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Abstract: Automatic finalization is a common but inherently complex language facil-
ity that makes the garbage collection process semantically visible to client programs.
With finalizers, memory management becomes more flexible, and garbage collectors
can be used to recycle other resources in addition to memory.

Formal language models usually ignore garbage collection, and therefore are unable to
properly describe finalization. In this paper we use an operational approach to develop
a new abstract model that explicitly represents memory management actions in a
garbage-collected programming language based on the λ-calculus. We formally state
and prove several important properties related to memory management, and employ
the model to describe and explore a semantics for finalizers.
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1 Introduction

Programming languages with automatic memory management usually support
facilities that allow client programs to interact with the garbage collector (ex-
amples of such facilities include finalizers, weak references and explicit garbage
collector invocation). Naturally, the corresponding semantics may hinge on how
the garbage collector executes. But most language specifications are vague about
garbage collection, imposing few, if any, constraints on actual implementations.
This creates a semantic gap where the precise meaning of certain operations
becomes ambiguous or simply undefined.

Only a few formal programming-language models explicitily address garbage
collection (e.g., [Hudak, 1986, Demers et al., 1990, Mason and Talcott, 1990,
Chirimar et al., 1992, Morrisett et al., 1995, Morrisett and Harper, 1998,
Elsman, 2003, Hunter and Krishnamurthi, 2003]). Among those, the one by
Morriset, Felleisen and Harper [Morrisett et al., 1995] is probably the best
known. It uses a syntactic heap representation and specifies memory actions
as a set of rewriting rules expressed with a small-step contextual evaluation
semantics. Ordinary references however are not defined, and liveness is formal-
ized by considering only free variables. Within this framework, the authors are
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able to give a compact description of different trace-based garbage collectors,
including mark-and-copy and generational garbage collectors.

In this paper we describe an alternative model that is expressive enough to
represent and clearly specify many relevant aspects of memory management, as
well as memory management related facilities. On the other hand, the model is
sufficiently abstract to let us state and easily prove several important language
invariants. All results presented are independent from any singular choice of
trace-based garbage collector 1.

Our model is somewhat similar to Morriset’s, but we define an abstraction
to explicitly represent references (and memory addresses), and describe the un-
derlying language with a finer-grained operational semantics. This allow us to
specify some aspects of garbage-collection related semantics that have been dis-
regarded in other models.

Furthermore, as an interesting application, we develop a formal semantics
for finalizers, and explore general issues that were only informally discussed by
other authors [Schwartz and Melliar-Smith, 1981, Atkins and Nackman, 1988,
Hayes, 1992, Dybvig et al., 1993, Boehm, 2003]. In particular, we are able
to clearly show how finalizers affect garbage collection and the underlying
programming-language semantics.

This paper is organized as follows. In Section 2 we describe a small untyped
functional language with side effects that includes explicit memory allocation
and references. In Section 3 we extend this language with garbage collection.
In Section 4 we discuss finalizers and specify their formal semantics using the
model developed in the previous sections. Finally, in the last section we present
a summary and discuss future work.

2 The λref Language

In this section we formalize the semantics of a small untyped language, which
we will call λref , using structural operational semantics [Plotkin, 1981]. The
syntax of λref is similar to a conventional higher-order language based on the λ-
calculus, but extended with references and conditional expressions. A reference
is represented by a location (li ∈ Loc), which can be understood as an address
to an allocated memory-cell.

Values (v ∈ V) are represented by abstractions (functions), locations and the
nil atom:

v ::= λxi.e | li | nil

1 Wilson [Wilson, 1992] and Jones and Lins [Jones and Lins, 1996] provide excellent
surveys on garbage collection techniques and algorithms.
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Expressions (e ∈ Exp), as indicated below, are represented by values, vari-
ables (xi ∈ Id), function applications, conditionals, and the operations on refer-
ences: allocation, which uses the new operator, creates a reference to a memory
cell; dereferencing, which uses the ! operator, retrieves the value stored by a
referent memory cell; and assignment, which uses the := operator, stores a value
in a referent memory cell.

e ::= v | xi | e1e2 | e1? e2 : e3 | new |!e | e1 := e2

Values are bound to locations by environments (H), which are represented
as finite maps from Loc to V. H∅ represents the empty environment, and so
H∅(li) is undefined for all li (undefined evaluations are represented with the ⊥
symbol). To denote changes in an environment H we use the notation

H [li �→ v](lj) =
{

v if lj = li
H(lj) otherwise

and we write H [li �→ ⊥] to denote a new environment derived from H by remov-
ing li from its domain.

The basic semantics of λref is defined by the set of transition rules described
in Figure 1 (this set of rules will be referred henceforth as Rref ). Notice that
transitions are represented by “→” (which can be read as reduces in one step to)
and take place between programs. A program (P) is defined as an expression and
its associated environment (P = 〈e, H〉). Some points deserve further comments:

– Allocations, described by Rule alloc, extend H with freshly created loca-
tions, which are initially bound to nil. This is the only way to introduce a
new location in an environment’s domain.

– deref states that dereferencing a reference evaluates to the value mapped
by H .

– Assignments (assign) can be performed only on locations that belong to H ’s
domain. An assignment expression evaluates to the value on the right-hand
side of the assignment operator.

– Applications, described by Rule applic, are equivalent to the traditional
λ-calculus β-reduction: all bounded variables in the function expression are
replaced by the corresponding argument. This substitution, usually called a
context substitution, is denoted by {xi/v}.

– Rules cond1 and cond2 define conditional expressions. Conditions with
non-nil values cause the expression to evaluate to its second argument, while
a nil condition causes it to evaluate to its third argument.
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〈new, H〉 → 〈li, H [li �→ nil]〉
where li /∈ dom(H)

(alloc)

〈!li, H〉 → 〈H(li), H〉 (deref)

〈li := v, H〉 → 〈v, H [li �→ v]〉
if li ∈ dom(H)

(assign)

〈(λxi.e)v, H〉 → 〈{xi/v}e, H〉 (applic)

〈v ? e1 : e2, H〉 → 〈e1, H〉
if v �= nil

(cond1)

〈nil ? e1 : e2, H〉 → 〈e2, H〉 (cond2)

〈e1, H1〉 → 〈e2, H2〉
〈!e1, H1〉 → 〈!e2, H2〉 (cont1)

〈e1, H1〉 → 〈e2, H2〉
〈e1 := e3, H1〉 → 〈e2 := e3, H2〉 (cont2)

〈e1, H1〉 → 〈e2, H2〉
〈v := e1, H1〉 → 〈v := e2, H2〉 (cont3)

〈e1, H1〉 → 〈e2, H2〉
〈e1e3, H1〉 → 〈e2e3, H2〉 (cont4)

〈e1, H1〉 → 〈e2, H2〉
〈ve1, H1〉 → 〈ve2, H2〉 (cont5)

〈e1, H1〉 → 〈e2, H2〉
〈e1 ? e3 : e4, H1〉 → 〈e2 ? e3 : e4, H2〉 (cont6)

Figure 1: λref ’s transition rules.
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– Rules cont1 to cont6 are the basic context evaluation rules, and define a
left-to-right applicative-order semantics.

To improve code readability, the syntax of λref is extended with two derived
forms: sequencing and let-binding. The sequencing notation, represented as e1; e2,
is a syntactic sugar for (λxi.e2)e1, where xi does not occur in e2. It has the
simple effect of evaluating e1, throwing away the corresponding result, and then
evaluating e2

2. A let-binding, represented as let xi = e1 in e2, is a syntactic sugar
for (λxi.e2)e1, where xi usually does occur in e2. It has the effect of evaluating
e1, replacing every occurrence of xi in e2 by e1’s result, and then evaluating e2.

Before we extend the semantics of λref we need to introduce a few more
definitions and some related results. LO(e) represents the set of all locations
that occur literally in an expression e. The set of occurring locations in an
environment H is defined as

LO(H) =
⋃

ei∈range(H)

LO(ei)

and the set of occurring locations in a program 〈e, H〉 is simply LO(e)∪LO(H).
We say that a program is closed if all its occurring locations are defined in

its environment, or more formally, 〈e, H〉 is closed if LO(e) ∪ LO(H) ⊆ dom(H).
Informally we can think of a closed program as one that has no dangling pointers.
An important property of closed programs is stated by the following lemma.

Lemma1. Let
Rref−→ denote any transition in Rref . For any two programs P1

and P2 such that P1
Rref−→ P2, if P1 is closed then P2 is also closed.

Proof. By cases on the elements of Rref .
Consider P1 = 〈e1, H1〉 and P2 = 〈e2, H2〉. Locations that do not occur in e1

can appear in e2 only through alloc and deref transitions. In the former case,
the new location is immediately added to H2’s domain. In the latter, if P1 is
closed then any location referenced by a location that occurs in e1 belongs to
H1’s domain. Since for all transitions in Rref we have that dom(H1) ⊆ dom(H2),
the referent location also belongs to H2’s domain.

A location that does not occur in H1 can appear in H2 only through assign
transitions. But in this case the assigned location must occur in e1. Since P1 is
closed, the location belongs to dom(H1), and therefore, also to dom(H2).

A location substitution of li by lj in an expression e, written as {li/lj}e, is
defined as a literal substitution of all occurrences of li by lj in e. To avoid name

2 This, of course, is only useful in languages with side effects, as is the case here.
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collisions, this operation is undefined if lj ∈ LO(e). Location substitution for
environments is defined in a similar way3:

{li/lj}H =
{

H∅[lk �→ {li/lj}H(lk)]lk∈dom(H) if li /∈ dom(H)
H∅[lj �→ {li/lj}H(li)][lk �→ {li/lj}H(lk)]lk∈dom(H)\{li} otherwise

where the symbol \ represents the difference between sets. If lj ∈ LO(H) ∪
dom(H), {li/lj}H is undefined. Finally, location substitution for programs is
defined as

{li/lj} 〈e, H〉 = 〈{li/lj}e, {li/lj}H〉

It is not hard to see that location substitution is preserved by Rref . We state
this formally with the following lemma.

Lemma2. Let
Rref−→ denote any transition in Rref . For any P1 and P2 such that

P1
Rref−→ P2, and for any context substitution {li/lj} defined in P1, we have that

{li/lj}P1
Rref−→ {li/lj}P ′

2, where P ′
2 = P2 except perhaps for α-substitutions or

some context substitution {lk/ll}.

Proof. By cases on the elements of Rref .
It is trivial to show that P ′

2 = P2 for any Rref transitions, except applic and
alloc, which respectively introduces an indeterminism in variables and location
names.

applic transitions have the form 〈(λxi.e1)v, H〉 → 〈{xi/v}e2, H〉, where
e1 = e2 except eventually for α-substitutions. Applying the context substitu-
tion {li/lj} to the program 〈λxi.e1)v, H〉 we have:

{li/lj} 〈(λxi.e1)v, H〉 = 〈({li/lj}λxi.e1){li/lj}v, {li/lj}H〉 →
〈{xi/({li/lj}v)}({li/lj}e2), {li/lj}H〉 = {li/lj} 〈{xi/v}e2, H〉

alloc transitions have the form 〈new, H〉 → 〈lk, H [lk �→ nil]〉. Applying the
context substitution {li/lj} to the program 〈new, H〉 we have:

{li/lj} 〈new, H〉 = 〈new, {li/lj}H〉 → 〈ll, {li/lj}H [ll �→ nil]〉
If ll �= lk then

〈ll, {li/lj}H [ll �→ nil]〉 = {li/lj}({lk/ll} 〈lk, H [lk �→ nil]〉)
else, if ll = lk then

〈ll, {li/lj}H [ll �→ nil]〉 = {li/lj} 〈lk, H [lk �→ nil]〉)

3 The notation f(xi)
xi∈X denotes the expression f(x1)f(x2)...f(xn), for all xi ∈ X.

The terms corresponding to each xi can appear in this expression in any order.
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To denote that a program P1 reduces to P2 following a finite sequence of one
or more transition rules from a set R, we use the notation P1

R=⇒ P2. Likewise,
to denote that P2 is irreducible with respect to R and P1

R=⇒ P2 we write
P1 ⇓R P2.

If P ⇓R 〈v, H〉 for some v ∈ V, we say that v is the result of P , written as
P R= v. A program P is decidable if there is some v such that P R= v. Otherwise
P is undecidable.

In order to simplify our definition of program equivalence, abstracting some
of the issues related to memory management that are not relevant to the present
work, we introduce the concept of structural congruence. Two programs P1 and
P2 are structurally congruent, written P1 ≡ P2, if there is any finite sequence of
α-substitutions and location context substitutions that transforms P1 into P2.

Structural congruence between expressions is defined in an analogous way.
Two expressions are structurally congruent if they are identical or if one can be
transformed into the other by a sequence of α-substitutions and location context
substitutions.

Two sets of rules R1 and R2 are equivalent, represented as R1 
 R2, if
for every result of any decidable program under either set of rules, there is
a corresponding structurally congruent result for the same program under the
other set of rules, and vice-versa.

A rule r is deterministic if for any two transitions under r, 〈e1, H1〉 → 〈e2, H2〉
and 〈e1, H1〉 → 〈e3, H3〉, it is always true that e2 ≡ e3. Otherwise r is non-
deterministic.

Likewise, a set of rules R is deterministic if for any program P such that
P ⇓R 〈v, H1〉 and P ⇓R 〈e, H2〉, it is always true that e ≡ v. Otherwise R is
non-deterministic.

Notice that a set of rules can be non-deterministic even if all its rules are
deterministic. On the other hand, a single non-deterministic rule implies that
the correponding set is non-deterministic.

With the above definitions we can postulate a few trivial but important
properties of λref programs.

Lemma3. Let
Rref−→ denote any transition in Rref . For any P1 and P2 such that

P1 ≡ P2, if P1
Rref−→ P3, then P2

Rref−→ P4, where P4 ≡ P3.

Proof. We first consider the special case P1 = P2 = P . By cases on the elements
of Rref it is not difficult to see that for any P there is at most one rule that defines
the possible transition. Since transitions under any rule in Rref are deterministic,
it follows that P3 ≡ P4.

The general case follows from the special case by using Lemma 2, and con-
sidering that abstractions are equivalent up to α-substitutions.
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Lemma4. For any P1 and P2 such that P1 ≡ P2, if P1 ⇓Rref
P3, then

P1 ⇓Rref
P4, where P4 ≡ P3.

Proof. It follows immediately by iterating on the steps of the derivation and
applying Lemma 3.

Corollary 5. Rref is deterministic.

3 Garbage Collection

Informally we can define garbage collection as the removal of bindings that do
not affect a program’s result. In order to formalize this concept we need to
devise a way to determine if a specific binding will or will not affect a program’s
result. One common and conservative solution is to build the graph of references
between objects starting from the program’s root-set (the connectivity graph).
Any binding that does not belong to this graph can never be retrieved, and so
cannot influence the program’s result.

Consider for example the connectivity graph in Figure 2, where the root-set is
represented by the single location li. The location lk can be reached following the
indicated path. lm, on the other hand, cannot be reached, and is thus considered
garbage.

li

lj

lm lk

→
→ →

→
→

→

Figure 2: A chain of references in a λref program.

We will refer to λref extended with garbage collection as λgc. In λgc we
collect references, or to be more precise, the bindings associated with references.
A reference is reachable if it belongs to the root-set (the set of occurring locations
in the program expression), or if it occurs in any expression bound to a reference
that is reachable from the root-set. The reachable function expresses this relation
and indicates whether a particular location is reachable in a given program. It
is defined as the least fixed-point that satisfies

reachable(li, e, H) = (li ∈ LO(e)) ∨ (∃lj ∈ LO(e) | reachable(li, H(lj), H))
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Although this definition is rather abstract, it conveys clearly the idea of
traversing the graph of references (rooted in an expression) in search of reach-
able locations. An actual implementation of reachable can follow any traditional
tracing algorithm, and hence, is decidable.

To discover collectable locations we use the dead function, defined as

dead(li, e, H) = (li ∈ dom(H)) ∧ ¬reachable(li, e, H)

Death is an invariant property under Rref : once a reference becomes unreach-
able, it can never become reachable again. The following two lemmas states this
more formally.

Lemma6. For any e1, H1 and li, if dead(li, e1, H1) and 〈e1, H1〉 Rref→ 〈e2, H2〉,
then dead(li, e2, H2).

Proof. By cases on the elements of Rref and using the definition of dead.
Suppose that exists a li such that dead(li, e1, H1) and ¬dead(li, e2, H2).

Since there is no transition that removes locations from an environment,
¬dead(li, e2, H2) implies reachable(li, e2, H2).

Location li can become reachable in 〈e2, H2〉 only if one of the following
conditions is satisfied:

(i) li appears in e2.

(ii) There is some lj that occurs in e2 and li is reachable in H2(lj).

The first condition can hold only if li appears in e1, or if e1 has a subterm
with the form !lk and li occurs in H(lk). But in both cases we would have
¬dead(li, e1, H1), contradicting our hypothesis. Notice that we don’t need to
consider alloc because we suppose that li ∈ dom(H1).

If the second condition holds, either li is not reachable in H1(lj), or lj is dead
in 〈e1, H1〉. li can become reachable in H2(lj) only by an assign transition. In
this case li, or an lk such that reachable(li, H1(lk), H1), had to occur in e1,
and thus li would not be dead in 〈e1, H1〉. Finally, as proved in the previous
paragraph, if lj is dead in H1, it cannot appear in H2.

Lemma7. For any e1, H1 and li, if dead(li, e1, H1) and 〈e1, H1〉 Rref=⇒ 〈e2, H2〉,
then dead(li, e2, H2).

Proof. It follows immediately by iterating on the steps of the derivation and
applying Lemma 6.

We can now define the transition rule that represents the collection of a single
binding: references that are not reachable from the root-set are simply removed
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from H (we will refer to Rref augmented with garbage collection as Rgc).

〈e, H〉 → 〈e, H [li �→ ⊥]〉
if dead(li, e, H)

(gc1)

Since a collected location can be reintroduced (reused) by an allocation, the
introduction of gc1 invalidates Lemma 7. Nevertheless, reused locations are
semantically distinct, and this reuse has no significance in the language defined
so far.

A result similar to Lemma 4 can be proven for Rgc. To develop this
proof we use a result analogous to the Postponement Lemma defined in
[Morrisett et al., 1995].

Lemma8. Let
gc−→ denote any gc1 transition. If P1

gc−→ P2
Rref−→ P3 then there

exists a P4 such that P1
Rref−→ P4

gc−→ P5 and P3 ≡ P5.

Proof. By cases on the elements of Rgc and using Lemma 6.
Except for assign, the applicability of any rule in Rref to a given program is

determined exclusively by the program expression. Since gc1 transitions never
change a program expression, they do not affect the applicability of those rules.

The applicability of assign is also not affected by gc1 transitions, as these
do not add locations to a program’s environment, nor remove non-dead locations
from it.

Even though the applicability of alloc is not affected by gc1 transitions, its
outcome can be: the name of the allocated location may change after a garbage
collection. Nevertheless, all resulting programs are structurally congruent.

The proof is easily completed using Lemma 6.

Lemma9. For any P, if P Rgc= v1 then P Rref= v2, where v2 ≡ v1.

Proof. Consider a finite sequence of reductions:

P Rgc−→ P1
Rgc−→ ...

Rgc−→ Pn−1
Rgc−→ Pn

and suppose that Pn = 〈v1, Hn〉. Using Lemma 8 and induction we can rewrite
an alternative reduction sequence where all the garbage-collection transitions
are performed at the end of the transition sequence:

P Rref−→ P ′
1

Rref−→ ...
Rref−→ P ′

i
gc−→ ...

gc−→ P ′
n−1

gc−→ P ′
n

where P ′
n ≡ 〈v1, Hn〉. Since garbage-collection transitions never change an ex-

pression, P ′
i = 〈v2, H

′
i〉 where v2 ≡ v1. By cases on the elements of Rref and

using Lemma 4 it is easy to see that P Rref= v3 where v3 ≡ v1.

Lemma10. Rref 
 Rgc.
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Proof. Consider any decidable program P such that P ⇓Rref
〈v, H〉. Since Rgc ⊃

Rref , following only rules in Rref it is always possible to replicate the same
sequence of transitions so that P ⇓Rgc 〈v, H〉.

The proof follows by Lemma 9.

A transition under gc1 represents the collection of a single reference. A
garbage collection cycle (denoted by

gc
=⇒) over a program P can be defined

as an uninterrupted sequence of transitions under gc1 such that if P gc
=⇒ 〈e, H〉,

then all locations in H’s domain are reachable.

Lemma11. Garbage collection cycles always terminate.

Proof. Any program has a finite number of dead locations, which decreases by
one with every gc1 transition .

A simple alternative to enforce that garbage collection happen in cycles is to
replace gc1 by the following rule

〈e, H1〉 → 〈e, H2〉
if ∃li | dead(li, e, H1)

where H2 = H∅[lj �→ H1(lj)]lj∈{lk|reachable(lk,e,H1)}
(gc2)

In this transition the environment is replaced by a copy of it, where only the
originally reachable locations are defined, thereby implicitly disposing all un-
reachable bindings4. Notice that although the condition ∃li | dead(li, e, H1) is
not actually necessary to initiate a garbage collection cycle, without it gc2 could
be indefinitely applied to any program.

4 Finalizers

Finalizers are cleanup routines that are automatically invoked in garbage-
collected languages before object disposal, allowing the management of appli-
cation resources in the same way as heap memory. Often viewed as a natural
evolution or a counterpart of C++ destructors in garbage-collected languages5,
finalizers have been the focus of much debate and its use is discouraged by many
authors (e.g., [Bloch, 2001, Richter, 2002]), except for very specific situations.

In languages that employ tracing garbage collectors, finalizer invocation is
generally asynchronous, and hence unpredictable. In addition to that several
4 Copy-collectors follow a similar disposal pattern.
5 Unfortunately in many languages such as C#, Perl and Python, finalizers are called

destructors. We believe that this is misleading and can be a source of confusion
among programmers. In this paper we use exclusively the term finalizer to refer to
garbage-collected languages’ finalization mechanism.
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implementations give no guarantees on the order in which finalizers are invoked
or even whether a finalizer will be invoked at all6.

As a result of this lack of guarantees, finalizers, unlike destructors, have
limited use in the release of timely critical resources such as file handles7. Fur-
thermore, since finalizers can be executed at any time, this can lead to race
conditions, and in extreme cases, even deadlocks.

Another negative aspect of finalizers is that garbage collectors require ad-
ditional routines to deal with finalization-enabled objects. This slows memory
allocation, delays memory reclamation, and can burden application performance.

In spite of these problems, most garbage-collected languages support some
kind of finalization mechanism. Its use is considered legitimate at least in the
following situations:

– As a mechanism to convey information gathered by the garbage collector
to the client program. Boehm [Boehm, 2003] describes an application that
uses complex DAGs with file descriptors as their leaves. In this case it is very
hard to track all references to the file handlers, and explicitly close them after
the last reference is dropped. A simple solution is to attach finalizers to the
DAG leaves, which will close each file sometime after the corresponding leave
becomes unreachable.

– To release memory allocated using a native routine such as malloc. Despite
the fact that memory is a finite timely critical resource, its release with
finalizers imposes a delay that is characteristic of tracing garbage collectors.
If memory becomes scarce, the garbage collector will run more often.

– As a fallback mechanism for releasing non-memory finite resources that
should have been explicitly released elsewhere. Although there is no guar-
antee on when or whether the finalizer will be invoked, this promise is still
better than never being invoked (as when the programmer forgets to explic-
itly release the resource).

– To control object disposal. If the cost of creating instances of a class is high,
an application can recycle objects by keeping unused instances in an object
pool. After the last reference to an object is dropped, the object’s finalizer
can decide if the object will be disposed or recycled (resurrected) based on

6 Garbage collectors that use a conservative tracing algorithm may retain objects
after they become unreachable, and many language implementations do not invoke
finalizers of live objects when applications exit.

7 Actually, finalizers might be useful in the release of timely critical resources in sys-
tems that suport the explict invocation of the garbage collector and a call that
runs the finalization methods of any objects pending finalization. In that case client
programs should trigger garbage collection and finalization whenever the resources
become scarce.
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the number of objects already available in the pool. New objects are created
only if the pool is empty.

– To break cycles in systems that use reference counting. Christiansen and
Torkington [Christiansen and Torkington, 2003] describe an interesting ex-
ample in Perl that defines finalizers for all classes that implement potentially
cyclic data structures (rings, doubled-linked lists, graphs, etc). When the last
reference to the data structure is dropped, its finalizer is invoked and explic-
itly breaks any cycles, thus avoiding memory leaks.

Finalizers are usually represented as functions that are automatically exe-
cuted after a binding becomes unreachable. To register a finalizer for execution
we extend λgc with the finalize operator: the expression λxi.e finalize li reg-
isters the function λxi.e as a finalizer for the location li.

〈v finalize li, H, F 〉 → 〈nil, H, F [li �→ v]〉
where li ∈ dom(H)

(fin-reg)

To keep track of registered finalizers, a second environment (F ) is added to
the program context8. We will refer to Rgc augmented with garbage collection
as Rfin, and the corresponding language as λfin.

Finalizer execution should be concurrent or interleaved with the evaluation
of program expressions. A simple way to model this dynamics is by employing
the sequencing notation, as described in fin-exec1. A finalizer associated with
a dead location can be invoked at any time during the program evaluation,
receiving as a sole parameter the reference being finalized.

〈e1, H, F 〉 → 〈F (li)li; e1, H, F [li �→ ⊥]〉
if (li ∈ dom(F ))∧dead(li, e, H)

(fin-exec1)

As a consequence of how finalizers are scheduled for execution, which in
many respects is analogous to a multithreaded application scheduling dynamics,
languages that support finalizers typically are non-deterministic. This is clearly
the case of λfin, as stated by the following lemma.

Lemma12. Rfin is non-deterministic.

Proof. By counterexample. Consider the initial program

let xi = new in

let xj = new in

(λxk.xi := nil) finalize xj ;
xi := λxk.xk;
!xi

8 Although not shown, the remaining rules in Figure 1 must be modified to include F .
From now on we will also omit new context rules.
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which reduces to 〈(!li, H∅[li �→ λxk.xk], F [lj �→ λxk.li := nil]〉. Two different
transition sequences under Rfin that lead to different results are:

(i) 〈(!li, H∅[li �→ λxk.xk], F [lj �→ λxk.li := nil]〉
deref→ 〈(λxk.xk, H∅[li �→ λxk.xk], F [lj �→ λxk.li := nil]〉

(ii) 〈(!li, H∅[li �→ λxk.xk], F [lj �→ λxk.li := nil]〉
fin-exec1→ 〈(λxk.li := nil)lj; !li, H∅[li �→ λxk.xk], F [lj �→ ⊥]〉
Rfin=⇒ 〈nil, H∅[li �→ nil], F [lj �→ ⊥]〉

Corollary 13. Rgc �
 Rfin

Under fin-exec1 transitions a finalizer always receive a dead location as its
parameter. Moreover, since a finalizer actually represents a function closure, it
may refer to other locations, some of which can also be dead. This introduces
the possibility of binding resurrection: if during finalizer execution an unreach-
able location is assigned to a reachable one, the assigned location may remain
reachable after the finalizer execution ends (obviously, during finalizer execution
all dead locations that occur in the finalizer resurrect). To avoid the problem of
dangling references we must postpone the disposal of any reference that can be
reached by registered finalizers. Furthermore, as the reference being finalized is
passed as the finalizer argument, a finalizer must execute before the respective
reference is disposed9. To model this semantics we replace gc1 by

〈e, H, F 〉 → 〈e, H [li �→ ⊥], F 〉
if dead(li, e, H) ∧ (li /∈ dom(F ))

∧(� ∃lj ∈ dom(F ) | reachable(li, F (lj)lj , H))

(gc3)

With the addition of this transition rule, whenever there is a finalizer asso-
ciated with a binding, the binding disposal is delayed (this behavior is typical
in most actual language implementations). In memory intensive applications
this deferral may hamper performance significantly, and even lead to memory
exhaustion as the client program allocates objects faster than the garbage collec-
tor is able to dispose them. For instance, a Java program that uses a few threads
to concurrently instantiate thousands of objects from a very simple finalizable
class, without keeping any references to these objects, can very easily run out of
memory.
9 As an alternative to this semantics, we could redefine the concept of reachability to

explicitly include (trace) locations in all registered finalizers. This however introduces
a problem: objetcs with finalizers that have cyclic references are never collected.
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Finalizer invocation order can be important in many situations. Consider for
example a buffered file class that is structured as an aggregation of a file and a
buffer object. In this case finalization order clearly matters: the buffer should be
flushed before the file is closed.

Garbage collectors may try to order finalizer invocation using either topolog-
ical or chronological (elaboration order) information, but the former is usually
more meaningful from an application correctness perspective. An object should
be kept in a valid state as long as it is needed by other objects (or their fi-
nalizers)10. So a finalizer should only be executed if all finalizers that refer to
its associated object have already been executed. To model this semantics we
replace fin-exec1 by

〈e, H, F 〉 → 〈F (li)li; e, H, F [li �→ ⊥]〉
if (li ∈ dom(F ))∧dead(li, e, H)

∧(� ∃lj ∈ dom(F ) | reachable(li, F (lj)lj , H))

(fin-exec2)

Notice however that there is a major problem with this transition: it fails
to invoke finalizers that refer to each other forming cycles. In this particular
case it becomes impossible to unequivocally determine a best invocation order,
so we break the cycles and force finalization by selecting any arbitrary order.
fin-exec2 is thus replaced by

〈e, H, F 〉 → 〈F (li)li; e, H, F [li �→ ⊥]〉
if (li ∈ dom(F ))∧dead(li, e, H)

∧(� ∃lj ∈ dom(F ) | reachable(li, F (lj)lj , H)

∧¬reachable(lj , F (li)li, H))

(fin-exec3)

Finally, notice that in the semantics described here, even if a location is
resurrected, its finalizer is executed at most once. On the other hand, there
is nothing that prevents registering finalizers for resurrected bindings. In some
languages (e.g., Java), apparently due to arbitrary reasons, finalizers cannot be
reenabled after being executed.

5 Final Remarks

In this paper we used an operational approach to develop a formal model for
reasoning about garbage collection and its interaction with client programs. By
explicitly representing low-level details, such as heap memory and its addresses,
we were able to clearly specify memory management actions, and prove several
important memory-related language invariants.
10 Finalized objects can be considered, from a semantic point-of-view, in an invalid

state.
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Our main interest in developing this model was to describe a formal semantics
for finalizers and weak references, exploring some of its many subtleties. As long
as we know, this has not been addressed by other authors.

Automatic finalization, as we have shown, is a complex programming facility
that imposes significant restrictions on the garbage collector, and makes the un-
derlying language non-deterministic. Weak references, which were not considered
in this paper, are a less known abstraction, with a broad but far from uniform
actual language support. In the future we intend to specify and investigate its
semantics with the aid of the model developed in this paper.
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