
Time Costs in Actor Computations

M. Di Santo, F. Frattolillo
(Research Centre on Software Technology, Dept. of Engineering,

University of Sannio, Italy
disanto,frattolillo@unisannio.it)

Abstract: Actor programs give rise to computation structures that evolve dynami-
cally and unpredictably both in shape and size. Therefore, their execution times cannot
be statically determined. This paper describes an approach to the problem of estimating
time costs of actor programs. The approach takes into account the constraints imposed
both by the semantics and implementation of the model. In particular, implementation
constraints can be captured and exploited to drastically reduce the number of com-
putations generable by the program, thus simplifying the execution time evaluation.
Moreover, execution times are expressed in a parametric form by using a variant of the
LogP model able to synthetically characterize the target hardware/software platform.
Key Words: actor computations, execution time, parallel computations, implemen-
tation constraints
Category: C.4, D.2.8

1 Introduction and motivations

Developing parallel and distributed applications is a difficult task that can be
greatly simplified by using high-level, object-oriented languages [Agha 90]. A
prototypical model of such languages is the well known Actor programming
model [Agha 86], based on autonomous agents, called actors, provided with in-
ternal state and communicating solely via asynchronous and reliable message
passing. The model supports the development of highly dynamic applications
and its specific characteristics make it suitable to be implemented on parallel
and distributed computing systems [Agha et al. 97, Varela, Agha 98].

The adoption of high-level, object-oriented programming models, however,
usually makes it difficult to statically evaluate the execution time (in the follow-
ing also called “time cost”) of a program on a given hardware/software comput-
ing platform, because of the abstraction gap existing between the programming
mechanisms provided by the models and the ones implemented at the hardware
level. In fact, the different implementations allowed by the semantics of a high-
level, object-oriented programming model on a given computing platform and
the vagaries of timings caused by concurrent executions on multiple processors
often make the static performance analysis of programs a burdensome activity.

The above considerations particularly apply to the Actor model, as pointed
out in [Skillicorn, Talia 96]. In fact, due to the nature of the communication de-
livery system characterizing the most common implementations on parallel com-
puting platforms, messages asynchronously exchanged between two actors may

Journal of Universal Computer Science, vol. 11, no. 6 (2005), 850-873
submitted: 16/2/04, accepted: 16/2/05, appeared: 28/6/05 © J.UCS

be received out of their sending sequence. Consequently, different executions of
an actor program on the same input data may give rise to different computations
and even to different results. However, if the model is implemented according to
specific constraints, the number of the generable computations can be drastically
reduced and, consequently, time cost evaluation simplified. In particular, this is
true when model implementations force computations to be “fifo” or “causally
ordered” [Charron-Bost et al. 96]. To this end, it is worth noting that there ex-
ist communication protocols which can be adopted to manage communications
among actors at low level and which are able to ensure the fifo or causally ordered
property to computations [Mattern, Fünfrocken 95].

Since the time costs of an actor program directly depend on the runtime be-
havior of the whole actor system implemented on a given computing platform,
the problem of estimating such costs can be actually tackled only if actor systems
as well as the computations they generate can be described and then formally
specified. To this end, it is worth noting that, over the last decade, there has
been a growing interest in the software performance analysis, since performance
problems may be so severe that they can require changes in the software archi-
tecture of programs as well as specific choices of the target computing platforms.
The most recent research in this field has focused on the approaches which pro-
pose performance models to characterize the quantitative behavior of software
systems [Balsamo et al. 04]. The main goal has been to integrate performance
analysis in the software development process, in order to correctly drive the
early phases of the software life cycle. However, although several of such ap-
proaches have been successfully applied, the proposed solutions do not usually
take into account the actual implementations of software systems, thus ignoring
their runtime behaviors. On the contrary, this has to be considered a crucial
factor when quantitative evaluations are required. On the other hand, most of
the recent work related to the Actor model only focuses on presenting and dis-
cussing rigorous semantics for actors in the general context of modern distributed
open systems [Agha et al. 97, Talcott 98, Smith, Talcott 99, Smith, Talcott 02,
Thati et al. 04], rather than on the problem of evaluating time costs in order to
meet nonfunctional requirements.

Therefore, at the state of the art, the research results achieved in the field
of the performance analysis applicable to programs based on high-level, object-
oriented programming models cannot be directly exploited to estimate the time
costs of actor programs, and motivate the work presented in this paper, which
just describes a specific methodology for estimating such costs. The main goals
of the proposed methodology are [Blelloch 96, Blumofe et al. 95, Skillicorn 98]:

1. to allow the a priori evaluation of different algorithmic solutions of a given
problem;

2. to enable the performance prediction of parallel algorithms by using a few

851Di Santo M., Frattolillo F.: Time Costs in Actor Computations

parameters characterizing the target hardware/software platform;

3. to follow an algorithmic approach, rather than an algebraic or semantic one,
to evaluate time costs, so as to better constitute a useful basis on which to
implement a software tool able to estimate such costs.

The proposed methodology makes it possible to describe the computations
generable during the execution of a program, on the basis of the constraints
imposed by both the semantics and the implementation of the programming
model. In particular, two sequential phases are distinguishable. In the former,
by using a set-based approach, all the computations generable by a program ex-
ecution are derived and synthesized in a graphical description called C-TREE.
As reported above, the realization of the former phase can be greatly simplified
if the model is implemented according to specific constraints that reduce the
number of the different possible computations. The latter phase focuses on the
computations synthesized in the C-TREE, in order to estimate their time costs.
To this end, each computation is graphically organized into a TTD (Time De-
pendencies Diagram), where actors are represented by means of their lifelines
[Agha 86]. The nodes on the lifelines represent the processing of messages and
are labeled with “weights” characterizing their execution times. The weights are
calculated by using a variant of the LogP model [Culler et al. 96] able to capture
the execution characteristics of a parallel abstract machine supporting actor pro-
gramming, without having to specify unnecessary details about the underlying
hardware/software platform.

After briefly describing the Actor programming model which we refer to,
the methodology for evaluating time costs, particularly in fifo and causally or-
dered actor computations, is presented. Finally, a simple example of use of the
methodology is shown.

2 The Actor programming model

Actors are objects which manifest a pure reactive nature and interact with other
actors solely via message passing. They unify both data and code in local states,
called behaviors, and are dynamically created and referred through system-wide
identifiers, called mail addresses.

The communication mechanism is point-to-point, asynchronous and one-
directional. Because mail addresses may be transmitted via messages, the actor-
net, which shows the potential flow of information, may dynamically change.
Messages are guaranteed to be delivered to their destinations with “finite delay”,
that is, delay is allowed to be arbitrary, but not infinite [Clinger 81]. Incoming
messages are buffered into mail queues associated to receiving actors, before
being serially dequeued and processed.

852 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

The processing of a message triggers the execution of the actor script, the
code in the behavior of the receiver. A script consists of methods which specify
the actions to be performed when messages are processed. During processing,
new actors can be created, messages asynchronously sent and the current behav-
ior substituted by a new one (replacement behavior). In practice, replacements
implement local state changes, which can span from simple updates in the values
of state variables to radical changes of the behavior.

The processing of a message gives rise to a sequential activity associated to
the message and the current actor behavior. Therefore, an actor cannot process
any other message until the replacement behavior is specified and the running
method terminated.

The hypothesis of finite delay in delivering messages to their destinations may
cause transmission order between two communicating actors not to be preserved
at delivery. Therefore, the insertion order of messages into mail queues and the
behaviors used to process them may vary from execution to execution, for the
same application and input. As a consequence, the repeated execution of an
application on a given input may generate different computations.

More precisely, the following definitions are assumed [Clinger 81,
Emrath et al. 88]. An actor application is “determinate” if it always leads to
the same result on a given input, “non-determinate” otherwise. In particular, a
determinate application is “internally determinate” if it always generates the
same computation, “externally determinate” otherwise. Furthermore, a non-
determinate application exhibits a “bounded non-determinism” if, on a given
input, it always returns a result and the set of possible results is finite. Paral-
lel branch-and-bound programs are classic examples of externally determinate
applications, while an application affected by a bounded non-determinism of-
ten implements a parallel search for a proof or a counterexample in artificial
intelligence domains [Foster 95, Grama, Kumar 99, Kanal, Kumar 88].

3 The C-TREE

In this section we describe what is the C-TREE and how it can be constructed,
both in the general case and when the implementation constrains generable
computations to be “fifo” or “causally ordered”, thus significantly reducing their
number.

3.1 Describing actor computations

Let us consider an execution of the actor application AP on the given input I.
We take the view that:

– the significant events in the execution are the processing of messages;

853Di Santo M., Frattolillo F.: Time Costs in Actor Computations

– the computation developed by each actor is the temporal ordered sequence
(lifeline) of the events occured to the actor;

– the whole computation is the set of the computations developed by all the
actors taking part in the execution.

Moreover, we use the expression pending event in order to denote a message sent
but not yet processed [Clinger 81].

We also use the following notations:

– Ψ denotes the whole computation;

– if a is an actor, χa denotes its computation;

– the pair [t(b).m, sj]i denotes the event in which: m is the message, s the
sender actor, t the target actor, b the behavior used by t to process m, i

the ordinal number specifying the position of the event in the target lifeline,
and j the ordinal number specifying the position of the event in the sender
lifeline which generates m;

– ti shortly denotes the event [t(b).m, sj]i;

– the pair [t.m, sj] denotes the pending event corresponding to the event
[t(b).m, sj]i, from which it differs for the lack of the behavior and of the
position in the target lifeline.

At any given point of the execution, we characterize the computational state
by means of the following three sets, which globally contain all the information
needed to determine the ultimate courses of the computation:

– Ex, the set of all the (already happened) events;

– Px, the set of all the pending events;

– Bx, the set including, for each existing actor a, the term a(b)i, in which b

is the current behavior of a, and the ordinal number i specifies that a has
already processed i messages.

We assume that, at the start of the execution, the system creates the
root actor r, with initial behavior b, and the pending event [r.⊥,−], where
⊥ is a default initial message [Clinger 81]; the message ⊥ is provided to r

by the system and so it has not a sender. Thus, the initial computational
state is C(0)≡<Ex(0), Bx(0), Px(0)>, where Ex(0) ≡ ∅, Bx(0) ≡ {r(b)0} and
Px(0)≡{[r.⊥,−]}.

Starting by this initial state, the computation unfolds by repeatedly applying
the following randomized transition rule: a pending event is extracted from Px

and realized. In detail, if the extracted pending event is [t.m, sj] and the pertinent
term in Bx is t(b)i, then the following actions are performed:

854 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

– the event [t(b).m, sj]i+1 is formed and added to Ex;

– the message m is processed by the corresponding method in b.

Processing the message m means determining which programming primitives
are invoked during the execution of the method that processes the message.
This information can be derived from the reaction rules [Talcott 98] that, in the
current behavior b of the actor t, determine the response to the message.

During the processing of m:

– new actors are created and the corresponding terms are added to Bx, one
for each created actor; if a is a new actor and b is the initial behavior, the
new term has the form a(b)0;

– new pending events are added to Px, one for each new message sent by t; in
particular, if the message c is sent to the actor a, the new pending event is
[a.c, ti+1];

– the new behavior nb of t is evaluated and the term t(nb)i+1 substitutes t(b)i

in Bx.

The final state, if it exists, is obtained when the set Px becomes empty. In this
case, the finite sequence of all the computational states defines the computation.

3.2 Generating the C-TREE

The algorithm described in [Section 3.1] is a randomized one, in that, at each
step, one of the pending events is arbitrarily chosen and realized. Obviously, if
we pursue all the possible alternative choices, we are able to generate all the
computations which the execution of AP on the input I can give rise to.

Initially, since Px(0) has cardinality equal to 1, only one pending event
can be realized, thus giving rise to the next computational state, denoted by
C(0,1) ≡<Ex(0,1), Bx(0,1), Px(0,1)>.

In particular:

– Ex(0,1) includes the first realized event [r(b).⊥,−]1;

– Bx(0,1) includes the term r(nb)1, where nb is the replacement behavior of r,
and, for each new actor a with initial behavior b, a term a(b)0;

– Px(0,1) includes, for each message c sent to the target actor t, a pending
event [t.c, r1].

855Di Santo M., Frattolillo F.: Time Costs in Actor Computations

Now, let us suppose that Px(0,1) has cardinality equal to n. By
applying a step further our algorithm, the computational state C(0,1)

gives rise to n different evolutions, C(0,1,1), C(0,1,2), . . . , C(0,1,n), where each
C(0,1,i) ≡< Ex(0,1,i), Bx(0,1,i), Px(0,1,i) > is obtainable by realizing one of the
n pending events in Px(0,1).

In general, let:

C(0,1,g2,g3,...,gn)≡ < Ex(0,1,g2,g3,...,gn), Bx(0,1,g2,g3,...,gn), Px(0,1,g2,g3,...,gn) >

denote one of the computational states generated after n unfolding steps, in
which g2, g3, . . . , gn are natural values. If Px(0,1,g2,g3,...,gn) contains h pending
events, h different evolutions are allowed, denoted by:

C(0,1,g2,g3,...,gn,i)≡<Ex(0,1,g2,g3,...,gn,i), Bx(0,1,g2,g3,...,gn,i), Px(0,1,g2,g3,...,gn,i) >,

∀i = 1 . . . h

In particular, Ex(0,1,g2,g3,...,gn,i) is built by realizing the i-th pending event in
Px(0,1,g2,g3,...,gn). It is worth noting that, since the creation of an actor always
precedes the sending of a message to it, at each step, the current set Bx always
includes the current behavior of the actor that must realize the selected pending
event [Talcott 98].

This procedure makes it possible to derive all the computations generable
by running an actor application that, on the given input, is either determinate
or affected by a bounded non-determinism. These computations are generated
according to only the constraints imposed by the semantics of the Actor model,
without any concern for the implementation and the target hardware/software
architecture.

The result of the procedure may be graphically synthesized in the C-TREE, a
tree whose nodes and edges represent respectively the computational states and
state transitions generated by the algorithm. The root of the C-TREE represents
the initial computational state C(0), while the leafs represent all the possible final
states. Thus, each path of the C-TREE corresponds to a different computation.

Let C(0,1,g2,g3,...,gn) be a leaf of the C-TREE. The sets Ex(0,1,g2,g3,...,gn) and
Bx(0,1,g2,g3,...,gn) can be used to express the corresponding computation in the
form Ψ ≡ (χa1, χa2, . . . , χam):

– Ψ includes as many subsets χ as the cardinality of Bx(0,1,g2,g3,...,gn), since
there exists a set χa in Ψ for each term a(b)i in Bx(0,1,g2,g3,...,gn);

– each set χa can be built by including in it all the terms contained in
Ex(0,1,g2,g3,...,gn) representing the events realized by a, that is, the events
in the form [a(b).m, asj]i, whatever b, m, as, i, j may be.

856 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

3.3 Equivalent states

The building of the C-TREE can be simplified by identifying pairs of nodes
representing equivalent computational states. For instance, let C(0,1,g2,g3,...,gn)

and C(0,1,h2,h3,...,hm) be two nodes of a C-TREE. They are considered equivalent
if both the conditions hold:

– the sets Bx(0,1,g2,g3,...,gn) and Bx(0,1,h2,h3,...,hm) contain the same actors,
each one provided with the same behavior in both the sets;

– the sets Px(0,1,g2,g3,...,gn) and Px(0,1,h2,h3,...,hm) contain the same pending
events, compared without considering sending actors.

Two equivalent states unfold identical computations. Therefore, the C-TREE
can be further developed by unfolding only one of the two equivalent states,
without loss of information.

In order to identify the equivalent states while the C-TREE is generated, a
method that exploits the Cyclic Redundancy Checks (CRCs) [Press et al. 92] can
be employed. Such a method is based upon maintaining all the sets Bx and Px

associated to the nodes of a C-TREE as ordered data structures. This way, each
set, regarded as an ordered aggregate of data (whether numbers, records, lines
or whole files), can be tagged with a short, constant-length, statistically unique
“key”: its CRC. As a consequence, the sets Bx or Px1 associated to the nodes
of a C-TREE can be compared for identity by comparing only their short CRC
keys: differing keys imply nonidentical sets, while identical keys imply, to high
statistical certainty, identical sets. Therefore, any two nodes of the C-TREE can
be considered equivalent to high statistical certainty if their pairs of CRCs, each
calculated respectively for the sets Bx and Px, result to be equal. However, if
the very small probability of being wrong is not allowed to be tolerated, a full
comparison of the sets only when their keys are identical has to be made. It is
worth noting that such a method can be used only if the ordered structure of
the sets Bx and Px is preserved whenever they are updated while the C-TREE
is generated.

Under these assumptions, whenever a new node is added to a C-TREE, the
pair containing the CRCs of Bx and Px can be computed. Such a pair gives
synthetic information about computations that can unfold from the new node of
the C-TREE. Therefore, the new pair should be compared to all the other pairs
associated to the already generated nodes of the C-TREE, in order to detect the
computational states which the new state results equivalent to.

By using CRCs to identify equivalent computational states, it is possible
to avoid burdensome comparisons among complex data structures. Moreover, it
1 Fot this set, the CRC is calculated taking into account the pending events without

considering sending actors.

857Di Santo M., Frattolillo F.: Time Costs in Actor Computations

is also possible to drastically reduce the number of comparisons to be made by
employing a data structure in which all the nodes of a C-TREE characterized by
the same pair of CRCs can be grouped and directly referred to. To this end, it is
possible to use a matrix2 whose generic element (i,j) refers to all the nodes in the
C-TREE whose sets Bx and Px are identified by CRCs just equal respectively
to the values i and j. This way, any newly generated node characterized by the
CRC values a and b has to be compared only to the nodes included in the list
referred by the entry (a,b) of the matrix.

3.4 The causality relation

Let C(0,1,g2,g3,...,gn) be a leaf of the C-TREE and Ψ ≡ (χa1, χa2, . . . , χam) the
associated computation. We know that, for each actor a, all the events belonging
to χa in Ψ are totally ordered by their occurrence numbers. This order, denoted
by ≺a, implies a causal ordering on the events of χa, in the sense that an earlier
event may affect a later event in the a computation [Charron-Bost et al. 96,
Lamport 78]. ≺a is an irreflexive total order in χa and defines the so called
arrival order at the actor a [Baker, Hewitt 77, Clinger 81]:

an ≺a am ⇐⇒ n < m, ∀a

Communications exchanged among actors are the sole interaction form al-
lowed by the programming model. They relate the events in which messages are
sent with the events in which the messages are processed. These relations define
the activation order [Baker, Hewitt 77, Clinger 81]. Therefore, the causal order
relation can be extended to the events in Ψ according to the following definition:
the causality relation ≺ in Ψ is the smallest relation that satisfies the following
three properties:

1. if an ≺a am, then an ≺ am;

2. if [a(b).m, asj]i ∈ χa ⊆ Ψ , then asj ≺ ai;

3. if a1i ≺ a2j and a2j ≺ a3k, then a1i ≺ a3k.

This relation defines a partial order on the events of the computation Ψ and
is based on the consideration that message sending always precedes message
processing. In particular, the relation ≺ represents the combined order in Ψ

[Baker, Hewitt 77, Clinger 81].
The events in Ψ may happen according to any order compatible with the one

defined by the relation ≺. This means that an event may happen only if all the
2 The matrix can be implemented as a linked data structure or in any other, more

effective technique if the “generator polynomial” is of degree 16 or higher and there
may exist limits on run-time memory usage.

858 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

events that precede it according to the relation ≺ have already happened. If two
events are not ordered by the relation ≺, they are said “concurrent”, since one
event may happen independently of the other, that is, neither can causally affect
the other [Lamport 78]. It is worth noting that the axiom of “strong realizability”
assures that there exists a one-one mapping from the set of events in Ψ to the
set of natural numbers. This mapping gives a total order on Ψ that is compatible
with the combined order, i.e. with the relation ≺ [Clinger 81].

3.5 Fifo computations

In a fifo computation any two messages exchanged between the same two actors
are received preserving the sending order. To formalize this assumption, a new
notation is introduced: in order to differentiate among pending events generated
during the execution of the same method, the notation [t.m, si,j] is used, in
which j indicates that m is the j-th message sent during the i-th event realized
by the actor s. Consequently, since method execution is a sequential activity,
the dispatch of the n-th message precedes the dispatch of the m-th message if
and only if n < m. This way, the sequential order existing among messages sent
during the execution of a method can be evidenced.

Let us consider two pending events [t.m1, si,n] and [t.m2, sj,m] tied to mes-
sages sent by the same actor s to the same target t. In a fifo computation, if
i<j or if i=j and n<m then [t.m1, si,n]≺ [t.m2, sj,m], whatever t, s, i, j, n, m

may be.
In the following, we show how to exploit the condition reported above in

order to only generate fifo computations, so as to simplify the construction of
the C-TREE.

Let us consider the set Px(0,1,g2,...,gn) and all its partitions px(t, s), each one
including all the pending events [t.m, si,n] tied to a given pair of target and
sending actors t and s. If only fifo computations have to be generated, whatever
two events [t.m1, si,n] and [t.m2, sj,m] may be in px(t, s), then [t.m1, si,n] must
be realized before [t.m2, sj,m] if i < j or if i = j and n < m. Consequently, it is
always possible to state the precedence between any two events [t.m1, si,n] and
[t.m2, sj,m] in px(t, s) by examining the pairs (i, n) and (j, m). This induces,
according to the relation ≺, a total order in px(t, s) and makes it possible to
identify in each partition the minimal event minfifo

px(t,s), defined as follows:

[t.m, si,n] ∈ px(t, s) is minfifo
px(t,s) ⇐⇒ (i < j) or (i = j andn < m),

∀ [t.c, sj,m] ∈ px(t, s)

The minimal events are the unique events in Px(0,1,g2,...,gn) that are al-
lowed to be realized, if only fifo computations have to be generated. Therefore,
the procedure used to generate the C-TREE must be modified as follows. Let

859Di Santo M., Frattolillo F.: Time Costs in Actor Computations

C(0,1,g2,...,gn) be a computation and np the cardinality of Px(0,1,g2,...,gn). At each
step, the randomized selection of the pending event to be realized has to be
restricted to the only minimal events in Px(0,1,g2,...,gn). This means that if their
number is nfifo, only nfifo possible evolutions of the computation are allowed,
with nfifo ≤ np.

3.6 Causally ordered computations

The fifo condition can be strengthened by requiring that all the messages sent
to the same actor are received in an order consistent with the causal order
of the corresponding send events. This property qualifies the causally ordered
computations and can be modelled by the following condition. Let us con-
sider two pending events [t.m1, s1i] and [t.m2, s2j] tied to messages received
by the same target actor t; in a causally ordered computation, if s1i ≺ s2j then
[t.m1, s1i] ≺ [t.m2, s2j], whatever t, s1, s2, i, j may be.

Let us consider the set Px(0,1,g2,...,gn) and all its partitions px(t), each one
including all the pending events [t.m, si] tied to the messages received by a
same target actor t. If only causally ordered computations have to be generated,
whatever two events [t.m1, s1i] and [t.m2, s2j] may be in px(t), then [t.m1, s1i]
must be realized before [t.m2, s2j], if s1i ≺ s2j. On the contrary, if s1i and s2j

are concurrent events, then [t.m1, s1i] and [t.m2, s2j] are said “independent” and
can be realized in any order. This induces, according to the relation ≺, a partial
order in px(t) and makes it possible to identify in each partition the minimal
events, each one denoted by mincausal

px(t) and defined as follows:

[t.m, si] ∈ px(t) is mincausal
px(t) ⇐⇒ ∃/ [t.c, aj] ∈ px(t) : aj ≺ si, ∀a, i, j

Obviously, in each partition there may be more than one minimal event. The
minimal events are the unique events in Px(0,1,g2,...,gn) that are allowed to be
realized, if only causally ordered computations have to be generated. Therefore,
the procedure used to generate the C-TREE must be modified as follows. Let
C(0,1,g2,...,gn) be a computation and np the cardinality of Px(0,1,g2,...,gn). At
each step, the randomized selection of the pending event to be realized has to
be restricted to the only minimal events in Px(0,1,g2,...,gn). This means that if
their number is ncausal, only ncausal possible evolutions of the computation are
allowed, with ncausal ≤ np.

4 The evaluation of time costs

Let us consider an actor computation in the form Ψ ≡(χa1, χa2, . . . , χam). It can
be graphically visualised by using a time dependencies diagram (TDD). Each
actor is depicted by means of its lifeline, a directed line on which the events are

860 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

located as nodes. On a lifeline, an event ai precedes the event aj , according to
the line direction, if i < j.

Actor creations are depicted as arrows connecting the events in which the
creation primitives are invoked with the origins of the created actor lifelines. Mes-
sages are depicted as arrows connecting sending events with the events process-
ing them. Each event may have several outgoing arrows, but only one incoming
arrow.

Causal dependencies among events are expressed by the paths existing among
them. In particular, paths follow arrow directions and run on actor lifelines
according to their directions. Events can be realized in any order provided that
all the causal dependencies have been respected. Therefore, an event is allowed
to be realized only if it is “ready”, that is, all the events that precede it according
to the relation ≺ have been already realised, or, in other words, if all the causal
dependencies affecting it have been satisfied.

Each node on a TDD must be labelled with a weight that specifies the exe-
cution time of the method associated to the event depicted by the node. Such
a time can be estimated as the sum of two main contributions: the kernel time
and the local time. The former is the sum of the execution times of the Ac-
tor programming primitives invoked during the method execution. The latter is
the execution time of all the other instructions in the method. The local time
depends on the hardware characteristics of the target processor and can be es-
timated by means of direct measures on the application code. The kernel time
also depends on the characteristics of the underlying communication system.
Therefore, to make cost evaluation independent of low level details of the target
hardware/software platform, a variant of the LogP model is used to capture the
behavior of an actor abstract parallel machine and to estimate the time costs of
the methods executed during a computation. The variant is based on the follow-
ing parameters, among which the first two have to be specifically evaluated for
each programming primitive requiring a communication, such as the send and
new primitives:

– os: the sending overhead, defined as the length of time that a processor
is engaged in sending a message (os(send)) or requesting an actor creation
(os(new)); during this time, the processor cannot perform any other opera-
tion.

– or: the receiving overhead, defined as the length of time that a processor
is engaged in receiving a message (or(send)) or a creation request (or(new))
and in performing the corresponding actions, such as starting up a method
execution or creating an actor.

– L: an upper bound on the latency, or delay, incurred in communicating a
message or a creation request.

861Di Santo M., Frattolillo F.: Time Costs in Actor Computations

– g: the gap, defined as the minimum time interval between consecutive invo-
cations of send or new primitives.

– P : the number of processor/memory modules.

It is assumed a unit time for a local operation. This unit is called cycle and
the parameters g, L, os(...) and or(...) are all measured as multiples of the cycle.
Moreover, in evaluating the cost of a method, it has to be considered that: (1)
os(...) is to be attributed to the method invoking the primitive; (2) or(...) is to be
attributed according to the following considerations: or(send) is to be attributed
to the method that processes the message, while or(new) is to be considered a
start-up cost to be associated to the created actor. Thus, a node representing the
start-up cost must be depicted at the beginning of each actor lifeline. Finally,
it is worth noting that the replacement behavior primitive does not involve any
communication. As a consequence, it is characterised by an overhead o(beh) to
be attributed to the method invoking the primitive.

After having assigned weights to all the nodes in a TDD, it is possible to
calculate the Work and Depth [Blelloch 96] associated to the computation rep-
resented by the TDD. In particular, Work is defined as the total time cost of a
computation, and Depth is defined as the the total time cost associated to the
longest chain of sequential dependencies in a computation. Consequently, Work
can be calculated by summing the weights of all the methods in a TDD, and
Depth can be determined by identifying the maximum value among the sums of
the weights associated to the different paths in a TDD. Work and Depth can be
considered as the running times of an application at two limits: when the appli-
cation is executed on a one-processor machine (Work) or on an ideal machine
with an unlimited number of processors (Depth). In fact, Work and Depth are
often referred to as T1 and T∞ [Blumofe et al. 95].

Let us consider the execution of an application on a given input. All the
generable computations are described by the leaves of the C-TREE. For each
leaf, the associated computation can be described in the form Ψ and then graph-
ically visualised by a TDD. Work and Depth can be calculated for each TDD by
applying the variant of LogP . Then, the computations can be compared on the
basis of these two measures, parametric with respect to the hardware/software
characteristics of the target computing system.

5 An example

This section presents an example that shows how the methodology described can
be used to calculate the time cost of a simple Actor program, whose pseudo code
is shown in [Figure 1]. The program exploits a “divide-and-conquer” strategy to
apply in parallel the non-commutative module operator to all the integers in

862 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

behaviour root ()
method start accepts start ()
var from, to: int
read from, to
send new node(), range(self, from, to)
become joinCont(self, 0, true, true)

end start
end root

behaviour node ()
method range accepts range (cont: maddr; from, to: int)
var diff, mid: int
diff := to−from
if diff = 0 then
send cont, join(from)
dispose self

else if diff = 1 then
send cont, join(to+from)
dispose self

else
mid := (from+to)/2
send new node(), range(self, from, mid)
send new node(), range(self, mid+1, to)
become joinCont(cont, 0, false, false)

end if
end range

end node

behaviour joinCont (cont: maddr; result: int; isRoot, isV alue: boolean)
method join accepts join (value: int)
if isV alue then
if isRoot then
write result

else
send cont, join(value mod result)

end if
dispose self

else
result := value
isV alue := true
become theBehaviour

end if
end join

end joinCont

Figure 1: A simple “divide-and-conquer” Actor program.

the range from from to to. The computation is characterized by a binary tree
structure, where: (1) each leaf actor adds the numbers in the received range and
passes on the sum to its parent; (2) each internal actor splits the received range
into two, passes on them to two new created actors, receives back the two sums,
combines them by applying the module operator, and passes on the result to its
parent.

Since the applied operator is non-commutative, the simple program exhibits
a bounded non-determinism. As a consequence, different computations and out-
puts can be produced. In particular, if the program is executed on the range
from 1 to 4, the methodology (see [Figure 2]) identifies two possible computa-
tions: the former produces the output 3, while the latter produces the output 1.

863Di Santo M., Frattolillo F.: Time Costs in Actor Computations

Legend
behaviours: rt (root), nd (node), jc (joinCont)
messages: st (start), rg (range), jn (join)
constants: t (true), f (false)

Ex(0) ≡ ∅, Bx(0) ≡ {r(rt())0}, Px(0) ≡ {[r.st(),−]}

Ex(0,1) ≡{[r(rt()).st(),−]1}, Bx(0,1)≡{r(jc(r, 0, t, t))1, a1(nd())0}, Px(0,1) ≡{[a1.rg(r, 1, 4), r1]}

Ex(0,1,1) ≡ Ex(0,1) ∪ {[a1(nd()).rg(r, 1, 4), r1]1},
Bx(0,1,1) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 0, f, f))1, a11(nd())0, a12(nd())0},
Px(0,1,1) ≡ {[a11.rg(a1, 1, 2), a11], [a12.rg(a1, 3, 4), a11]}

Ex(0,1,1,1) ≡ Ex(0,1,1) ∪ {[a11(nd()).rg(a1, 1, 2), a11]1},
Bx(0,1,1,1) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 0, f, f))1, a12(nd())0},
Px(0,1,1,1) ≡ {[a1.jn(3), a111], [a12.rg(a1, 3, 4), a11]}

Ex(0,1,1,2) ≡ Ex(0,1,1) ∪ {[a12(nd()).rg(a1, 3, 4), a11]1},
Bx(0,1,1,2) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 0, f, f))1, a11(nd())0},
Px(0,1,1,2) ≡ {[a1.jn(7), a121], [a11.rg(a1, 1, 2), a11]}

Ex(0,1,1,1,1) ≡ Ex(0,1,1,1) ∪ {[a12(nd()).rg(a1, 3, 4), a11]1},
Bx(0,1,1,1,1) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 0, f, f))1},
Px(0,1,1,1,1) ≡ {[a1.jn(3), a111], [a1.jn(7), a121]}

Ex(0,1,1,1,2) ≡ Ex(0,1,1,1) ∪ {[a1(jc(r, 0, f, f)).jn(3), a111]2},
Bx(0,1,1,1,2) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 3, f, t))2, a12(nd())0},
Px(0,1,1,1,2) ≡ {[a12.rg(a1, 3, 4), a11]}

Ex(0,1,1,2,1) ≡ Ex(0,1,1,2) ∪ {[a11(nd()).rg(a1, 1, 2), a11]1},
Bx(0,1,1,2,1) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 0, f, f))1},
Px(0,1,1,2,1) ≡ {[a1.jn(3), a111], [a1.jn(7), a121]}

Ex(0,1,1,2,2) ≡ Ex(0,1,1,2) ∪ {[a1(jc(r, 0, f, f)).jn(7), a121]2},
Bx(0,1,1,2,2) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 7, f, t))2, a11(nd())0},
Px(0,1,1,2,2) ≡ {[a11.rg(a1, 1, 2), a11]}

Ex(0,1,1,1,1,1) ≡ Ex(0,1,1,1,1) ∪ {[a1(jc(r, 0, f, f)).jn(3), a111]2},
Bx(0,1,1,1,1,1) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 3, f, t))2}, Px(0,1,1,1,1,1) ≡ {[a1.jn(7), a121]}

Ex(0,1,1,1,1,2) ≡ Ex(0,1,1,1,1) ∪ {[a1(jc(r, 0, f, f)).jn(7), a121]2},
Bx(0,1,1,1,1,2) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 7, f, t))2}, Px(0,1,1,1,1,2) ≡ {[a1.jn(3), a111]}

Ex(0,1,1,1,2,1) ≡ Ex(0,1,1,1,2) ∪ {[a12(nd()).rg(a1, 3, 4), a11]1},
Bx(0,1,1,1,2,1) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 3, f, t))2}, Px(0,1,1,1,2,1) ≡ {[a1.jn(7), a121]}

Ex(0,1,1,2,2,1) ≡ Ex(0,1,1,2,2) ∪ {[a11(nd()).rg(a1, 1, 2), a11]1},
Bx(0,1,1,2,2,1) ≡ {r(jc(r, 0, t, t))1, a1(jc(r, 7, f, t))2}, Px(0,1,1,2,2,1) ≡ {[a1.jn(3), a111]}

Ex(0,1,1,1,1,1,1) ≡ Ex(0,1,1,1,1,1) ∪ {[a1(jc(r, 3, f, t)).jn(7), a121]3},
Bx(0,1,1,1,1,1,1) ≡ {r(jc(r, 0, t, t))1}, Px(0,1,1,1,1,1,1) ≡ {[r.jn(1), a13]}

Ex(0,1,1,1,1,2,1) ≡ Ex(0,1,1,1,1,2) ∪ {[a1(jc(r, 7, f, t)).jn(3), a111]3},
Bx(0,1,1,1,1,2,1) ≡ {r(jc(r, 0, t, t))1}, Px(0,1,1,1,1,2,1) ≡ {[r.jn(3), a13]}

Ex(0,1,1,1,1,1,1,1) ≡ Ex(0,1,1,1,1,1,1) ∪ {[r(jc(r, 0, t, t)).jn(1), a13]2},
Bx(0,1,1,1,1,1,1,1) ≡ ∅, Px(0,1,1,1,1,1,1,1) ≡ ∅, Write 1

Ex(0,1,1,1,1,2,1,1) ≡ Ex(0,1,1,1,1,2,1) ∪ {[r(jc(r, 0, t, t)).jn(3), a13]2},
Bx(0,1,1,1,1,2,1,1) ≡ ∅, Px(0,1,1,1,1,2,1,1) ≡ ∅, Write 3

Figure 2: The computational states generated by the program in [Figure 1].

864 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

C (0)

C (0 ,1)

C (0 ,1 ,1)C (0 ,1 ,1 ,1)

C (0 ,1 ,1 ,1 ,1) C (0 ,1 ,1 ,1 ,2)

C (0 ,1 ,1 ,1 ,1 ,1) C (0 ,1 ,1 ,1 ,1 ,2)

C (0 ,1 ,1 ,1 ,2 ,1)

C (0 ,1 ,1 ,2)

C (0 ,1 ,1 ,2 ,1) C (0 ,1 ,1 ,2 ,2)

C (0 ,1 ,1 ,2 ,2 ,1)
C (0 ,1 ,1 ,1 ,1 ,1 ,1) C (0 ,1 ,1 ,1 ,1 ,2 ,1)

C (0 ,1 ,1 ,1 ,1 ,1 ,1 ,1) C (0 ,1 ,1 ,1 ,1 ,2 ,1 ,1)

Figure 3: C-TREE representing the computational states shown in [Figure 2].

Consequently, the corresponding C-TREE shown in [Figure 3] has two leaves:
each one is represented by a filled circle and is associated to a different TDD.

For the sake of brevity, each possible intermediate state of the computation
in [Figure 2] is indicated only by the sets Ex, Bx and Px. Moreover, some
intermediate states result to be equivalent according to the definition given
in [Section 3.2]. Therefore, they give rise to identical unfolded computations.
This is represented in [Figure 3] by dotted lines connecting the following equiv-
alent states: C(0,1,1,1,1) and C(0,1,1,2,1), C(0,1,1,1,1,1) and C(0,1,1,1,2,1), C(0,1,1,1,1,2)

and C(0,1,1,2,2,1). Therefore, only the computations originating from C(0,1,1,1,1),
C(0,1,1,1,1,1) and C(0,1,1,1,1,2) are explored.

Finally, in the code of [Figure 1] the primitive dispose is used to deallocate
actors. Consequently, when this primitive is invoked, the deallocated actor is
removed from the corresponding set Bx. This means that, to identify all the
actors that take part in the computation described by a leaf of the C-TREE, the
evolution of the set Bx along the path associated to the leaf has to be considered.

Focusing only on the computation C(0,1,1,1,1,1,1,1), the associated TDD is
shown in [Figure 4]. In particular, each vertical line is a lifeline representing an
actor. The filled circles on these lines represent actor creation overheads, while
the remaining circles represent events, i.e. method executions. The arrows show

865Di Santo M., Frattolillo F.: Time Costs in Actor Computations

r
a1

a11
a12

s t

rg

rg
rg

jn

jn

jn

Figure 4: The TDD associated to the computation C(0,1,1,1,1,1,1,1).

the send primitives, while the dotted arrows show the new primitives.
In [Figure 5] the weighted version of the TDD shown in [Figure 4] is presented

in order to calculate the Work and Depth.
As for the Work, it results:

Work =
10∑

i=1

Wi

in which Wi is the weight, i.e. the execution time, associated to the i-th circle. In
particular, the weights associated to filled circles are always equal to the receiv-
ing overheads of actors creation, while the weights relative to the other circles
are to be expressly calculated on the basis of what referred to in [Section 4]. In
[Figure 6] the expressions for the terms Wi are reported. The terms with label
local represent the local time contributions to node weights, while the sums of all
remaining contributions represent the kernel time tied to actor primitives execu-
tion. Among these contributions there is also the overhead o(dispose) associated
to the dispose primitive.

To calculate the Depth, a weight has to be associated to each edge of the TDD
in [Figure 5], according to the following considerations. For an edge belonging
to a lifeline, two conditions are possible: (1) if the edge originates from a node
representing an actor creation overhead, its weight is the sum of the weight of the
node originating the edge and the weight of the incoming edge of the node; (2)
if the edge originates from a node representing a method execution, its weight

866 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

1

3

5
7

8

9

10

2

4
6

Figure 5: The weighted version of the TDD shown in [Figure 4].

W1 = or(send) + os(new) + os(send) + o(beh) + t1(local)

W2 ≡ W4 ≡ W6 = or(new)

W3 = or(send) + 2 · (os(new) + os(send)) + o(beh) + t3(local)

W5 ≡ W7 = or(send) + os(send) + o(dispose) + t5(local)

W8 = or(send) + o(beh) + t8(local)

W9 = or(send) + os(send) + o(dispose) + t9(local)

W10 = or(send) + o(dispose) + t10(local)

Figure 6: The weights assigned to the nodes of the TDD shown in [Figure 5].

is the sum of the weight of the node originating the edge and the maximum
between the weights of the incoming edges of the node. If the edge represents
a send primitive or a communication tied to the execution of a new primitive,
its weight is the sum of three contributions: the weight of the node issuing the
communication, the maximum between the weights of the two incoming edges
of the node, and the latency L.

In [Figure 7] all the weights associated to the edges of the TDD shown in
[Figure 5] are reported. They are calculated on the basis of the relations reported
in [Figure 6]. In particular, the Depth is associated to the path identified by the
nodes 1, 2, 3, 4, 5, 8, 9, 10.

6 Related work

Most of the work developed in the context of the performance analysis of object-
oriented programs implemented on given computing platforms is based on the

867Di Santo M., Frattolillo F.: Time Costs in Actor Computations

d1,2≡d1,3 = W1 + L; d1,10 = W1

d2,3=d1,2 + W2 = W1 + W2 + L
d3,4=W3 + max{d1,3, d2,3} + L = W3 + d2,3 + L =W1 + W2 + W3 + 2L
d3,5≡d3,7 ≡ d3,6 ≡ d3,4

d3,8=W3 + max{d1,3, d2,3} = W3 + d2,3 =W1 + W2 + W3 + L
d4,5≡d6,7 = d3,4 + W4 = W1 + W2 + W3 + W4 + 2L
d5,8=W5 + max{d4,5, d3,5} + L = W5 + d4,5 + L =W1 + W2 + W3 + W4 + W5 + 3L
d7,9=W7 + max{d3,7, d6,7} + L = W7 + d6,7 + L =W1 + W2 + W3 + W4 + W7 + 3L
d8,9=W8 + max{d5,8, d3,8} = W8 + d5,8 =W1 + W2 + W3 + W4 + W5 + W8 + 3L

d9,10=W9 + max{d8,9, d7,9} + L = W9 + d8,9 + L =
=W1 + W2 + W3 + W4 + W5 + W8 + W9 + 4L

Depth=W10 + max{d1,10, d9,10} = W10 + d9,10 =
=W1+W2+W3+W4+W5+W8+W9+W10+4L

Figure 7: The weights assigned to the edges of the TDD shown in [Figure 5].

use of a wide variety of notations for the specification of concurrent/distributed
systems. In fact, such notations usually try to capture and abstractly describe
the basic aspects concerning both the software execution model and the system
execution model. The former derives from the semantics of the adopted pro-
gramming model, while the latter takes into account the implementation of the
software execution model and the main characteristics of the hardware/software
computing platform on which the software runs. However, even though these
notations and their numerous variants have achieved widespread usage as spec-
ification tools for concurrent/distributed systems, such as actor systems, they
have been rarely exploited to estimate time costs of actor programs, since they
have some weaknesses with respect to this specific goal.

Petri nets [Peterson 81] are used to mathematically represent discrete dis-
tributed systems. Because of their ability to express concurrent events, they
generalize automata theory. Consequently, Petri nets, and their successor State-
charts [Harel 87], can essentially describe actor systems as finite automata, that
is, as systems which have a strong state-based behavior. However, the primary
weakness of finite automata is that an actor system may not have a meaningful
global state, while the properties concerning time costs of actor programs are
often more naturally expressed in terms of events and relations on events.

The π-calculus [Honda, Tokoro 91, Milner et al. 92] is a form of process alge-
bra able to model systems of autonomous agents which interact with each other
in ways that they are free to select spontaneously. Although many approaches
based on π-calculus have been proposed in order to describe and analyze both
functional and performance properties of programs, this form of process algebra
does not generally address the issue of the so-called “fairness”, which, on the
contrary, appears to be very important in actor systems in that it determines
much of the complexity in estimating time costs.

868 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

In [Talcott 98], two semantic models are studied: open event diagrams
(OEDs) and interaction diagrams (IDs). OEDs generalize the event diagrams
formalized in [Clinger 81] to the open system settings, by making the interac-
tions with the execution environment explicit. Event diagrams express the view
that what is important about actor computations are the messages sent, the
actors created in response to a message delivery, and the “precedes” ordering
among these events. IDs are the result of hiding the internal events of complete
event diagrams. What remains are the arrivals of messages from the environment
(input events), the deliveries of messages to the environment (output events),
and the ordering relation on input and output events obtained by restricting the
precedes relation. OEDs can model stages of an actor system activity and com-
plete computations in which all the messages have been delivered, while IDs are
abstractions of complete computations providing a way of forgetting non-relevant
ordering information. However, the two works [Agha et al. 97, Talcott 98], while
giving a mathematical and semantic characterization of OEDs and IDs, need to
postulate the existence of both arrival and input/output orderings satisfying the
specific constraints imposed by applications. On the contrary, this existence has
not to be postulated when the main goal is to analyze the execution behavior of
an actor application in order to estimate its time cost. In fact, to this end, the
“combined orders” generable by repeatedly running an application on a given
input are what has to be determined. They cannot be assumed as given, in that
it is only after the determination of all the possible combined orders that the
time cost of an application can be estimated.

Specification Diagrams (SDs) [Smith, Talcott 99, Smith, Talcott 02,
Thati et al. 04] are mainly targeted to actor systems. They combine a great
expressivity with formal underpinnings, and are characterized by two forms
of notations: the former is graphical and highly intuitive, and is intended for
use in practice; the latter is textual and is perhaps easier to manipulate for
mathematical study. Therefore, the latter can be used for formal reasoning
about actor systems, while the former is more suitable to describe the dynamics
of actor programs. However, the graphical form of SDs expresses abstract causal
ordering on computation events in terms of “causal threads”, which are entities
that exist only at semantic level. Consequently, there is no necessary connection
between threads and actors, since a single thread of causality may involve
multiple actors, and a single actor may appear to have multiple threads of
causality. This ends up making the use the SDs very difficult when quantitative
evaluations concerning actor systems on given hardware/software computing
platforms are required.

The methodology proposed in this paper makes use of diagrams, the TDDs,
that can be related to other forms of message passing diagrams, such as the
UML Sequence Diagrams [Rumbaugh et al. 98], in which vertical lines represent

869Di Santo M., Frattolillo F.: Time Costs in Actor Computations

processes/threads, while horizontal lines represent exchanged messages. To this
end, it is worth noting that the UML formalism is widely used to describe be-
havioral characteristics of programs. In particular, in [Cortellessa et al. 01] the
UML diagrams of a program can be enriched with performance annotations
concerning software architecture, workload distribution, parameters of hardware
devices, and the mapping of the software modules to the target computing plat-
form, in order to produce a global precedence graph which identifies the execu-
tion flow and the interconnections among the system software components. This
graph is then used to generate a Layered Queueing Network (LQN) [Trivedi 01]
based model that represents the whole system platform, including hardware and
software components, and that can be exploited to get performance indices,
such as the program response time. Furthermore, in [Petriu, Wang 99] the UML
framework is used to describe programs whose structure can be expressed by
means of architectural patterns, such as pipe and filters, master/slave, broker,
client/server, etc. The UML descriptions are exploited to build LQN based mod-
els of the programs by applying graph transformation techniques, automatically
performed by a general-purpose graph rewriting tool. The LQN based models are
then used to obtain performance indices of the programs. However, although the
most recent versions of the UML framework have been largely extended, they do
not still allow asynchronous “fair” messaging to be expressed. Therefore, differ-
ently from the proposed methodology, they cannot easily capture and describe
actor behaviors, and remain primarily designed to show possible scenarios of
execution, and not to give all the possible scenarios.

In [Andolfi et al. 00] the dynamic behavior of programs is described by
Queueing Network [Kant 92] based models automatically generated from soft-
ware architecture specifications obtained by means of Message Sequence Charts
(MSCs). In fact, the approach analyzes the program dynamic specification in
terms of the execution traces (the sequences of events exchanged between com-
ponents) it defines. The analysis generates performance indices characterizing
the programs. However, MSCs are affected by the same drawbacks of the UML
approaches. Thus, differently from the proposed methodology, they are able to
describe only some possible scenarios of execution.

Different approaches to the study of time costs are followed in [Blelloch 96]
and [Blumofe et al. 95, Frigo et al. 98]. In particular, in [Blelloch 96] NESL is
presented, a parallel programming language that provides a language-based per-
formance model. The model gives a formal way to calculate the Work and Depth
of a program. In particular, work and depth costs are assigned to each primitive
instruction of the language and rules are specified for combining both paral-
lel and sequential expressions. This way, it is possible to determine how the
running time grows as a function of the input size. However, the developed
analysis cannot be exploited to estimate the running time of an application on

870 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

actual hardware/software platforms, because the costs assigned to primitives
are evaluated without properly taking into account communication latency and
throughput. In fact, the performance model associated to NESL is not able to
significantly capture the behavior of hardware/software platforms used to run
programs. Moreover, NESL is not an object-based language and only supports
data-parallelism.

Cilk [Blumofe et al. 95, Frigo et al. 98] is a language for general-purpose,
multithreaded parallel programming based on ANSI C. It is especially effec-
tive for exploiting dynamic, highly asynchronous parallelism, difficult to write
in data-parallel or message-passing style. Unlike many other parallel program-
ming systems, Cilk is algorithmic [Blumofe et al. 95], in that its runtime system
employs a scheduler that allows the time costs of programs to be estimated
accurately on the basis of abstract measures of complexity. In particular, the
scheduling model based on work stealing has led to the development of a perfor-
mance model that predicts the efficiency of a Cilk program by using two simple
parameters: work and critical-path length. As a consequence, time costs of Cilk
applications can be evaluated only under specific implementation hypotheses
and this strongly limits the validity of the performance model.

7 Conclusions

This paper describes a methodology for estimating the time costs of Actor appli-
cations. The methodology takes properly into account the constraints imposed by
both the semantics of the programming model and its implementation on a given
hardware/software platform. Our approach is particularized to the implementa-
tions of the Actor model generating only fifo or causally ordered computations,
but can be further specialized to capture even more specific implementation
constraints, thus dramatically reducing the number of computations actually
generated and making the study of time costs practicable.

The methodology exploits a set-based approach to generate the C-TREE,
in which all the computations satisfying the specific constraints imposed by the
implementation are synthesized, and a variant of the LogP model, in which few
parameters are able to capture the execution behavior of a parallel abstract
machine supporting Actor programming. So, it is possible to express the execu-
tion times of methods and calculate the Work and Depth of computations. This
enables to study time costs of Actor applications without having to consider
unnecessary and low-level details about the computing system used.

The methodology can be also exploited to specialize the implementation of
the Actor model on a given hardware/software platform, in order to force a
specific computation unfolding. In fact, as shown for fifo and causally ordered
computations, by applying the methodology, it is possible to find the constraints

871Di Santo M., Frattolillo F.: Time Costs in Actor Computations

able to determine the required execution behavior. These constraints can then be
used to devise the scheduling algorithms or low-level communication protocols
to be adopted in order to obtain an implementation of the Actor model able to
guarantee the expected execution behavior.

Finally, the methodology can be considered a basis to implement a software
tool able to automate the estimate of Actor applications.

References

[Agha 86] Agha, G.: “Actors: A Model of Concurrent Computation in Distributed
Systems”; The MIT Press (1986).

[Agha 90] Agha, G.: “Concurrent object-oriented programming”; Communications of
the ACM, 33, 9 (1990), 125–141.

[Agha et al. 97] Agha, G., Mason, I. A., et al.: “A foundation for actor computation”;
Journal of Functional Programming, 7 (1997), 1–72.

[Andolfi et al. 00] Andolfi, F., Aquilani, F., Balsamo, S., Inverardi, P.: “Deriving Per-

formance Models of Software Architectures from Message Sequence Charts”; 2nd

ACM Intl Workshop on Software and Performance, Ottawa, Canada (2000), 47–57.
[Baker, Hewitt 77] Baker, H. G., Hewitt, C.: “Laws for communicating parallel

processes”; IFIP Congress (1977), 987–992.
[Balsamo et al. 04] Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: “Model-

Based Performance Prediction in Software Development: A Survey”; IEEE Trans-
actions on Software Engineering, 30, 5 (2004), 295–310.

[Blelloch 96] Blelloch, G. E.: “Programming Parallel Algorithms”; Communications of
the ACM, 39, 3 (1996), 85–97.

[Blumofe et al. 95] Blumofe, R. D., Joerg, C. F., at al.: “Cilk: An Efficient Multi-
threaded Runtime System”; 5th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Santa Barbara, California, USA (1995), 207–216.

[Charron-Bost et al. 96] Charron-Bost, B., Mattern, F., Tel, G.: “Synchronous, asyn-
chronous, and causally ordered communication”; Distributed Computing, 9, 4
(1996), 173–191.

[Clinger 81] Clinger, W.: “Foundation of Actor Semantics”; AI-TR-633, MIT Artificial
Intelligence Laboratory (1981).

[Cortellessa et al. 01] Cortellessa, V., D’Ambrogio, A., Iazeolla, G.: “Automatic
Derivation of Software Performance Models from CASE Documents”; Performance
Evaluation, 45 (2001), 81–105.

[Culler et al. 96] Culler, D., Karp, R., Patterson, D., et al.: “LogP: A Practical Model
of Parallel Computation”; Communications of the ACM, 39, 11 (1996), 78–85.

[Emrath et al. 88] Emrath, P. A., Ghosh, S., Padua, D. A.: “Automatic detection of
nondeterminacy in parallel programs”; Workshop on Parallel and Distributed De-
bugging, Madison, Wisconsin, USA (1988), 89–99.

[Foster 95] Foster, I.: “Designing and Building Parallel Programs”; Addison Wesley,
Boston (1995).

[Frigo et al. 98] Frigo, M., Leiserson, C. E., Randall, K. H.: “The Implementation of
the Cilk-5 Multithreaded Language”; ACM SIGPLAN Conference on Programming
Language Design and Implementation, Montreal, Canada (1998), 212–223.

[Grama, Kumar 99] Grama, A. Y., Kumar, V.: “State of the Art in Parallel Search
Techniques for Discrete Optimization Problems”; IEEE Transactions on Knowledge
and Data Engineering, 11, 1 (1999), 28–35.

[Harel 87] Harel, D.: “Statecharts: A visual formalism for complex systems”; Science
of Computer Programming, 8, 3 (1987), 231–274.

872 Di Santo M., Frattolillo F.: Time Costs in Actor Computations

[Honda, Tokoro 91] Honda, K., Tokoro, M.: “An object calculus for asynchronous com-
munication”; European Conference on Object-Oriented Programming, LNCS 512,
Springer-Verlag (1991), 133–147.

[Kanal, Kumar 88] Kanal, L. N., Kumar, V.: “Search in Artificial Intelligence”;
Springer-Verlag, Berlin (1988).

[Kant 92] Kant, K.: “Introduction to Computer System Performance Evaluation”;
McGraw-Hill (1992).

[Lamport 78] Lamport, L.: “Time, Clocks, and the Ordering of Events in a Distributed
System”; Communications of the ACM, 21, 7 (1978), 558–565.

[Mattern, Fünfrocken 95] Mattern, F., Fünfrocken, F.: “A Non-Blocking Lightweight
Implementation of Causal Order Message Delivery”; Theory and Practice in Dis-
tributed Systems, LNCS 938, Springer-Verlag (1995), 197–213.

[Milner et al. 92] Milner, R., Parrow, J., Walker, D.: “A calculus of mobile processes”
(Parts I and II); Information and Computation, 100 (1992), 1–77.

[Peterson 81] Peterson, J. L.: “Petri Net. Theory and the Modeling of Systems”; Pren-
tice Hall (1981).

[Petriu, Wang 99] Petriu, D. C., Wang, X.: “From UML Descriptions of High-Level
Software Architectures to LQN Performance Models”; Intl Workshop on Applica-
tions of Graph Transformations with Industrial Relevance, LNCS 1779, Springer-
Verlag (1999), 47–62.

[Press et al. 92] Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T:
“Numerical Recipes in C: The Art of Scientific Computing”; Cambridge University
Press (1992), 896–901.

[Rumbaugh et al. 98] Rumbaugh, J., Jacobson, I., Booch, G.: “Unified Modeling Lan-
guage Reference Manual”; Addison-Wesley (1998).

[Skillicorn, Talia 96] Skillicorn, D. B., Talia, D.: “Models and Languages for Parallel
Computation”; ACM Computing Surveys, 30, 2 (1996), 123–169.

[Skillicorn 98] Skillicorn, D. B.: “Architectures, Costs, and Transformations”; Invited
talk, Workshop on Constructive Methods for Parallel Programming, Marstrand,
Sweden (1998).

[Smith, Talcott 99] Smith, S. F., Talcott, C. A.: “Modular Reasoning for Actor Specifi-
cation Diagrams”; Formal Methods in Object-Oriented Distributed Systems, Kluwer
Academic Publishers (1999).

[Smith, Talcott 02] Smith, S. F., Talcott, C. A.: Specification Diagrams for Actor Sys-
tems”; Higher-Order and Symbolic Computation, 15, 4 (2002), 301–348.

[Talcott 98] Talcott, C. A.: “Composable Semantic Models for Actor Theories”;
Higher-Order and Symbolic Computation, 11, 3 (1998), 281–343.

[Thati et al. 04] Thati, P., Talcott, C. A., Agha, G.: “Techniques for Executing

and Reasoning About Specification Diagrams”; 10th Intl Conference on Alge-
braic Methodology and Software Technology, LNCS 3116, Springer-Verlag (2004),
521–536.

[Trivedi 01] Trivedi, K. S.: “Probability and Statistics with Reliability, Queuing, and
Computer Science Applications”; John Wiley and Sons (2001).

[Varela, Agha 98] Varela, C. A., Agha, G.: “What after Java? From objects to actors”;
7th International Conference on World Wide Web 7, Brisbane, Australia (1998).

873Di Santo M., Frattolillo F.: Time Costs in Actor Computations

