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Abstract: Most approaches to formal semantics are based on the assumption that all
the constructs of a language are defined together. The details of the definition of each
construct can (and usually do) depend on which other constructs are included in the
given language. This limits reuse of definitions of common constructs.

With the more constructive approach proposed here, the semantics of each basic ab-
stract programming construct is defined separately and independently. The semantics
of a full language is obtained by translating its constructs into the basic abstract con-
structs, whose definitions are thus reused verbatim.

The frameworks of Modular SOS and Action Semantics can both be used in conjunction
with the proposed approach. Some illustrations are given.

Key Words: semantics of programming languages, action semantics, structural op-
erational semantics, modularity

Category: D.3.1, D.3.3, F.3.2, F.3.3

1 Introduction

Haskell 98 is a popular functional programming language. Its design, based
largely on ideas enjoying a wide consensus in the functional programming com-
munity, was a major collaborative effort, involving many experts over many
years. As stated in the Revised Report on Haskell 98 [Peyton Jones, 2003], the
Haskell designers originally intended that the language “should be completely
described by the publication of a formal syntax and semantics.” They published
a satisfactory formal syntax, but as yet no formal semantics for Haskell 98 has
appeared. Although the large number of syntactic identities listed in the Re-
vised Report are supposed to define a translation that maps arbitrary Haskell
programs into what the authors call “the Haskell kernel” [Peyton Jones, 2003,
Section 1.2], neither the syntax nor the semantics of the kernel is described, and
it has not been verified that the given identities do indeed define a translation
function.

One might wonder why the Haskell community appears to have abandoned its
stated goal of providing a formal semantics for Haskell 98 (although several useful
studies toward that goal have been published, see e.g. [Harrison et al., 2002]).
The main reason seems to be that the effort required was perceived as large,
and out of proportion to the benefits of complete formalization. In the case
of Standard ML, The Definition [Milner et al., 1997] formally defines both the
syntax and the semantics of its kernel (referred to as “the bare language”), and



1118 Mosses P.D.: A Constructive Approach to Language Definition

it gives some straightforward rules which are easily seen to define a translation
from the full language to the kernel; on the other hand, the rules defining the
evaluation of the bare language constructs are quite intricate, and indeed rather
daunting.

[Watt, 1996] analyzes the potential role for formal definitions of syntax and
semantics in the language design process. Some pragmatic weaknesses of the
‘natural semantics’ framework used in The Definition of Standard ML are in-
dicated, and it is suggested that adoption of the action semantics framework
[Mosses, 1992, Mosses and Watt, 1987, Watt, 1991] would encourage designers
to use formal semantics not only for defining the finished languages, but also for
documenting interim design choices along the way. Nevertheless, it remained a
huge effort to produce an action semantics definition of a larger language such as
Java: using action semantics instead of natural semantics may have eliminated
some problems, but it is doubtful that the scale of the improvement was sufficient
to persuade many of the targeted language designers to use formal semantics.

So, if optimizing the style of language definitions is inadequate to make use of
formal semantics attractive to language designers, what else can be changed? Our
proposal here is, somewhat paradoxically, to stop focussing so much on defining
complete languages. Instead, the semantics of each basic programming construct
should be defined separately, and independently of all the other constructs that
might be included together with it in various languages. The semantics of a
whole language can then be derived from the semantics of a collection of basic
constructs by giving a (context-free) translation to combinations of those con-
structs. Let us call a semantics presented in this way constructive, regardless of
which framework is used for defining the semantics of the individual constructs.

The requirement of defining the basic constructs separately and indepen-
dently is a very strong one, and not met by many frameworks. We shall later
see two semantic frameworks which do support constructive semantics: variants
of Modular SOS [Mosses, 2004b] and action semantics. Although the Montages
variant [Kutter and Pierantonio, 1997] of the ASM framework inspired the de-
velopment of constructive semantics, it remains unclear whether it too provides
full support for independent definitions of basic constructs, since the auxiliary
notation used in ASM definitions of different languages varies widely.

The way that the semantics of Standard ML is obtained from the the seman-
tics of its kernel constructs by defining a translation seems to be quite similar in
spirit to constructive semantics. However, note the following differences in the
case of constructive semantics:

— all the target constructs have to be defined separately and independently of
each other;

— the set of target constructs does not have to be minimal; and
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— the target constructs are not themselves required to be included in the full
language.

These differences give a higher degree of flexibility when defining translations in
constructive semantics.

The rest of the paper proceeds as follows: Section 2 discusses the choice of
which constructs to regard as basic, giving examples and indicating how the
semantics of some concrete constructs of Haskell and Standard ML can be de-
fined by translation to combinations of basic constructs. Section 3 introduces
Modular Structural Operational Semantics and illustrates how it can be used to
define the semantics of the individual basic constructs; Section 4 does the same
for Action Semantics. Section 5 concludes, indicating how to test whether a par-
ticular framework might support constructive semantics, and inviting language
designers to see whether constructive semantics does indeed encourage them to
use formal methods during the development process.

2 Constructs

Constructive semantics involves mapping concrete language constructs to combi-
nations of basic abstract constructs. We shall start by recalling the distinction be-
tween abstract and concrete constructs, and discuss how to distinguish between
basic and derived constructs. We shall then introduce a language-independent
classification of constructs, and provide some illustrative examples of individual
basic abstract constructs. Finally, we shall see how familiar concrete constructs
from Haskell and Standard ML can be translated to combinations of these basic
constructs.

2.1 Abstract and Concrete Constructs

Consider the familiar while-loop. The concrete syntax of while-loops is usually
something like “while exp do cmd” or “while(exp)cmd”, where the condition exp
is an expression and the body cmd is a command (although in Standard ML,
both the body and the while-loop itself are classified as expressions). The con-
crete syntax also needs to determine an unambiguous parsing of the text of the
various constructs; this may involve the introduction of distinctions between
different subsets of expressions. The corresponding abstract syntax merely has
to distinguish while-loops from all other constructs which also have an expres-
sion and a command as components, but a different intended semantics, such as
if-then and repeat-until commands.

When giving an abstract syntax for a particular language, it is common prac-
tice to use notation which is strongly suggestive of the concrete syntax of that
language. With constructive semantics, however, we shall be considering abstract
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constructs in vacuo, so it is appropriate to adopt a language-independent prefix
notation, writing for instance “cond-loop exp cmd” or “cond-loop(exp,cmd)” to
suggest a particular notion of conditional loop. (Some might prefer to use full
words instead of abbreviations.)

2.2 Basic and Derived Constructs

Hundreds of programming languages have been developed, and they include
a huge variety of constructs. Some of the constructs are quite common, and
have a simple intended interpretation; these are promising candidates for use
as basic constructs in constructive semantics, with their own semantics being
defined directly. Other constructs are included in only very few languages, or
have a complicated interpretation, and it is preferable to define their semantics
constructively, by translating them to basic constructs.

On closer examination, the while-loop itself has a few variants, determined
by whether:

1. the possible values of the condition are either boolean (with false terminating
the loop) or values of another type (e.g., zero terminating the loop, and any
other value letting the loop continue);

2. the execution of a break construct in the body causes abrupt termination of
the smallest enclosing loop; and

3. the execution of a continue construct in the body causes abrupt termina-
tion of current iteration of the smallest enclosing loop, after which the loop
proceeds normally.

Should we take all the above variants (and their combinations) as basic con-
structs?

Consider first the issue of whether the condition of a while-loop is boolean-
valued or not. Assuming the existence of an operation that maps zero to false
and all other values to true, and of another that maps false back to zero and
true to some other integer, we could easily define either of these two variants
in terms of the other. Since neither is significantly less basic than the other, it
seems best to treat them both as basic abstract constructs.

The situation is quite different with the variants involving abrupt termina-
tion, which definitely should not be considered as basic. Here, the break and
continue constructs can be translated directly to basic constructs which throw
special exceptions; the corresponding variants of the while-loop are correspond-
ingly translated to combinations of exception handlers with the basic while-loop.
(We assume that exception handlers are the only basic constructs which do not
simply propagate the exceptions thrown by their components.)
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In a similar way, a while-loop where the body and loop are both expressions
can easily be defined by translation, using basic constructs for converting ex-
pressions to commands and vice versa: the body expression is translated to a
body command (enclosing it in a basic construct that discards the value), and
the while-command is translated to an expression by returning the null value.

2.3 Basic Sorts of Constructs

Let us now examine how abstract constructs are to be classified. We have men-
tioned while-loops and their components as being either expressions or com-
mands — but how did such classifications arise, and what others might be
needed? Can we find classifications that are entirely language-independent?

Following common practice in the design of abstract syntax, we shall classify
basic abstract programming constructs primarily according to what sort of data
they compute. Sorts of data include numbers, booleans, characters, lists, arrays,
records, references, objects, function and procedure abstractions, and types. For
any sort T of data, let T-Cmp be the sort of constructs which compute data of
sort T (on normal termination). We shall regard elements of data as abstract
constructs themselves (with trivial computations), thus including each data sort
T in T-Cmp. (In the monadic style of denotational semantics, the denotation of
a construct of sort T-Cmp would be an element of M(T) for some monad M.)

The following instances of the above sorts provide appropriate classifications
of many basic constructs:

Exp = Val-Cmp: Expressions are constructs which normally compute values
of various sorts. Let Val be the sort of all expression values. For any subsort
V of Val, let V-Exp be the subsort of Exp consisting of V-valued expressions.
For instance, when the sort Bool of boolean values is a subsort of Val, Bool-
Exp is the sort of boolean-valued expressions.

Cmd = ()-Cmp: Commands are constructs which normally have effects, but
do not compute any data. We take Cmd as the sort of commands.

Dec = Env-Cmp: Declarations are constructs which normally compute envi-
ronments. An environment represents a set of bindings of identifiers (of sort
Id) to bindable values (of sort BVal). Let Env be the sort of environments,

then Dec is the sort of declarations.

Var = Loc-Cmp: Variables (in imperative languages) are constructs which
compute locations for storing values. The value stored at a location can be
both updated and inspected. Let Loc be the sort of locations for values, so
Var is the sort of variables.
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For any data sorts S, T, let S-to-T-Cmp be the sort of constructs that com-
pute abstractions which, when applied to data of sort S, normally compute data
of sort T. (In the monadic style of denotational semantics, the denotation of
a construct of sort S-to-T-Cmp would be an element of M(S—M(T)) for some
monad M.)

The following instances of S-to-T-Cmp provide appropriate classifications of
constructs concerned with abstraction and application:

Func = Arg-to-Val-Cmp: function expressions.
Proc = Arg-to-()-Cmp: procedure expressions.
Param = Arg-to-Env-Cmp: formal parameters.
Arg-to-Loc-Cmp: variable abstractions.

Another essential feature of a construct is whether it can be used as an
alternative whose computation may fail. We shall assume that the sorts T-Cmp
and S-to-T-Cmp classify only infallible constructs. Let T-Alt be the supersort of
T-Cmp obtained by allowing constructs whose computation may terminate with
failure instead of with an entity of sort T. (In the monadic style of denotational
semantics, the denotation of a construct of sort T-Alt would be an element of
a so-called error or exception monad.) Similarly for the supersort S-to-T-Alt of
S-to-T-Cmp, which classifies constructs where failure might arise either before
or after the computation of an abstraction and its application to data.

Some examples of alternatives are the following:

Cmd-Alt = ()-Alt: Constructs of sort Cmd-Alt include guarded commands.

Func-Alt = Arg-to-Val-Alt: Constructs of sort Fun-Alt include components
of functions defined by sets of equations, as well as components of the bodies
of case expressions.

Patt = Arg-to-Env-Alt: Patterns are similar to (formal) parameters, in that
they may compute environments. However, a pattern can also fail to match
the argument value, in which case no environment is computed.

The sorts T-Cmp, S-to-T-Cmp, T-Alt, and S-to-T-Alt all reflect essential
language-independent features of constructs. For instance, the essential feature
of an expression is that it normally computes a value; whether the computation
refers to bindings or stored values, has side-effects, throws exceptions, or might
not terminate at all, depends on just which constructs can occur in expressions.

The repertoire of sorts introduced above appear to be adequate for classi-
fying most of the abstract constructs needed for the constructive semantics of
general-purpose programming languages. A few further sorts will be required in
connection with constructs used for concurrent and reactive programming.
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2.4 Basic Individual Constructs

We have established some basic sorts for classifying constructs. Let us now con-
sider some illustrative examples of basic individual constructs. Later in this
section, we shall see how some concrete constructs of Haskell and Standard ML
can be translated to simple combinations of these basic constructs; and subse-
quent sections will show that the formal semantics of such basic constructs is
reasonably simple to define.

Meta-Notation

su=1c(81,.-.,8n)

specifies that ¢ names a construct of sort s and has components of sorts sq, ..., Sy.
(A collection of such specifications corresponds to a definition of a generalized
algebraic data structure [Sheard, 2004].) Similarly,

su=2¢
specifies that s includes s’ as a subsort.

Note that the same name ¢ may be used for constructs of different sorts
and/or with different sorts of components, but then any ambiguity that can
arise when writing terms has to be semantically irrelevant: if the results of dif-
ferent ways of combining constructs look exactly the same, they must have ex-
actly the same semantics. (A similar treatment of overloading is adopted in
CaAsL, the Common Algebraic Specification Language [Astesiano et al., 2002,
Bidoit and Mosses, 2004, Mosses, 2004c].)

Names of constructs are written in lowercase, whereas names of sorts are
Capitalized, and (sort) variables are written entirely in uppercase. N.B. The
names used here for basic constructs are probably non-optimal, and should not
be regarded as stable. The informal descriptions of the intended interpretation
of the various constructs given below are not intended to be either complete or
unambiguous.

Loops

Cmd ::= cond-loop(Bool-Exp,Cmd)

The above construct corresponds to a while-command with a boolean condition,
and we shall regard it as basic. The following construct differs regarding the
order of the loop body and the condition, and corresponds to a repeat-until
command, which may be regarded as equally basic:

Cmd ::= cond-loop(Cmd,Bool-Exp)

Further basic loop constructs include one with no condition:
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Cmd ::= cond-loop(Cmd)

and a construct with separate commands for execution before and after testing
the termination condition:

Cmd ::= cond-loop(Cmd,Bool-Exp,Cmd)

Clearly, all the above loop constructs are closely related, and in fact the first
three of them could easily be defined in terms of the last one (using also the
null command). We prefer nevertheless to regard the first three as basic, so as
to avoid having to derive such simple and familiar constructs from a somewhat
more complicated and much less familiar construct.

In contrast, we prefer to regard for-loops as derived constructs, despite their
familiarity, since they can easily be defined in terms of the much simpler while-
loop (using the command sequencing construct introduced below).

Conditionals
T-Cmp ::= cond(Bool-Exp,T-Cmp, T-Cmp)

for all sorts T of data. With T = Val we obtain conditional expressions, and
with T empty we obtain conditional commands.

Taking binary conditional choice (here with a boolean condition) as a ba-
sic construct is in contrast to both Haskell and Standard ML, where condi-
tional expressions are regarded as ‘syntactic sugar’ (i.e., abbreviations) for case-
expressions. It is also possible to define a conditional command as a symmetric
choice between guarded commands [Sampaio, 1997] (provided that evaluating
the condition has no side-effects). Here, however, we prefer to treat binary con-
ditionals, case-expressions, guarded commands, and symmetric choice all as ba-
sic. The motivation is again to avoid defining simple constructs in terms of ones
which may seem less simple. On the other hand, the conditional command with
a single branch is easily defined in terms of the simple and familiar binary con-
ditional command, so there is no need to treat it as basic too.

Data
T-Cmp =T

It is natural to regard elements of any data sort T as basic constructs themselves,
with trivial computations. For instance, the familiar boolean values true and
false in the data sort Bool are also basic abstract constructs of sort Bool-Exp.
Similarly for T empty, indicating that no data is computed:

()-Cmp ::= ()
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Typed FExpressions
T-Exp ::= typed(Exp,T-Type)

Assume that for each subsort T of Val, there is a single element of sort T-Type.
For instance, for the sort Bool we have a single entity bool of sort Bool-Type.
When the component expression computes a value not in the subsort of Val
determined by the component type, the computation of the above construct
terminates abnormally (without computing any value); otherwise, it computes
the same value as the component expression.

Sequencing
Cmd ::= seq(Cmd,Cmd)

Command sequencing is clearly a particularly basic construct. The following
constructs for sequencing expressions with commands are however just as basic:

Exp ::= seq(Cmd,Exp)
Exp ::= seq(Exp,Cmd)
The order of computation is from left to right in all these sequencing constructs.

Side-Effects
Cmd ::= effect(Exp)

This basic construct forms a command from an expression, simply by discarding
the value; the sequencing constructs above allow expressions to be formed from
commands by supplying some value.

Binding
Dec ::= bind-val(Id,BVal-Cmp)

After computing a bindable value, the above construct computes the environ-
ment which represents the binding of the identifier to that value. Note that
identifiers in Id, like values in Val, are constructs which do not require any
computation.

Lazy binding might either be regarded as a basic variant of value-binding, or
derived from the above construct using abstractions.
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Simultaneous Declarations
Dec ::= simult(Dec,Dec)

The above basic construct computes the union of the environments computed by
the component declarations. Their computations are interleaved; when the com-
ponent declarations have side-effects, the interleaving may affect the resulting
environments. The following basic construct is a sequential variant of simulta-
neous declaration:

Dec ::= simult-seq(Dec,Dec)

It insists on the (left-to-right) sequencing of the computations of its components.
Neither of these two constructs for simultaneous declaration can easily be derived
from the other, so it is necessary to regard them both as basic.

Accumulating Declarations

Dec ::= accum(Dec,Dec)

In contrast to simultaneous declarations, the above construct includes the sec-
ond component in the scope of the bindings given by the first component; this
precludes the possibility of interleaving. Here, the bindings given by the second
component override those given by the first component when there is a clash of
identifiers, but other variants are possible (and equally basic).

Local Declarations
T-Cmp ::= local(Dec,T-Cmp)

Here, the scope of the declaration is restricted to the second component, and
the bindings that it gives can make holes in the scope of any previous bindings
for the same identifiers.

A significant number of further basic abstract constructs have been devel-
oped, defined using Action Semantics, and used to give a constructive action
semantics of the Standard ML Core Language [Iversen and Mosses, 2005]. How-
ever, the above selection of basic constructs should be enough to illustrate the
kinds of constructs that are regarded as basic and available for use in constructive
semantic definitions of programming languages.

2.5 Translating Concrete Constructs to Basic Abstract Constructs

The characteristic feature of constructive semantics is that concrete language
constructs are translated to combinations of basic abstract constructs. When the
translation of each concrete construct is properly defined, the formal semantics of
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the basic constructs determines the formal semantics of the concrete constructs.
The translation of each construct is independent, and can be much simpler to
understand than a direct definition of its formal semantics.

We shall now illustrate how straightforwardly various constructs from Haskell
and Standard ML can be translated to combinations of the basic abstract con-
structs introduced above. Constructive semantics does not insist on the use of
any particular formalism for defining translations; here we shall merely give a
schematic indication of the intended translation.

Conditional Expressions

Clearly, the concrete if-then-else expressions of Haskell and Standard ML can be
translated to instances of the basic abstract conditional construct. The condition
may however need to be explicitly restricted to have only boolean values, using a
basic abstract typed expression. Thus the translation of an if-then-else expression
has the general form: cond(typed(—bool),——).

Loop Ezxpressions

Standard ML has a while-expression whose body is also an expression, the value
of which is simply discarded. The value computed on termination of the loop
is the null value. The translation of such an expression has the form seq(cond-
loop(typed(—bool),effect(—)),null). The use of seq and effect show how while-
expressions can be understood in terms of the familiar while-commands, and
exhibit the essentially imperative nature of Standard ML’s while-expressions
(which would useless in a pure functional language).

Bindings

A value-binding for a single identifier in Standard ML can be translated directly
to the basic abstract construct bind-val(—,—). A value-binding that has a com-
pound pattern instead of an identifier requires a more complicated translation,
and it is preferable to introduce a basic construct that generalizes bind-val to
patterns, defining its semantics directly. The basic abstract pattern constructs
needed for the translation of Standard ML’s patterns appear to be much the
same as those needed for Haskell, except for the so-called irrefutable patterns in
the latter language.

Compound Declarations

Standard ML’s ‘and’ for combining value bindings translates directly to the ba-
sic abstract construct simult-seq. Standard ML’s declaration sequences (written
with an optional semicolon as separator) translate to the basic accum construct;
and recursive definitions of functions translate to combinations of value-bindings,
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abstractions, and a basic abstract construct for making arbitrary declarations re-
cursive. Lists of (top-level) declarations in Haskell will translate to combinations
that make their recursion explicit.

The above illustrations should have give an impression of how concrete lan-
guage constructs can be translated to combinations of basic abstract constructs.
A full translation from the Core of Standard ML to a somewhat more compre-
hensive set of basic constructs than those presented here has been specified in
ASF [Iversen and Mosses, 2005] and validated. A corresponding translation for
Haskell has not yet been worked out, but preliminary investigations suggest that
it will be possible to reuse many of the same basic abstract constructs that were
involved in the translation of Standard ML.

3 Modular SOS

Structural Operational Semantics (SOS) [Plotkin, 1981] is a well-known
framework that can be used for specifying the semantics of concur-
rent systems [Aceto et al.,, 2001, Milner, 1990] and programming lan-
guages [Milner et al., 1997]. It has been widely taught [Hennessy, 1990,
Nielson and Nielson, 1992, Plotkin, 1981, Slonneger and Kurtz, 1995,
Winskel, 1993]. In general, labels on transitions in SOS represent interac-
tion possibilities, such as communication and/or synchronization between
concurrent processes. When using SOS to define the semantics of sequential
programming languages, however, labels are typically not used at all: all
auxiliary information (such as environments and stores) is incorporated in the
configurations of the transition system.

Modular SOS (MSOS) [Mosses, 1999a, Mosses, 2002, Mosses, 2004b] goes to
the opposite extreme: labels are exploited as much as possible [Mosses, 2004a].
Configurations in MSOS are simply abstract syntax trees (together with com-
puted values), and auxiliary entities such as environments and stores are incor-
porated in the labels on transitions.

Taking environments and stores out of configurations and putting them in
labels gives a clear separation between syntactic entities and those representing
semantic information: configurations in MSOS always represent what remains
to be computed (as usual in the SOS of concurrent systems), and the label on
a transition represents all the “information processing” associated with it: the
information available for inspection, any updates to that information, and any
new information produced by the transition itself.

The information processing of transitions in a computation is subject to the
obvious constraint that the part of it available for inspection remains stable, ex-
cept when updated by the transitions themselves. This constraint is represented
in MSOS by taking the labels to be the morphisms of a category, and requiring
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labels on adjacent transitions to be composable. The objects of the label cate-
gory correspond to states of the processed information. Identity morphisms are
naturally used to label unobservable (silent) transitions.

In general, we may assume that the label category is a product of several
simple categories: a discrete category for environments, a pre-order category for
stores, a monoid category for synchronization signals, etc. (Perhaps surprisingly,
these are the only kinds of component categories that are needed in MSOS.)
Exploiting symbolic indices rather than positional notation, we may regard labels
as records, and use familiar notation for record patterns to extract components.

Rules for constructs concerned only with normal flow of control (sequenc-
ing, conditionals, loops, etc.) are naturally formulated without concern for com-
ponents of labels. The pattern {...} indicates a completely arbitrary label; a
pattern such as {env=Env,...} allows reference to a required component of a
label without mentioning other components. Unobservable (identity) labels can
be simply omitted when there is no need to refer to their components.

We shall now see how easily MSOS supports constructive semantics. Rules
similar to those shown below were presented in previous papers [Mosses, 2002,
Mosses, 2004b], and rules for many of the constructs of Standard ML Core Lan-
guage are given in the author’s lecture notes on Fundamental Concepts and
Formal Semantics of Programming Languages (available from the author).

The plain-text format used for MSOS in the illustrative examples given in
Tables 1-6 is supported by a Prolog-based tool which allows such rules to be
parsed, translated to Prolog, and used to run programs. Sorts, optionally suffixed
with digits and/or primes, are used as meta-variables.

State ::= T-Cmp
Final ::=T

Table 1: MS0S/Cmp: Computational Constructs
Cmd ::= cond-loop(Bool-Exp,Cmd)

see Cmp/Cond, Cmd/Seq

cond-loop(Bool-Exp, Cmd) -->
cond(Bool-Exp, seq(Cmd,cond-loop(Bool-Exp,Cmd)), ())

Table 2: MS0S/Cmd/Cond-Loop: Loops
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T-Cmp ::= cond(Bool-Exp,T-Cmp,T-Cmp)
Val ::= Bool

Bool-Exp -{...}-> Bool-Exp’

cond (Bool-Exp,T-Cmpl,T-Cmp2) -{...}-> cond(Bool-Exp’,T-Cmpl,T-Cmp2)
cond(true,T-Cmpl,T-Cmp2) --> T-Cmpl
cond(false,T-Cmpl,T-Cmp2) --> T-Cmp2

Table 3: MS0S/Cmp/Cond: Conditionals

Cmd ::= seq(Cmd,Cmd)

seq(Cmd1,Cmd2) -{...}-> seq(Cmdl’,Cmd2)

seq((),Cmd2) --> Cmd2

Table 4: MS0S/Cmd/Seq: Sequencing

Dec ::= simult(Dec,Dec)

Label = {env:Env,...}
Decl -{...}-> Decl’

simult (Decl,Dec2) -{...}-> simult(Decl’,Dec2)

Dec2 -{...}-> Dec2’

simult (Dec1,Dec2) -{...}-> simult(Decl,Dec2’)

simult (Env1l,Env2) --> Envi+Env2

Table 5: MS0S/Dec/Simult: Simultaneous Declarations

T-Cmp ::= local(Dec,T-Cmp)
Label = {env:Env,...}

Dec -{...}-> Dec’

local(Envl,T-Cmp) -{env=EnvO,...}-> local(Envl,T-Cmp’)

local(Env1,T) -—> T

Table 6: MS0S/Cmp/Local: Local Declarations
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4 Action Semantics

Action Semantics is a hybrid of denotational and operational semantics, origi-
nally developed by the present author in collaboration with David Watt in the
second half of the 1980’s [Mosses, 1992, Mosses and Watt, 1987, Watt, 1991]. As
in denotational semantics, inductively-defined semantic functions map program
phrases to their denotations; but here, the denotations are so-called actions,
and the notation used for expressing actions, called action notation, is defined
operationally.

Action notation was originally defined using (a notational variant
of) SOS [Mosses, 1992]. However, the definition had poor modularity
[Wansbrough and Hamer, 1997]; this dissatisfaction prompted the development
of MSOS, and its use to give a new definition of action notation [Mosses, 1999b].
The high degree of modularity of MSOS greatly facilitated the subsequent devel-
opment of a new version of action notation [Lassen et al., 2000, Mosses, 2000].

Actions are provided to represent control and data flow, scopes of bindings,
effects on storage, and interactive processes. This allows a simple and direct
representation of many programming concepts, avoiding the need for the kind of
indirect encoding that is needed when using A-notation. Moreover, the design of
action notation is such that no reformulation of an action term is needed when
sub-actions become richer, as happens in action semantics when the described
language is extended with new features.

Originally, the author was quite satisfied with the modularity of action se-
mantic descriptions, which does indeed ensure a high degree of extensibility and
modifiability. The idea of providing reusable modules that define the action se-
mantics of individual commonly-occurring constructs didn’t emerge until joint
work with Kyung-Goo Doh [Doh and Mosses, 2003] on the use of action seman-
tics in connection with composing programming languages.

The illustrations of constructive action semantics given in Tables 7-13 de-
scribe the same constructs as the illustrations of MSOS in Sect. 3.

5 Conclusion

We have proposed an approach to language definition where each basic abstract
programming construct is defined separately and independently, and the seman-
tics of a full language is obtained by translating its constructs into the basic
abstract constructs. The frameworks of MSOS and action semantics can both
be used in conjunction with the proposed approach.

How about other frameworks that are regarding as providing a high degree
of modularity, such as the monadic style of denotational semantics, or Abstract
State Machines? Could they also be used for defining the semantics of basic
abstract constructs? If so, they too would support the constructive approach.
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action : T-Cmp -> Action & using () & giving T

Table 7: AS/Cmp: Computations

T-Cmp ::= cond(Bool-Exp,T-Cmp,T-Cmp)
Val ::= Bool
action cond(Bool-Exp,T-Cmpl,T-Cmp2) =
action Bool-Exp then
maybe check the bool and-then

action T-Cmpl
else action T-Cmp2

Table 8: AS/Cmp/Cond: Conditionals

T-Cmp ::=T

action T = give T

Table 9: AS/Cmp/Data: Data Constructs

Cmd ::

cond-loop(Bool-Exp,Cmd)
Val ::= Bool
action cond-loop(Bool-Exp, Cmd) =
unfolding
( action Bool-Exp then
maybe check the bool and-then

action Cmd and-then unfold
else skip )

Table 10: AS/Cmd/Cond-Loop: Loops

Cmd ::= seq(Cmd,Cmd)

action seq(Cmdl, Cmd2) =
action Cmdl and-then action Cmd2

Table 11: AS/Cmd/Seq: Sequencing

Dec ::= simult(Dec,Dec)
action simult(Decl,Dec2) =

action Decl and action Dec2
then give disj-union

Table 12: AS/Dec/Simult: Simultaneous Declarations
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T-Cmp ::= local(Dec,T-Cmp)

action local(Dec,T-Cmp) =
furthermore action Dec
scope action T-Cmp

Table 13: AS/Cmp/Local: Local Declarations

Proponents of such frameworks are invited to provide independent semantic def-
initions of some collection of basic abstract constructs. Those who are still scep-
tical about the whole idea of defining the semantics of constructs independently
are encouraged to identify particular constructs which could present difficulties
for MSOS or action semantics (other than constructs for dealing with contin-
uations, for which a modular treatment in these frameworks is known to be
lacking).
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