
numbers (each one representing the number of sticks of a row). A legal movement
is defined in a non-deterministic way as (we assume natural numbers represented
with z and s(. . .) as usual):

pick(s(N)) → N move([N |Ns ]) → [pick(N)|Ns ]

pick(s(N)) → pick(N) move([N |Ns ]) → [N |move(Ns)]

The function pick drops a positive number of sticks from a non-empty row and
move chooses any row from the list for dropping sticks.

With this program we could evaluate winMove([s(z), s(s(z)), s(s(z))]) ob-
taining the answer: [z, s(s(z)), s(s(z))]. It is easy to check that for any possible
movement of the other player we can win. For example, if the adversary gets
the state [z, s(z), s(s(z))], our next movement will be [z, s(z), s(z)] and now, the
adversary must take one of the sticks and we will take the remaining one, so we
win the game.

As in the previous example, this game could be adapted to T OY or Curry
with negation as finite failure and evaluate a winning movement for ground states
as the previous one. But none of them will work with the state [s(s(z)), X, s(z)],
for which OOPS provides an infinite number of answers: [s(z), z, s(z)] with the
substitution X = z, [z, s(z), s(z)] with X = s(z),. . . . Notice that this reflects
the fact that the function fails is an approach to constructive failure in FLP.

3 A Set-Oriented View of FLP

In the following we will write CS (FS) for the set of constructor (function) sym-
bols of the program. We assume a countable set of variables V = {X, Y, Z, . . .}.
Exp is the set of total expressions built over CS ∪ FS ∪ V and Term is the
set of total terms built over CS ∪ V . The sets of partial terms and expressions
are built in a similar way but they can include the special (constant) symbol ⊥
that stands for the undefined value. Any object of the form o denotes a sequence
o1, . . . , on.

In order to motivate the introduction of the set-oriented syntax, in this
section we assume a program with CS = {z, s} (for natural numbers), and
FS = {add , double, two, coin} defined as:

add(z, X) → X coin → z

add(s(X), Y ) → s(add(X, Y )) coin → s(z)

double(X) → add(X, X) two(s(s(z))) → s(s(z))
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This program could be a functional one except for the non-deterministic function
coin . Such kind of functions are one of the nicest features in FLP that allow
to express search problems in a direct way. But they also make more difficult
to deal with failure. The problem arises from the fact that proving failure in
the reduction (to head normal form) of an expression in a non-deterministic
context means to prove that any possible reduction to head normal form fails.
For example, the expression two(coin) fails: coin can be reduced to z or s(z),
and two is not defined for any of these values. But none of the possible values for
coin in isolation produces the failure; we must consider both reductions of coin
simultaneously, i.e., to check that two fails for every value of the set {z, s(z)}.
This idea suggests to use a set oriented semantics for collecting reductions of
expressions. In fact, taking failure apart, non-deterministic functions themselves
induce this kind of semantics.

In [López et al. 2004, López et al. 2000] we formalize this idea with the intro-
duction of statements of the form coin �{z, s(z)}, where {z, s(z)} is what we call
a Sufficient Approximation Set (SAS) for coin (Section 4 formalizes the notion
of SAS). In [López et al. 2002] the set flavor was extended to expressions and
programs. For instance, the expression double(add(s(z), coin)) is transformed
into the set-expression: ⋃

α∈S
β∈coin add(s(z),β) double(α)

Formally, a set-expression S ∈ SetExp is defined as:

S ::= {t} | f(t) | fails(S1) | t == t′ |
⋃

α∈S1
S2 | S1 ∪ S2

where t, t′ ∈ Term , t ∈ Term× n. . . ×Term, f ∈ FSn and S1,S2 ∈ SetExp.
Indexed variables like α are taken from a distinguished set Γ and are called
produced variables of the set-expression. The set of produced variables is notated
as PV (S) and the rest are free variables, notated as FV (S). We consider the set
Subst of substitutions for the free variables.

The notation used for set-expressions is clearly inspired in the standard math-
ematical one, and the formal semantics matches the intuitive meaning. But the
relevant aspect is that it makes explicit sharing (by means of indexed variables
like α) and non-deterministic computations (by means of unions), and it facili-
tates to build the operational mechanism.

It is easy to transform any usual expression e into its corresponding set-
expression ê, using (fresh) produced variables α1, . . . , αn:

• X̂ = {X}, ∀X ∈ V

• ̂c(e1, . . . , en) =
⋃

α1∈ be1
. . .

⋃
αn∈cen

{c(α)}, ∀c ∈ CSn

• ̂f(e1, . . . , en) =
⋃

α1∈ be1
. . .

⋃
αn∈cen

f(α), ∀f ∈ FSn ∪ {==}

1578 Sanchez-Hernandez J.: Constructive Failure in Functional-Logic Programming ...



• ̂fails(e) = fails(ê)

The transformation also introduces a new constant symbol F to explicitly
denote failure of reduction. Programs are transformed into set-programs in such a
way that function rules have a set-expression in the body. But the transformation
is deeper, obtaining the following unicity property: for any function call f(t)
where t are ground terms (without variables) with no occurrence of the constant
F there exists exactly one applicable rule in the program; moreover, all the heads
of the rules of a function demand exactly the same positions (this is useful for
the narrowing relation)2.

To achieve this kind of inductively sequential rules [Antoy 1992], our algo-
rithm performs a demand analysis on the head of the rules (following the ideas
of definitional trees of [Antoy 1992, Loogen et al. 1993]) and also completes the
program introducing specific failure rules for those cases not defined in the orig-
inal program. The concrete algorithm and the correctness results can be found
in [Sánchez 2004]. As an example of transformation, for the program of graphs,
we obtain the following set-program:

next(a)� {b} ∪ {c}
next(b)� {c} ∪ {d}

next(c)� {F}
next(d)� {F}

safe(X)� fails(path(X, d))

path(X, Y )�
⋃

α∈X==Y

⋃
β∈S

γ∈next(X) path(γ,Y ) iTe(α, true, β)

Now, next collects all the possible reductions for each argument in a single rule
and it is completed with failure rules for the cases c and d. The equality function
== (used in path) is a three-valued function that can produce true, false or F.
The function iTe is a prefix version of the standard if then else.

4 Rewriting Logic and Narrowing Calculus

The rewriting logic SRLF of Table 1 provides the semantics for any set-expression
S with respect to a set-program P , i.e., it derives statements of the form S � C,
where C is a SAS for S. Here we only show a brief explanation of the rules
(for a detailed discussion see [López et al. 2001]). Rule (1) provides the trivial
(totally undefined) SAS for any set-expression allowing lazy derivations. Rule
(3) stands for term decomposition. Rule (4) uses an instance of a rule of the
program for evaluating a function call; such instance is obtained by means of
θ ∈ Subst⊥,F, a substitution that includes the undefined value ⊥ and F in its
2 Here we use the standard notions of positions and demanded positions in the heads.

For example, the head f(s(s(z)), X, s(Y )) has s at positions 1, 1.1 and 3, z at position
1.1.1, X at position 2, and Y at position 3.1; and this head demands the positions
1, 1.1 and 3, i.e., those that contain constructor symbols.
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(1) S � {⊥} (2) {X} � {X} X ∈ V

(3)
{t1} � C1...{tn} � Cn

{c(t1, ..., tn)} � {c(t′) | t
′ ∈ C1 × ... × Cn}

c ∈ CS ∪ {F}

(4)
Sθ � C

f(t)θ � C
if C �= {⊥}, (f(t)� S) ∈ P
and θ ∈ Subst⊥,F

(5)
t == t′ � {true} if t ↓ t′ (6)

t == t′ � {false} if t ↑ t′

(7)
S1 � C1 S2[α/C1] � C⋃

α∈S1
S2 � C (8)

S1 � C1 S2 � C2

S1 ∪ S2 � C1 ∪ C2

(9)
f(t) � {F}

for all (f(s)� S′) ∈ P ,
t and s have a CS ∪ {F}-conflict

(10)
t == t′ � {F} if t �↓ t′ y t �↑ t′ (11)

S � {F}
fails(S) � {true}

(12)
S � C

fails(S) � {false} if ∃t ∈ C − {⊥, F}

Table 1: Rewriting logic SRLF

range. Rule (9) detects a failure in parameter passing. Rules (5), (6) and (10)
defines the function == be means of the syntactic relations ↓, ↑, �↓ and �↑ that
operate on constructed terms (without function symbols). Rules (7) and (8) are
inspired in usual set manipulations and rules (11) and (12) define the function
fails (in rule (12) ∃t ∈ C − {⊥, F} stands for a head normal form).

Using the first example of Section 2, this logic can derive safe(a) � {false}
or safe(c) � {true}. But it has nothing to do with safe(X), as it is designed
as a rewriting logic and not as a narrowing relation able to bind variables of
expressions.

Then, as operational mechanism we define the narrowing relation SNarr. An
step for this relation has the form:

S�δ�
θ
S′�δ′

where S,S′ are set-expressions, θ is the answer substitution, and δ, δ′ are sets
of disequalities in solved form, i.e., disequalities for variables (that may be in-
troduced by reducing the function ==). A substitution σ is a solution of δ,
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Cntx C [S]�δ�
θ

Cθ [S′]�δ′ if S�δ�
θ
S′�δ′

Nrrw1 f(t)�δ �
θ |var(t)

Sθ�δ′

if (f(s)� S) ∈ P , θ ∈ SustF is a m.g.u. for
s, t with Dom(θ) ∩ Γ = ∅ and δ′ ∈ solve(δθ)

Nrrw2 f(t)�δ�
ε
{F}�δ

if for every rule (f(s)� S) ∈ P
s and t have a CS ∪ {F}-conflict

Eq t == s�δ �
θ |var(t)∪var(s)

{ω}�δ′

if t == s�θ ω|δ′′ and δ′ ∈ solve(δθ ∪ δ′′)

Fail1 fails(S)�δ�
ε
{true}�δ if S∗ = {F}

Fail2 fails(S)�δ�
ε
{false}�δ if ∃t ∈ S∗ − {⊥, F}

Flat
⋃

α∈S
β∈S1

S2
S3�δ�

ε

⋃
β∈S1

⋃
α∈S2

S3�δ

Dist
⋃

α∈S1∪S2
S3�δ�

ε

⋃
α∈S1

S3 ∪
⋃

α∈S2
S3�δ

Bind
⋃

α∈{t} S�δ�
ε
S[α/t]�δ

Elim
⋃

α∈S′ S�δ�
ε
S�δ if α �∈ FV (S)

Table 2: Rules for SNarr

notated as σ ∈ Sol(δ), if σ transform δ in a set of trivial disequalities (pairs of
terms with a conflict of constructor symbols at the same position). For example,
σ = [X/z, Y/s(z)] is a solution for {X �= s(z), Y �= X}.

Table 2 shows the rules for the narrowing relation SNarr. There are quite
a lot technical subtlety in these rules, but here we only point out the most
relevant aspects (see [López et al. 2002, López et al. 2003a, López et al. 2003b]
for details):

• in the rule Cntx, C denotes a context as usual in FP and it allows to select
any sub-set-expression as redex in order to apply some other rule;

• Nrrw1 performs narrowing in a proper sense, unifying the arguments of the
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call with those of a rule of the program. The condition Dom(θ) ∩ Γ = ∅
ensures that the produced variables are not affected by the substitution and
the function solve makes the propagation of bindings to the disequality store;

• Nrrw2 checks a failure in reduction. Although the set-program satisfies the
unicity property, if a call contains F at some demanded position there is not
any applicable rule of the program;

• Eq evaluates a call to the function == using the relation�, that requires
a non trivial narrowing mechanism [López et al. 2003a, López et al. 2003b].
It calculates the appropriate substitution θ and produces true if the terms
unify, false if there is a conflict of constructors (or a disequality is introduced
in δ), and F otherwise (this case holds for example in F == X);

• Fail1 and Fail2 evaluate fails(S) by analyzing the information set S∗ of S,
that reflects its constructed part. Formally S∗ is defined as: ({t})∗ = {t};
(S1 ∪S2)∗ = S∗

1 ∪S∗
2 ; (f(t))∗ = (fails(S))∗ = (t == s) = {⊥}; (

⋃
α∈S′ S)∗ =

(S[α/⊥])∗

• finally, rules Flat, Dist, Bind and Elim have a clear mathematical sense.

The aim of this relation is to narrow any set-expression to a normal form, i.e.,
a set-expression of the form {t1}∪. . .∪{tn} (where t1, . . . , tn are total terms). As

usual we consider the transitive closure S�δ
∗�
θ
S′�δ′: S�δ�

θ1
S1�δ1�

θ2
. . .�

θn

S′�δ′

where θ = θ1θ2 . . . θn is the answer substitution of the derivation.
Soundness and completeness results for the relation SNarr with respect to

SRLF were established in [López et al. 2002] without considering the equal-
ity function == and they were extended with equality in [López et al. 2003a,
López et al. 2003b] (see [Sánchez 2004] for detailed proofs).

5 A Demand Driven Narrowing Relation: DDSNarr

The rule Cntx of SNarr allows to select any possible sub-set-expression as redex.
In this Section we will show a modified version of this rule that works only on
the demanded sub-set-expressions following the philosophy of lazy functional
languages. First we introduce the concept of demand in set-expressions.

Definition 1 (Demanded Variables of a Set-Expression). Given a set-ex-
pression S, the set DV (S) of demanded variables of S is a subset of Γ defined
as:

• DV ({t}) = var(t) ∩ Γ
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• DV (f(t)) = DVFun(f(t)) ∩ Γ , where

DVFun(f(t)) = {X ∈ var(t) | X appears in a demanded position by f}

• DV (t == s) = var(t) ∪ var(s)

• DV (fails(S)) =

{
∅ if S∗ = {F} or ∃t ∈ (S∗ − {⊥, F})
DV (S) otherwise

• DV (
⋃

α∈S1
S2) =

{
DV (S1) ∪ DV (S2) if α ∈ DV (S2)

DV (S2) otherwise

• DV (S1 ∪ S2) = DV (S1) ∪ DV (S2)

Using this notion, now we can define an special kind of contexts in such a
way that the set-expression of the argument is needed for reduction, i.e., it is
demanded. A context of demand is defined as:

C ::= [ ] | fails(C′) | C′ ∪ S | S ∪ C′ |
⋃

α∈S C′ |
⋃

α∈C′ S

where C′ is a context of demand, S is a set-expression and α ∈ DV (S) in the
last case. For example, if we consider the expression add(add(coin, X), add(Y, Z))
and its corresponding set-expression:⋃

α∈S
β∈coin add(β,X)

⋃
γ∈add(Y,Z) add(α, γ)

the demanded variables are α and β (add demands its first argument), and
the contexts of demand are those that have as arguments the underlined set-
expressions like add(β, X) or coin (notice that add(Y, Z) does not correspond to
a context of demand).

Now we can restrict the application of rule Cntx in the following way:

DDCntx C [S]�δ�
θ

Cθ [S′]�δ′

if C is a context of demand and S�δ�
θ
S′�δ′

The relation DDSNarr is the result of replacing the rule Cntx by the new
rule DDCntx in SNarr. The new relation limits the application of rules of SNarr
and we must prove that soundness and completeness are not missing with such
a restriction. Soundness of DDSNarr arises from the soundness of SNarr:

Theorem 2 (Soundness of DDSNarr). Let S,S′ be set-expressions, θ a sub-

stitution and δ and δ′ sets of disequalities in solved form. If S�δ
∗�
θ
S�δ′ is

a DDSNarr-derivation then for any σ ∈ Sol(δ) and σ′ ∈ Sol(δ′) we have:
Sσ � C ⇔ S′σ′ � C.
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Proof: trivial: any DDSNarr-derivation is a SNarr-derivation, for which the
result holds.�

The completeness result requires rather more elaboration. It is not true that
any derivation with SNarr can be done with DDSNarr. As DDCntx is more
restrictive than Cntx it could be possible that DDSNarr become blocked or
loop in a derivation for which SNarr could progress. We must show that in fact
this does not happen, i.e., for any set-expression not in normal form DDSNarr
can perform a derivation step. Moreover, this step makes the set-expression to
evolve to a normal form if such form exists for the set-expression, or at least, to
decrease the complexity in some order of complexity. Such a notion of complexity
is defined with respect to the corresponding derivations within SRLF: given a
SRLF-derivation S � C we define its complexity as the number of SRLF-steps of
it.

We will show in Lemma 4 that given a set-expression S with S � C, we can
derive S′ by means of DDSNarr with S′ � C (this is only soundness), but in such
a way that the complexity of the derivation for S′ �C decreases. In order to prove
this result, the first proposition shows that for any set-expression (not in normal
form) DDSNarr is able to apply some rule that reduces complexity, except for
the rules Flat and Dist, that preserve this complexity.

Proposition3 (Partial Progress). Let S be a set-expression not in normal
form such that S � C with C �= {⊥}. Then it is possible to perform a derivation

step S�∅�
ε
S′�∅ with DDSNarr such that S′ � C and:

• if the step is performed by Flat or Dist applied to S or to some sub-set-
expression of S by means of DDCntx, then the complexity of the derivations
for S � C and S′ � C is the same;

• otherwise the complexity of the derivation for S′ � C is less than the one for
S � C.

Proof: we proceed by induction on the structure of S (not in normal form) and
taking into account that C �= {⊥}, pointing out the way in which complexity of
the SRLF-derivations is affected:

• if S = f(t) and there is a rule of the program for reducing it, then the

derivation for S � C has the form S1θ � C
f(t) � C by rule 4 of SRLF and using a rule

of the program f(s) � S1 such that t = sθ. The corresponding DDSNarr-

derivation is f(t)�∅�
ε
S1θ�∅ by rule Nrrw1. Then we have S′ = S1θ and

clearly the complexity of the SRLF-derivation for S′ � C is less than the one
for S � C, because the first is a sub-derivation of the second.
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On the other hand, if no rule of the program matches f(t) then the SRLF-

derivation is done by rule (9) as
f(t) � {F}, and the DDSNarr-derivation is

f(t)�∅�
ε
{F}�∅ by rule Nrrw2;

• if S = t == s it is possible to use Eq and finish the derivation. Notice that it
does not need to introduce any substitution or disequality because we have
S � C (with C �= {⊥} and without any restriction to the variables of S). In
this case one of the rules 5, 6 or 10 of SRLF is applicable;

• if S = fails(S1) then if it is possible to apply Fail1 or Fail2 the derivation
finish. Otherwise DDCntx allows to apply some rule to S1 and induction
hypothesis applies;

• if S =
⋃

α∈S1
S2 there are three possibilities:

• if α �∈ FV (S2) then Elim applies and the complexity of the SRLF-
derivation decreases;

• if α ∈ FV (S2) − DV (S2), as α is not demanded in S2 it does not block
any reduction in S2 by means of DDCntx, and induction hypothesis
applies;

• otherwise α ∈ FV (S2) ∩ DV (S2) and the rule depends on the form of
S1: if S1 = {t} then Bind applies; if S1 =

⋃
β∈S3

S4 or S1 = S3 ∪ S4

then Flat or Dist respectively can be applied and the complexity of the
SRLF-derivations do not change; otherwise induction hypothesis applies
to S1 by means of DDCntx;

• if S = S1 ∪ S2 we can apply induction hypothesis to both set-expression by
means of DDCntx.�

Lemma4 (Progress of DDSNarr). Let S be a set-expression not in normal
form such that there exists a SRLF-derivation for S � C for it with C �= {⊥}.

Then it is possible to perform a (finite) derivation of the form S�∅ ∗�
ε
S′�∅ with

DDSNarr in such a way that there is a SRLF-derivation for S′ � C with less
complexity than the one for S � C.

Proof: notice that rules Flat and Dist can only be applied a finite number of
times over a set-expression and they can not obtain a normal form; then, Propo-
sition 3 ensures that some other rule will be applicable reducing the complexity
of the SRLF-derivation.�
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Lemma 4 uses DDSNarr as a rewriting relation instead of a narrowing one: no
substitutions are involved. In order to obtain the result of completeness we need
to prove that DDSNarr is able to find the appropriate values (and disequalities)
for variables, i.e., the appropriate substitutions (and disequality constraints δ)
for narrowing a set-expression. Moreover, in general the narrowing relation will
provide a more general substitution than the one used for the SRLF-derivation:
if Sθ � C then DDSNarr can obtain the same information with an answer sub-
stitution θ′ more general than θ (i.e. θ = θ′μ for some μ, except for the new
variables Π that can introduce the body of a rule program by means of Nrrw1).

Theorem 6 formalizes this idea. The next Lemma is a rather technical result
needed to prove such a theorem. It establishes the bridge between pure rewriting
and narrowing within DDSNarr. Here the rewriting logic SRLF is only used to
ensure that the progress of DDSNarr (in the sense of Lemma 4) is not affected.

Lemma5 (Answer Substitutions). Let S be a set-expression, δ a set of dise-

qualities in solved form, θ ∈ Sol(δ). If DDSNarr allows to derive Sθ�∅ ∗�
ε
S′�δ′,

then it also allows to derive S�δ
∗�
θ′ S′′�δ′′ with new variables Π such that for

some substitution μ we have:

i) θ = (θ′μ) |V−Π

ii) if SRLF can derive S′ � C then it also can derive S′′μ � C with the same
complexity

iii) Sol(δ′) ⊆ Sol(δ′′μ)

Proof sketch: this Lemma (with minor changes) was introduced for SNarr
without disequalities in [López et al. 2002] and it was extended for manipulat-
ing disequalities in [López et al. 2003a, López et al. 2003b]. The proof was done

by imitating the steps of the derivation for Sθ�∅ ∗�
ε
S′�δ′ in the derivation for

S�δ
∗�
θ′ S′′�δ′′ (see [Sánchez 2004] for a detailed proof). This idea is also appli-

cable to the relation DDSNarr and the proof of the current result is essentially
the same.�

Now, the completeness theorem is obtained by considering simultaneously the
progress of DDSNarr (Lemma 4) and its ability for finding answer substitutions
(Lemma 5). Part ii) of the next theorem reflects the fact that DDSNarr makes
the set-expressions to evolve to less complex form, what means that it is able to
obtain the values of the semantics of a set-expression.
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Theorem 6 (Completeness of DDSNarr). Let S be a set-expression not in
normal form, δ a set of disequalities in solved form, θ ∈ Sol(δ) and a SRLF-
derivation for Sθ � C with C �= {⊥}. Then there exists a DDSNarr-derivation

S�δ
∗�
θ′ S′�δ′, with new variables Π such that for some substitution μ we have:

i) θ = (θ′μ) |V−Π

ii) there is a SRLF-derivation for S′μ � C with less complexity than the one for
Sθ � C

iii) μ ∈ Sol(δ′)

Proof: if Sθ � C, then by Lemma 4, DDSnarr can perform a finite derivation

Sθ�∅ ∗�
ε
S1�∅, such that there is a derivation for S1 �C with less complexity than

the one for Sθ � C. By Lemma 5 there exist a derivation S�δ
∗�
θ′ S′�δ′ with new

variables Π such that

i) θ = (θ′μ) |V−Π

ii) there is a derivation for S′μ � C with the same complexity of the one for
S1 � C. Then the complexity of S′μ � C decreases with respect to Sθ � C, as
we expect;

iii) Sol(∅) ⊆ Sol(δ′μ), what means μ ∈ Sol(δ′). �

As a corollary, we assume the existence of a normal form for a set-expression
and show that DDSNarr allows to obtain such a normal form. A normal form is
any set-expression of the form {t1}∪ . . . {tn} with t1, . . . , tn total terms (without
any ⊥). This set-expression corresponds to the SAS {t1, . . . , tn}, so the result
we are looking for claims that any total SAS of the semantics of a set-expression
can be obtained by a DDSNarr-derivation as a normal form. Furthermore, such
a derivation generalizes any substitution used for obtaining such a SAS, possibly
by introducing disequalities as a part of the answer.

Corollary 7 (Normalization). Let S be a set-expression and θ ∈ Subst (with
Dom(θ) ⊆ FV (S)) such that Sθ�{t1, . . . , tn}, with t1, . . . , tn total terms (without

⊥). Then there exists a DDSNarr-derivation S�∅ ∗�
θ′ {t1}∪ . . .∪{tn}�δ such that

for some substitution μ we have: θ = θ′μ and μ ∈ Sol(δ).

As an easy example of the use of disequalities and its benefits consider the
set expression X == s(Y ). It can be reduced by SRLF to {true} under the
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substitution [X/s(Y )], and it reduces to {false} under the substitutions [X/z]
or [X/s(z), Y/s(z)] or [X/s(z), Y/s(s(z))]. . . (an infinite number of substitutions
allows such a derivation). DDSNarr will instead produce the answer {false} with
a single disequality X �= s(Y ) (of course, it also produces the answer {true} with
the substitution [X/s(Y )]).

6 Implementation

OOPS, like Curry or T OY is implemented in Prolog (SWI-Prolog) and users of
these systems must be comfortable using it. Programs use the standard (currified
functional) syntax and the interpreter is analogous to T OY or Curry (type :h

from the prompt of OOPS for a list of commands). The architecture of the
system is as follows:

ALGORITHM
PARSER Set−Program

TRANSFORMATION

Program

Expression
NARROWING

ENGINE (DDSNarr)
Answer

Set−Expression

The parser analyzes the source code of programs and produces a flat repre-
sentation as Prolog facts, from which the transformation algorithm generates the
corresponding set-program. This process is transparent for the user, that does
not have to know about the set-view of the system. Expressions to be reduced
are processed in a similar way (the transformation algorithm includes the conver-
sion of expressions into set-expression) and they are throwed into the narrowing
engine that implements the relation DDSNarr. Of course, this engine consults
the set-program for evaluating functions (the predefined functions for equality
and disequality are implemented as a subsidiary mechanism).

Set-expressions have an internal representation as Prolog terms as follows:

• {t} is represented as the unitary list [t].

• f(t) is self-represented.

• fails(S) is represented as fails(tpS), where tpS is the Prolog representation
for S.
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• t == t′ is represented as eq([(t,t’)]). In general the argument of eq

is a list of pairs of terms that will be eventually produced by decompo-
sition of compound terms. The mechanism for solving equalities use this
representation for improving efficiency avoiding multiple decomposition of
terms. For example, assuming the constructors z and s for natural num-
bers and c ∈ DC2, the equality c(z, s(X)) == c(Y, Z) is represented ini-
tially as eq([(c(z, s(X)), c(Y, Z))]). After decomposition it is transformed
into eq([(z, Y ), (s(X), Z))]).

•
⋃

α∈S1
S2 is represented as in(pv(A),tpS1,tpS2), where tpS1 and tpS2 are

the representations of S1 and S2 resp. Produced variables are clearly distin-
guished because they are represented as pv(. . .), while standard variables are
self-represented. This is useful due to the different behavior of both types of
variables in the narrowing relation.

• S1 ∪ S2 corresponds to the term tpS1 + tpS2 , where tpS1 and tpS2 are the
representations of S1 and S2 resp.

• finally, the term F is represented by the Prolog constant fail.

Program rules of the transformed program are stored as Prolog facts of the
form:

setRule(function name, list of arguments, result, demanded positions).

The Prolog term result represents a set-expression corresponding to the body of
the rule, and demanded positions stores the positions demanded by the head of
the rule (positions in the list of arguments that contain constructor symbols).
This information about such positions is stored in order to improve the efficiency
in the reduction engine.

6.1 The Reduction Engine of OOPS

The relation DDSNarr reduces the amount of non-determinism with respect to
SNarr but is not completely deterministic because there may be more than one
possible redex. For example, for the set-expression:⋃

α∈S
β∈coin add(β,X)

⋃
γ∈add(Y,Z) add(α, γ)

after some reduction steps (with Nrrw1, Dist and Bind) we obtain:⋃
α∈add(z,X)

⋃
γ∈add(Y,Z) add(α, γ) ∪

⋃
α∈add(s(z),X)

⋃
γ∈add(Y,Z) add(α, γ)
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Now there are two possible redexes. OOPS performs a reduction over both of
them as default3. In general, if there are several redexes, the system will use
all of them for reduction. This is a kind of width search that can improve the
completeness properties of the system in some situations. In particular, if a set-
expression S has a SAS {t1, . . . , tn} where t1, . . . , tn are total terms, Corollary 7
claims that there exists a DDSNarr derivation that obtains this SAS as a normal
form, but does not point out how to choose the redexes for perfoming such a
derivation. In OOPS with policy of selecting all possible redexes ensure that we
proceed with the appropriate one and we will reach the expected normal form.
To illustrate the advantage of such a policy assume the following two functions
loop = loop and f = true and the set-expression fails(loop ∪ f). There are two
possible redexes: loop and f . We can choose the first and go into an infinite
computation or we can choose the second and derive fails(loop ∪ {true}) and
then {false}. If we choose both simultaneously we ensure that we get the desired
behavior.

As we have seen, a reduction step in OOPS may correspond to several deriva-
tion steps (at least one) with the rules of DDSNarr. Given a set-expression,
OOPS analyzes recursively the syntactic structure trying to evaluate the in-
nermost sub-set-expressions. For example, in the above set-expression it firstly
analyzes the left sub-set-expression

(i)
⋃

α∈add(z,X)

⋃
γ∈add(Y,Z) add(α, γ)

An step over it requires an step over the sub-set-expression

(ii)
⋃

γ∈add(Y,Z) add(α, γ)

that requires an step over the innermost part

(iii) add(α, γ)

This call demands the produced variable α, so no rule can be applied, but α

is stored as demanded variable. Then, at the back of recursion we explore the
indexed sub-set-expressions. In (ii) the sub-set-expression is indexed by γ that
is not demanded, so it remains identical. But in (i) we find α indexing the sub-
set-expression add(z, X) that can be reduced to {X} by the first rule of add.

Analogously, for the right part the redex add(s(z), X) is found and it is re-
duced to

⋃
π∈add(z,X){s(π)} by Nrrw1 and the first rule for add, so the complete

set-expression is reduced to:⋃
α∈{X}

⋃
γ∈add(Y,Z) add(α, γ) ∪

⋃
α∈S

π∈add(z,X){s(π)}
⋃

γ∈add(Y,Z) add(α, γ)

This way of proceeding corresponds to evaluate outermost sub-expressions
in an standard expression, i.e., to lazy evaluation.
3 It allows to change this mode of operation to depth search (with the command :nw)

and force the system to choose the first possible redex.
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(1) fails(path(X, Y ))�∅�ε (Nrrw1)

(2) fails(
S

α∈X==Y

S
β∈S

γ∈next(X) path(γ,Y ) iTe(α, true , β))�∅�ε (Nrrw3)

(3) fails(
S

α∈{false}
S

β∈S
γ∈next(X) path(γ,Y ) iTe(α, true , β))�{X �= Y }�ε (Bind)

(4) fails(
S

β∈S
γ∈next(X) path(γ,Y ) iTe(false, true, β))�{X �= Y }�ε (Nrrw1)

(5) fails(
S

β∈S
γ∈next(X) path(γ,Y ){β})�{X �= Y } (Flat)

(6) fails(
S

γ∈next(X)

S
β∈path(γ,Y ){β})�{X �= Y }�ε (Nrrw1)

(7) fails(
S

γ∈next(X)
S

β∈S
τ∈γ==Y

S
μ∈S

ν∈next(γ) path(ν,Y ) iTe(τ,true,μ){β})�{X �= Y }�ε (Flat)

(8) fails(
S

γ∈next(X)

S
τ∈γ==Y

S
β∈S

μ∈S
ν∈next(γ) path(ν,Y ) iTe(τ,true,μ){β})�{X �= Y }�ε (Flat)

(9) fails(
S

γ∈next(X)

S
τ∈γ==Y

S
μ∈S

ν∈(next(γ) path(ν,Y )
S

β∈(iTe(τ,true,(μ){β})�{X �= Y }�[X/d] (Nrrw1)

(10) fails(
S

γ∈{F}
S

τ∈γ==Y

S
μ∈S

ν∈next(γ) path(ν,Y )

S
β∈iTe(τ,true,μ){β})�{Y �= d}�ε (Bind)

(11) fails(
S

τ∈Y ==F

S
μ∈S

ν∈next(F) path(ν,Y )

S
β∈iTe(τ,true,μ){β})�{Y �=d}�ε (Nrrw3)

(12) fails(
S

τ∈{F}
S

μ∈S
ν∈next(F) path(ν,Y )

S
β∈iTe(τ,true,μ){β})�{Y �= d}�ε (Bind)

(13) fails(
S

μ∈S
ν∈next(F) path(ν,Y )

S
β∈iTe(F,true,μ){β})�{Y �= d}�ε (Elim)

(14) fails(
S

β∈iTe(F,true,μ){β})�{Y �= d}�ε (Nrrw2)

(15) fails(
S

β∈{F}{β})�{Y �= d}�ε (Bind)

(16) fails({F})�{Y �= d}�ε (Fail1)

(17) {true}�{Y �= d}

ANSWER: {true} with [X/d] and Y �= d

Table 3: A derivation for fails(path(X, Y ))

As an example of derivation Table 3 shows a derivation for one of the possible
evaluations for the expression fails(path(X ,Y )) using the set-program of graphs
(see Section 3). The (underlined) redexes are selected with the previous explained
mechanism. Notice that in step (2) the equality X == Y is reduced to false
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by imposing the disequality X �= Y . In step (9) Y is binded to d and the
disequality is transformed into X �= d. As a relevant feature of OOPS, it is
able to automatically generate these kind of traces by turning the system into
debugging mode (command :d). Then the derivation steps are written in a LATEX
file, compiled into a postscript file and showed in a readable format. The traces
also contain the set-program obtained by transformation in order to facilitate
the analysis of derivations.

7 Conclusions and Future Work

We have connected our previous theoretical research about constructive failure
in FLP with an effective implementation of a functional-logic language providing
such a resource. In order to understand the implementation we have sketched the
set-oriented view from which we study the failure and the way for transforming
the classic elements of FLP (expressions, programs) into this new formalism.
The resulting framework allows to introduce failure and makes explicit some
important aspects of FLP like non-determinism or sharing.

OOPS is closer enough to the formalism to allow not only to reasoning about
the formalism itself but also to explore the practical implications of the integra-
tion of failure in the FLP paradigm. We illustrate the last point with an exam-
ple in which failure has a prominent role. As a tool for analyzing the narrowing
mechanism, OOPS includes an interesting option for showing the transformed
programs and for tracing computations, in such a way that every step of the
trace is formally justified by the theoretical relation.

As a general aim, we have tried to motivate the use of constructive failure
in FLP and its incorporation into Curry or T OY . It is quite easy for non-
constructive failure (for ground expressions), but requires additional effort for
the constructive version presented here.
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