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Abstract: Interpreted languages are widely used due to ease to use, portability, and
safety. On the other hand, interpretation imposes a significance overhead. Just-in-
Time (JIT) compilation is a popular approach to improving the runtime performance
of languages such as Java. We compare the performance of a JIT compiler with a
traditional compiler and with an emulator. We show that the compilation overhead from
using JIT is negligible, and that the JIT compiler achieves better overall performance,
suggesting the case for aggresive compilation in JIT compilers.
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1 Introduction

Interpreted languages are widely used due to ease to use, portability, and safety.
On the other hand, interpretation imposes a significance overhead. Just-in-Time
(JIT) compilation [Plezbert et al. 1997, Krall 1998] is a popular approach to-
wards improving the runtime performance of such languages. JIT systems con-
vert on-the-fly source code sequences into an equivalent sequence of the native
code, allowing for signifant performance improvements. Notice that there is a
cost: program execution time now includes the compilation overhead, which is
paid before-hand in conventional compilers. This argues that JIT compiler should
fast and light-weight, as well as being able to generate high-quality native code.

The Java language is the most popular example of JIT technology in ac-
tion. The Java programming language [Arnold et al. 2000] was developed by
Sun Microsystems [Sun 2003] as a general-purpose, object-oriented, concurrent
language. Java was designed as a portable language that runs on multiple host
architectures and allows secure delivery of software components. Although the
syntax is similar to C++, it omits the most complex and unsafe features of C++.
Instead, many sophisticated concepts were added to simplify development and
increase security.

The emerging of the World Wide Web contributed much to the success of
Java. The integration of small Java programs into web pages enables the de-
signers to use a full-blown programming language and to develop interactive
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applications that are seamlessly integrated in the web browser. On the other
hand, transferring executable code over an untrusted network like the Internet
requires careful checks before execution to guarantee that no virulent code is
executed on the client, as enforced by the Java specification. This is particularly
true as Java is used on a wide variety of systems, including small embedded
systems such as mobile phones and PDAs.

To guarantee portability and platform independence, Java applications are
not distributed in native code for a specific hardware platform. Instead, Java
environments take advantage of the concept of a Java virtual machine (JVM)
for abstraction. Java source code is compiled to a compact binary representa-
tion called Java bytecodes which is interpreted or compiled, using a JIT, by the
JVM. The application is stored in a well defined binary format, the class file for-
mat, containing the bytecodes together with a symbol table and other ancillary
information. The Java virtual machine is defined independently from the Java
programming language, only the class file format connects these parts.

In this work we investigate the performance of current Java Virtual Machines,
by comparing it with what can be obtained using a static compiler. First, we
investigate the performance cost of using a JVM interpreter. Second, we investi-
gate whether the performance of virtual machine with JIT can match what one
would achieve with a conventional static compiler. We show that modern JIT
technology for Java can indeed achieve excellent performance.

The rest of the paper is organized as follow. Section 2 describes a structure
of a JVM. Section 3 presents the principles of Just-in-Time compilation. Section
4 describes the structure of the JIT compilers’s Sun. Section 5 describes the
structur of the GNU GCJ compiler. Section 6 summarizes our measurements
and results. A Section 7 describes some related works. And finally, last section
concludes our paper.

2 The Java Virtual Machine

Virtual machines are a widely known concept to obtain platform independence
and to conceal limitations of specific hardware architectures. In general, a virtual
machine emulates an abstract computing architecture on a physically available
hardware. Because virtual machines are just a piece of software, the restrictions
of hardware development are not relevant. For example, it is possible to extend
the core execution unit with high-level components, e.g. for memory manage-
ment, thread handling and program verification. The instruction set of a virtual
machine can therefore be on a higher level than the instruction set of a physi-
cal processor. This in turn leads to a small size of the compiled code, where a
single-byte instruction can perform a quite complex action.

The Java virtual machine [Lindhom et al 1999, Vernners 1999] is a stack ma-
chine that executes bytecodes. It defines various runtime data areas that are used
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for the execution of a program. While some data areas exist only once per virtual
machine, others are created for each executed thread.

When a Java virtual machine is started, the global data structures are allo-
cated and initialized. The Heap models the main memory of a JVM. All Java
objects are allocated on the heap. While the allocation of an object is invoked
by the executed program, the deallocation is never performed explicitly. Instead,
objects that are no longer reachable by the program are automatically reclaimed
by a garbage collector. Java programs cannot cause memory errors such as mem-
ory leaks or accesses to already freed objects.

A class or method must be loaded into the JVM before it can execute. Classes
are represented as complex data structures where a few parts happen to be
sequence of bytecodes, a constant pool that acts as an extended symbol table,
and miscellaneous data structures. The bytecodes of the class are loaded to the
method area, shared among all threads. The constants are loaded to the constant
pool.

Starting of a new thread implies the creation of the per-thread data struc-
tures. Because threads are part of the Java specification, each JVM must be
capable of executing multiple threads concurrently. Basic means for the syn-
chronization of threads are part of the Java specification. Each thread has its
own stack and a set of registers, including the program counter.

3 Principles of Just-in-Time Compilation

Interpreting a method is rather slow because each bytecode requires a tem-
plate consisting of several machine instructions, hence limiting achievable per-
formance [Romer et al 1996]. Best performance requires compiling the bytecodes
to machine code that can be executed directly without the interpreter. If com-
pilation takes place while the program is being executed, it is called just-in-time
compilation, or JIT [Plezbert et al. 1997].

A JIT compiler can use two approaches to translate Java code into native
code: it can translates a method at a time as it sees them; or, it can initialy
interprete all methods and, based on runtime information collected during inter-
pretation, identify the most frequently hot executed methods that deserve JIT
compilation. Generaly, a virtual machine that uses the second approach is called
a hotspot machine.

The first approach is straightforward, we discuss the second method in some
more detail. This strategy is based on the observation that virtually all pro-
grams spend most of their time in a small range of code. Each method has a
method-entry and a backward-branch counter. The method-entry counter is in-
cremented at start of the method. The backward counter is incremented when a
backward branch to the method is executed. If these counters exceed a certain
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threshold, the method is scheduled for compilation. It is expected that counters
of frequently executed methods, called the hot spots of a program, will soon
reach the threshold and the methods will be compiled without wasting much
time interpreting them.

On the other hand, methods that are executed infrequently, e.g. only once at
the startup of the application, never reach the threshold and are never compiled.
This greatly reduces the number of methods to compile. Thus, the compiler
can spend more time optimizing the machine code of the remaining methods.
The argument thus is that using a mixture of interpreted and compiled code
guarantees an optimal overall performance.

A further advantage of using counters is that it guarantees that every method
will be interpreted before it is compiled. So, all classes that are used by the
method are already loaded and methods that are called are known. Additionally,
the interpreter collects runtime information such as the common runtime type of
local variables. This information can be used by the compiler for sophisticated
optimizations that would not be possible if the methods were compiled before
their first execution.

More precisely, notice that some highly effective compiler optimizations are
complicated by the semantics of the Java programming language. For example,
most methods are virtual, and they cannot be inlined because the actually called
target is not known statically: the semantics of a call can change as classes are
loaded dynamically into the running program. Nevertheless, a JIT compiler does
perform inlining of such methods optimistically. The price to pay is that a com-
piled method may be invalidated when a new class is loaded. In such rare cases,
the method is compiled again without this optimization. A further problem arises
if the invalidated method is currently being executed and therefore stack frames
of this method are active. A solution to this case is to allow one to switch back
from the compiled code to the interpreter. This transition is called deoptimiza-
tion. The compiler must create meta data that allows the reconstruction of the
interpreter state at certain points of the compiled code.

Deoptimization allows the compiler to perform aggressive optimizations that
speed up the normal execution, but may lead to situations where the optimiza-
tion was too optimistic and must therefore be undone. There are some additional
cases where a compiled method is deoptimized, e.g. when an asynchronous ex-
ception is thrown. The compiled code does not need to handle such complicated,
uncommon cases. In the first approach, in cases where deoptimization is neces-
sary, the JIT compiler recompiles the method and dispatches it.

As we said, a method is compiled when the counters of the method exceed
a certain threshold. Typically, the decision is made before the execution of the
method starts because no special handling is needed in this case to switch from
the interpreted to compiled code: Instead of the interpreter, the compiled code
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is called. But this solution is not always sufficient. When an interpreted method
executes a long running loop, then it is necessary to switch to compiled code
while a method is running [Fink at al 2003]. In this case, a special version of the
method is compiled.

When the compiler encounter situations that occur rarely, but are difficult to
handle, the compilation of the method is stopped and the execution is continued
in the interpreter.

4 The Sun JIT Compiler

We use the SUN HotSpot compilers in our experiments for two reasons: it is
one of the best performing compilers available for Java, and their source code
is publically available. The HotSpot VM [Sun 2003] is available in two versions:
the client VM and the server VM. The Java HotSpot Client VM is best for run-
ning interactive applications and is tuned for fast application start-up and low
memory footprint. The Java HotSpot Server VM is designed for maximum exe-
cution speed of long running server applications. Both share the same runtime,
but include different just-in-time compilers, namely, the client compiler and the
server compiler.

The server compiler [Paleczny et al 2001] is proposed for long running ap-
plications where the initial time needed for can be neglected and only the ex-
ecution time of the generated code is relevant. The client compiler [Sun 2003]
achieves significantly higher compilation speed by omitting time-consuming op-
timizations. As a positive side effect, the internal structure of the client com-
piler is much simpler than the server compiler. It is separated into a machine-
independent frontend and a partly machine-dependent backend. The structure
of the Server and Client are depicted in figures 2 and 1.

The client compiler works as follows. First, the frontend builds a high-level
intermediate representation (HIR) by iterating over the bytecodes twice (similar
to the parsing of the server compiler). Only simple optimizations like constant
folding are applied. Next, the innermost loops are detected to facilitate the
register allocation of the backend.

The backend converts the HIR to a low-level intermediate representation
(LIR) similar to the final machine code. A simple heuristic is used for register
allocation: at the beginning it assumes that all local variables are located on the
stack. Registers are allocated when they are needed for a computation and freed
when the value is stored back to a local variable. If a register remains completely
unused inside a loop or even in the entire method, then this register is used to
cache the most frequently used local variable. This reduces the number of loads
and stores to memory especially on architectures with many registers.

To determine the unused registers, the same code generator is run twice.
In the first pass, code emission is disabled and only the allocation of registers
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Figure 1: Structure of the Sun Client compiler.

is tracked. After any unused registers are assigned to local variables, the code
generator is run again with code emission enabled to create the final machine
code.

The server compiler [Paleczny et al 2001] is a fully optimizing compiler that
performs all classic optimizations of traditional compilers, like common subex-
pression elimination, loop unrolling [Huang et al 1999] and graph coloring reg-
ister allocation. It also features Java specific optimizations, such as inlining
of virtual methods [White Paper 2004, Detlefs et al 1999], null-check elimina-
tion [Kawahito et al 2000] and range-check elimination. These optimizations re-
duce the overhead necessary for guaranteeing safe execution of Java code to a
minimum. The compiler is highly portable and available for many platforms. All
machine specific parts are factored out in a machine description file specifying
all aspects of the target hardware.

The extensive optimizations lead to high code quality and therefore to a
short execution time of the generated code. But the optimizations are very time-
consuming during compilation, so the compilation speed is low compared with
other just-in-time compilers. Therefore, the server compiler is the best choice for
long running applications where the initial time needed for compilation can be
neglected and only the execution time of the generated code is relevant.

The server compiler uses an intermediate representation (IR) based on a
static single assignment (SSA) graph. Operations are represented by nodes, the
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Figure 2: Structure of the Sun Server compiler.
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input operands are represented by edges to the nodes that produce the desired
input values (data-flow edges). The control flow is also represented by explicit
edges that need not necessarily match the data-flow edges. This allows optimiza-
tions of the data flow by exchanging the order of nodes without destroying the
correct control flow.

The compiler proceeds through the following steps when it compiles a method:
bytecode parsing, machine-independent optimizations, instruction selection, glo-
bal code motion and scheduling, register allocation, peephole optimization and
at last code generation.

The parser needs two iterations over the bytecodes. The first iteration iden-
tifies the boundaries of basic blocks. A basic block is a straight-line sequence of
bytecodes without any jumps or jump targets in the middle. The second iteration
visits all basic blocks and translates the bytecodes of the block to nodes of the
IR. The state of the operand stack and local variables that would be maintained
by the interpreter is simulated in the parser by pushing and popping nodes from
and to a state array. Because the instruction nodes are also connected by control
flow edges, the explicit structure of basic blocks is revealed. This allows a later
reordering of instruction nodes.

Optimizations like constant folding and global value numbering
[Simpson 1994, Gulwani et al 2004, Briggs et al 1997] for sequential code
sequences are performed immediately during parsing. Loops cannot be optimized
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completely during parsing because the loop end is not yet known when the
loop header is parsed. Therefore, the above optimizations, extended with global
optimizations like loop unrolling and branch elimination [Wedign et al 1984,
Bodik et al 1997], are re-executed after parsing until a fixed point is reached
where no further optimizations are possible. This can require several passes over
all blocks and is therefore time-consuming.

The translation of machine-independent instructions to the machine instruc-
tions of the target architecture is done by a bottom-up rewrite system
[Pelegri-Llopart et al 1988, Henry et al 1992]. This system uses the architecture
description file that must be written for each platform. When the accurate costs
of machine instructions are known, it is possible to select the optimal machine
instructions.

Before register allocation takes place, the final order of the instructions must
be computed. Instructions linked with control flow edges are grouped to basic
blocks again. Each block has an associated execution frequency that is esti-
mated by the loop depth and branch prediction. When the exact basic block
of an instruction is not fixed by data and control flow dependencies, then it is
placed in the block with the lowest execution frequency. Inside a basic block, the
instructions are ordered by a local scheduler.

Global register allocation is performed by a graph coloring register allocator.
First, the live ranges are gathered and conservatively coalesced, afterwards the
nodes are colored. If the coloring fails, spill code is inserted and the algorithm is
repeated. After a final peephole optimization, which optimizes processorspecific
code sequences, the executable machine code is generated. This step also creates
additional meta data necessary for deoptimization, garbage collection and ex-
ception handling. Finally, the executable code is installed in the runtime system
and is ready for execution.

The server compiler provides an excellent peak performance for long running
server application. However, it is not suitable for interactive client applications
because the slow compilation leads to noticeable delays in the program execution.
The peak performance is not apparent to the user because client applications
spend most of their time waiting for user input.

5 GNU GCJ Compiler

The GNU Compiler Collection (GCC) [GCC 2005] is a set of compilers produced
by the GNU Project. It is free software distributed by the Free Software Foun-
dation. GCC is the standard compiler for the open source Unix-like operating
systems. Originally named the GNU C compiler, because it only handled the C
programming language, GCC was later extended to compile C++, Fortran, Ada,
and Java.
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The approach of the GCJ [GCJ 2005] Project is very traditional. GCC views
Java as simply another programming language and compiles Java to native code
using the GCC infrastructure. On the whole, compiling a Java program is actually
much simpler than compiling a C+4 program, because Java has no templates
and no preprocessor. The type system, object model and exception-handling
model are also simpler. In order to compile a Java program, the program basically
is represented as an abstract syntax tree, using the same data structure GCC
uses for all of its languages. For each Java construct, we use the same internal
representation as the equivalent C++ would use, and GCC takes care of the rest.
In this case, GCJ can then make use of all the optimizations and tools already
built for the GNU tools.

The GCC compiler is divided into frontend and backend. The frontend parses
the source code, produces an abstract syntax tree and applies optimizations. The
backend converts the trees to GCC’s Register Transfer Language (RTL), applies
various optimizations, register allocation and code generation. The structure of
the GCC (GCJ) is depicted in Figure 3.

Java sour ce or
Bytecode

Optimizer

Native Code

Figure 3: Structure of the GCJ compiler.

RTL Trandator

The frontend uses two forms of language-independent trees: GENERIC and
GIMPLE [GIMPLE 2005]. Parsing is done by creating temporary language de-
pendent trees, and converting them to GENERIC. The so-called gimplifier then
lowers this more complex form into the simpler SSA-based GIMPLE form which
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is the common language for a large number of new powerful language- and
architecture-independent global optimizations. These optimizations include dead
code elimination, partial redundancy elimination, global value numbering, sparse
conditional constant propagation, and scalar replacement of aggregates.

The behavior of the GCC backend is partly specified by preprocessor macros
and functions specific to a target architecture, for instance to define the endian-
ness, word size, and calling conventions. The front part of the back end uses these
to help decide RTL generation, so although GCC’s RTL is nominally processor-
independent, the initial sequence of abstract instructions is already adapted to
the target.

The exact set of GCC optimizations varies from release to release, but includes
the standard algorithms, such as jump optimization, jump threading, common
subexpression elimination and instruction scheduling. The RTL optimizations
are of less importance with the recent addition of global SSA-based optimizations
on GIMPLE trees, as RTL optimizations have a much more limited scope, and
have less high-level information.

A 7reloading” phase changes abstract registers into real machine registers,
using data collected from the patterns describing the target’s instruction set.

The final phase is somewhat anticlimactic, since the patterns to match were
generally chosen during reloading, and so the assembly code is simply built by
running substitutions of registers and addresses into the strings specifying the
instructions.

6 Evaluation

We measured performance on an Intel Pentium 3 processor with 866 MHz, 512
KByte L2-Cache, 512 MByte of main memory, running RedHat Linux. In this
evaluation we used Sun version 1.4.2 and GNU GCJ 3.4.1.

The Java Grande Forum benchmarks [JGF 2005] is a suite of benchmark tests
designed towards measuring and comparing alternative Java execution environ-
ments. This suite uses large amounts of processing, I/O, network bandwidth, or
memory. It includes not only applications in science and engineering but also,
for example, corporate databases and financial simulations.

The benchmarks used in this paper, are chosen to be short codes containing
the type of computation likely to be found in large applications and intending to
be representative of large applications. This were suitably modified by removing
any I/0O and graphical components. Table 1 presents the suite applications and
the problem size used in this paper.

To measure the performance of Sun JVM and GNU GCJ, we collect some in-
formations during execution time, namely, cache misses, number of stalls, num-
ber of instruction, percentage of load-store instructions and instruction per cicle
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Aplication Description Problem Size
Crypt IDEA encryption and decryption 50.000.000 bytes
FFT One-dimensional forward transform| 16M complex numbers

LU Linear system factorisation 2000X2000 system
SOR Successive over-relaxation 2000X2000 grid
Euler Computational Fluid Dynamics 96X 384 meshs

MolDyn Molecular Dynamics simulation 8788 particles
MonteCarlo Monte Carlo simulation 60000 sample time series
RayTracer 3D Ray Tracer 500X500 pixels

Table 1: Benchmarks Data Size.

(IPC). We used the Program Counter Library (PCL) [Berrendorf et al 2003] to
collect this data. The library relies hardware informations during collected pro-
gram execution time.

To investigate the performance cost of using a JVM interpreter, we first
compare the Sun JVM in interpreted mode with GNU GCJ compiler. We would
expect the execution of compiled code to be faster than interpreted code. To
obtain a fairer comparison, we turn off all optimizations in GCJ.

And, to investigate whether the performance of virtual machine with JIT
can match what one would achieve with a conventional static compiler, we will
realize some experiments comparing the Sun JIT JVM with GCJ. In this case,
the GCJ compiler was used with all optimizations turned on, in other words, with
the option -O2 turned on.

6.1 Sun Interpretation Versus GCJ -O0 Compilation

As we expected, compiled code is faster than interpreted code. The Sun Inter-
preter is between 3 to 11.6 times slower than GCJ, as shown in 4. The smallest
difference is for the Euler application: compiled mode is only 3 times faster than
interpreted mode. RayTracer has the major difference: 11.6 times faster than in
interpreted mode.

The interpreter’s low performance is mainly due to the runtime overhead
of the bytecode fetch and decode. The PCL data shows the total number of
instructions increasing significantly, as one can see in Table ?7. The interpreter
also requires extra memory accesses, which tends to increase the percentage of
LoadStore instructions and the memory footprint. This may justify the relatively
large number of cache misses the interpreter suffers in applications such as Crypt.
The hardware seems to be quite good at running the emulation loop: we notice
no significant increase in number of stalls compared with the compiled version.
The overall stability of the IPC in the emulator is interesting: it ranges from
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Figure 4: Execution time in seconds.

0.43 to 0.78. On the other hand, the IPC for GCJ varies from 0.29 to 0.91. We
believe this is because the emulation process has a strong contribution to the
IPC, except in the cases where we need to run external library code.

6.2 Sun JIT Compilation Versus GCJ -O2 Compilation

Next, we compare the performace the Sun JIT and GCJ. We might expect the
code generated by static compiler to perform better. In fact, the Sun HotSpot
server compiler has better performance than GCJ compiler, for almost every
benchmark, as shown in Figure 5.

For the benchmarks FFT, LU, Euler, MolDyn, MC and RT the Sun Server
was more efficent than GCJ because of better cache usage, less code generated,
less pipeline stalls, and less memory accesses. Only for the benckmarks Crypt
and SOR the GCJ compiler obtained better performance. The Sun Client is even
more interesting: it tends to perform worse than the Sun Server, as expected,
but it still does quite well compared to optimised GCJ.

The impact in time of using a JIT compiler is given by Table 2. The first
observation is that compilation time is actually much less than total run-time
for these applications, even for GCJ. The second is that GCJ is doing surprisingly
well timewise compared to the JIT compilers. The Server compiler is never much
faster than GCJ, and in some cases it is much slower. The client compiler is indeed
faster than both versions of GCJ, but only up to an order of magnitude. The
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results suggest that we may need larger applications to extract all advantages of
JIT technology.

SUN GCJ
Client|5’erver -00| -02

Crypt 0.214 | 1.296 [2.150| 3.540
FFT 0.213 | 1.894 [1.640| 2.920
LU 0.191 | 6.247 {1.700| 3.160
SOR 0.138 | 1.080 {1.530| 2.700
Euler 1.627(17.294|3.820{14.390
MolDyn |0.322|18.799|1.750| 3.140
MonteCarlo| 1.620 |33.551(3.710{ 5.930
RayTracer | 0.371 | 6.257 |2.890| 4.560

Table 2: Total compilation time in seconds.

A second advantage of JIT is reducing the number of methods compiled, and
thus code size, whilst still significantly decreasing the number of bytes executed.
Table 3(a) shows that this is indeed the case: the JIT compilers generate much
more compact code than GCJ. Table 4 shows the number of methods compiled,
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Crypt | 2167 | 1328 [ 5381047354 C}g{? 2123 138-127226
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b Tj
(a) Code Size (b) GC Time

Table 3: Code Size (bytes) and GC Time (seconds).

Client Server

Bytecodes| Methods | Methods | Bytecodes | Methods | Methods

Ezxecuted | Exzecuted| Compiled| Executed | Executed|Compiled
Crypt 3105533 | 4317 8 7214242 | 4317 4
FFT 2815136 4319 14 4557427 4319 24
LU 2454194 | 4519 12 21050512 | 4519 16
SOR 1582599 | 4512 9 6402882 | 4512 13
Euler 27553472| 4609 53 506075419, 4614 260
MolDyn | 2995555 | 4876 16 39285436 | 4876 37
MonteCarlo| 5065979 | 4764 112 41384352 | 4764 515
RayTracer | 2991664 | 4571 25 27385698 | 4571 112

Table 4: Sun Bytecodes and Methods.

methods executed and number of bytecode instructions actually executed by the
Java compilers. Althougth, the number of methods executed to be the same, it is
interesting to notice that the Server compiler tends to execute more bytecodes,
which indicates it delays more to optimise a method, but in average ends up
compiling more methods. This suggests that the Server compiler generates very
compact code. It also suggests that smaller benchmarks may not show the whole
story for the Server compiler.

We were intrigued why the Sun compilers did not perform as well in Crypt
and SOR. Table 3(b) explains the problem for Crypt: for some reason the server
compiler is performing a lot of garbage collection. On the other hand, SOR is
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the smallest benchmark, so it is the one where the overheads of JIT are most
severe. The tables 5 and 6 show that the Server version performs quite well, as
does optimising GCJ.

The tables 5 and 6 give some insight into the differences between compilers.
Most compilers tend to use the data-structures so the number of cache misses
tends to be pretty similar. Sun client and server tend to be particularly close. GCJ
is often close, but sometimes does significantly worse. The better quality of the
Sun server compiler can be seen from the total number of instructions executed.
The server compiler does also better than optimised GCJ on stalls. This may
be from having less instructions, though. Last, the optimised compilers tend to
need less Load/Store instructions. Interestingly enough the Sun client compiler
is very much better in that respect than GCJ without optimisations, and often
close to the server version.

SUN GCJ
Interpreter| C’lz’ent|Server -00 | -02

Instructions 108| 1382.45 |620.47 | 550.34 | 427.58 | 360.06
% LoadStore 99.58 67.86 | 68.77 | 86.95 | 73.77

Crypt|| Cache Miss 108 2.17 0.14 0.14 0.14 0.14

STALL 10% 330.93 | 180.07 | 180.54 | 226.43 | 180.29

IPC 0.67 1.01 1.02 0.85 0.87
Instructions 108 3341.99 | 501.64 | 347.70 | 714.67 | 334.68
% LoadStore 100 50.44 | 43.83 | 95.46 | 50.80

FFT || Cache Miss 108  69.89 31.88 | 21.85 | 28.72 | 28.38
STALL 10% 2535.69 |1768.40|11291.12|2093.57|1584.26

Jile] 0.43 028 | 0.24 | 0.29 | 0.19
Instructions 108] 3833.98 | 643.18 | 227.37(1124.27| 482.75
% LoadStore 100 50.24 | 36.24 | 99.60 | 55.83

LU || Cache Miss 108| 20.55 19.06 | 19.09 | 18.70 | 18.76
STALL 10% 1102.32 | 863.68 | 715.21 {1094.51| 835.40

IPC 0.61 0.56 0.29 0.71 0.46
Instructions 10%| 1165.66 | 164.49 | 91.87 | 372.32|127.09
% LoadStore 100 42.31 | 43.53 | 94.85 | 43.02

SOR || Cache Miss 10|  21.06 4.08 | 4.09 | 422 | 4.16
STALL 10% 612.13 | 136.79 | 145.24|197.49 | 135.95
IPC 0.55 0.65 0.42 0.91 0.61

Table 5: PCL informations.
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SUN GCJ

Interpreter| Client | Server | -00 -02

Instructions 10%] 3614.42 | 63.03 | 247.72| 952.15 | 362.23

% LoadStore 78.95 63.03 | 48.68 100 | 71.15

Euler || Cache Miss 103  25.22 8.01 | 8.01 | 25.28 | 19.85
STALL 108 836.32 |312.93|307.10 | 755.99 | 583.18

IPC 0.67 0.49 0.54 0.55 0.45
Instructions 108 14360.11 (2022.85(2124.49|3492.74|3037.27

% LoadStore 79.11 36.78 | 31.84 | 72.39 | 54.53

MolDyn/| Cache Miss 108|  73.68 52.71 | 51.90 | 67.40 | 67.27
STALL 108 4034.53 |1604.17|1663.96|3425.79(3027.90

IPC 0.62 0.74 0.75 0.60 0.60

Instructions 10%] 3450.10 |692.57 | 622.29 | 769.21 | 644.65

% LoadStore 76.83 68.43 | 67.24 | 75.78 | 65.84

Monte || Cache Miss 108| 45.61 221 | 213 | 2.40 | 5.06
Carlo STALL 108 908.53 | 352.16|337.13 | 547.07 | 488.84

IPC 0.75 0.83 0.79 0.65 0.61
Instructions 108 23769.59 |1476.17|1365.61|2390.09/|2069.83

% LoadStore 66.58 58.09 | 46.88 | 85.75 | 74.04

Ray || Cache Miss 108| 215.56 4.24 | 3.30 | 10.99 | 9.17
Tracer STALL 103 3191.44 | 640.87 | 693.93 |1012.54| 608.83

IPC 0.78 0.95 1.03 0.91 0.98

Table 6: PCL informations.
7 Related Works

Kaffe [Kaffe 2005] is a free software implementation of the Java Virtual Machine.
It is designed to be an integral component of an open source or free software
Java distribution. Kaffe VM is constantly under development. Unfortunately,
Kaffe lacks full compatibility with the current releases of Java, namely, security
related features, debugging support, and profiling support.

The Kaffe JIT compiler compiles a method at a time as it sees them. The
first time a method is called in the bytecode, the method is translated into native
code and cached, also, the dispatch table is updated. Next time, the program
will jump directly to the previously translated native code. The compiler does
not perform any global optimizations, all optimizations are local per basic block.
This project intends to allow software reuse when porting compiler code to a new
architecture, which results in more rapid and cost-effective code development.

The IBM compiler [Suganuma et al 2000] implements adaptive optimization.
In a fashion similar to the HotSpot compiler, it first runs a program using an
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interpreter, detecting the critical hot spots in the program as it runs. It further
monitors program hot spots continuosly as the program runs so that the system
can adapt its performance to changes in the program behavior.

Experimental results [Suganuma et al 2000] have been shown that the opti-
mizations used by this compiler are very effective for several types of programs.
Overall, the IBM JIT compiler combined with IBM’s enhanced JVM is widely
regarded as one of the top performing Java execution environments.

The Jikes Research Virtual Machine (RVM) compiler [Jikes 2005,
Alpern et al 2000}, also developed by an IBM team, translate Java bytecodes
to machine code at runtime. For this propose, the runtime system can use one
of three diferent, but compatible, compilers, namely, the baseline compiler, the
optimizing compiler, and the quick compiler.

The baseline compiler provides a transparently correct compiler. This com-
piler is then used as a reference in the development of the RVM. However, it
does not generate high-performance target code.

The optimizing compiler applies traditional static compiler optimizations to
obtain high-quality machine code, as well as a number of new optimizations that
are specific to the dynamic Java context. The cost of running the optimizing
compiler is too high for it to be profitably employed on methods that are only
infrequently executed. The optimizing compiler intended to ensure that Java
bytecodes are compiled efficiently. Its goal is to generate the best possible code
for the selected methods.

The quick compiler compiles each method as it executes for the first time.
It balances compile-time and run-time costs by applying a few highly effective
optimizations. This compiler tries to limit compile time by an overall approach of
minimal transformation, efficient data structures, and few passes over the source
code.

The RVM has not yet implemented a comprehensive strategy to select best
compiler for each method. Switching from the quick to the optimizing compiler
will be done based on runtime profiling.

8 Conclusions

We evaluated three different Java implementation technologies on a set of well-
known benchmarks. Our main conclusion is that JIT technology performs very
well: it introduces very significant improvements over emulation, and it performs
very well compared to a traditional compiler. JIT technology preserves the main
advantages of bytecode, such as portability and compactness. And compiling
from bytecode does not seem to introduce significant overheads. JIT technology
thus seems to be doing well at combining the advantages of both worlds.

We were somewhat disappointed by the results obtained by GCJ. Compilation
time is not the problem: GCJ does close to Sun’s server compiler, although much
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worse than the client compiler. Unfortunately, GCJ seems to generate worse qual-
ity code than the Sun Server compiler, and often than the Sun-Client compiler.
Namely, for some applications GCJ has a much worse miss-rate, indicating issues
with variable allocation.

In all cases compilation time was a negligible fraction of total running time.
This might suggest skipping the Sun Client compiler altogether, at least for
these applications. On the other hand, the Sun Client compiler seems to be
better at compiling less methods with close to the same performance. This sug-
gests that an interesting research step would be to study the performance of
the Server compiler under the same JIT activation parameters: we would ex-
pect a significant saving in code size with low costs in running time, which
might interesting for embedded applications. It would also be interesting to
compare the clients with other state of the art compilers, such as the IBM com-
pilers [Suganuma et al 2000], and on a wider range of applications and hardware.
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