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Abstract: In this paper we investigate polyline grid drawing of free trees on 2D grids
which are bounded by simple polygons. We focus on achieving uniform node distribu-
tion while we also try to achieve minimum edge crossings. We do not consider achieving
symmetry as a mandatory task, but our algorithm can exploit some symmetries present
in both the given trees and the given polygons. To our knowledge, our work is the first
attempt for developing algorithms that draw graphs on regions which are bounded by
simple polygons.
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1 Introduction

Graph Drawing has many applications, including the design of VLSI layouts,
software engineering, database systems, and graphical user interfaces. Hence
drawing graphs “nicely” has been investigated by many researchers. There are
some aesthetics for nice drawing of graphs that are mentioned in the litera-
ture. Some of the most important aesthetics are: minimizing the number of edge
crossings, minimizing the number of bends per edge, increasing the symmetry of
drawing, mazimizing the angular resolution, and distributing the vertices uni-
formly [Chan 1999, Purchase 1997].

Most of the graph drawing algorithms draw graphs on unbounded planes,
and few of them draw graphs on regions which are bounded by rectangles. But
there are some applications in which it is required or desired to draw graphs on
regions which are bounded by general polygons. For example, consider a graphics
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software by which one would like to draw a graph inside a star-shaped polygon, or
consider designing PCB of an electronic device which should be U-shaped. In this
paper, we investigate polyline grid drawing of free trees inside simple polygons by
means of the straight skeletons of polygons [Aichholzer and Aurenhammer 1996,
Aichholzer et al. 1995, Felkel and Obdrzalek 1998] and the simulated annealing
(SA) method.

More precisely, given a free tree and a simple polygon, we should produce
a polyline grid drawing of the given tree which is bounded by the given poly-
gon. The surface which is bounded by the given polygon is called the drawing
region. The most important aesthetic which should be satisfied by our drawings
is uniform node distribution. The other aesthetic which should be satisfied is
minimum edge crossings. Although we do not consider symmetry as a manda-
tory aesthetic, but our algorithm can exploit some symmetries present in both
the tree and the polygon. The edges of the given tree may get some bends in
our drawings, if the drawing region is bounded by a non-convex polygon.

A rooted tree is a tree in which a special node is singled out. This node is
called the “root” of the tree. Rooted trees are equivalent to oriented trees. A
tree which is not rooted is called a free tree. Rooted trees are often used to
represent hierarchies such as family trees, organization charts, and search trees,
so placing parents above their children is a traditional rule in drawing rooted
trees [Di Battista et al. 1994]. Considering this rule when drawing rooted trees
inside simple polygons make the task too difficult, for this reason we focus only
on drawing of free trees. Ignoring this rule, there is no difference between rooted
trees and free trees in our algorithm.

When drawing large graphs, the drawings of the algorithms that use cluster-
ing ([Brandenburg 1997], [Brandenburg and Sen 1999], [Edachery et al. 1999],
and [Roxborough and Sen 1997]) usually have much fewer edge crossings than
the drawing results of those do not use it [Eades et al. 1996, Eades et al. 1999,
Eades and Feng 1996]. Our algorithm uses a special kind of clustering and tries
to uniformly distribute the vertices of the given tree over the given region by
means of the straight skeleton of the bounding polygon.

The simulated annealing method has been already used to draw graphs nicely
in the literature. Davidson and Harel in [Davidson and Harel 1996] introduced
an algorithm to draw graphs nicely using the SA method, which we call the SA
algorithm. The SA algorithm draws graphs inside a given rectangle and similar
to ours uses the SA method. To compare our drawing results to those of the SA
algorithm, we modified the SA algorithm in order to enable it to draw graphs
inside simple polygons. Let us call it the extended SA algorithm. Because of
employing geometrical properties of drawing regions, our drawings show the
following advantages compared to the drawings of the extended SA algorithm:

e More symmetries
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e Less edge crossings

e More uniform node distribution

In section 2, the simulated annealing method is stated. The straight skeleton
is briefly described in section 3. In section 4, our algorithm is introduced. In
section 5, some drawings of our algorithm are illustrated and compared to the
drawings of the extended SA algorithm. The conclusion is stated in section 6.

2 The Simulated Annealing Method

The simulated annealing (SA) method is a flexible optimization method, suited
for large scale combinatorial optimization problems. It has been applied suc-
cessfully to classical combinatorial optimization problems, such as the traveling
salesman problem, and problems concerning the design of VLSI. The SA method
differs from standard iterative improvement methods by allowing “uphill” moves
- moves that spoil, rather than improve, the temporary solution. The SA method
tries to escape from local minima by using rules that are derived from an analogy
to the process in which liquids are cooled to a crystalline form, a process called
annealing.

It is well known that when a liquid is cooled slowly, it reaches a totally
ordered form, called crystal, which represents the minimum energy state of the
system. In contrast, rapid cooling results in amorphous structures, that have
higher energy, representing local minima. In this state, the system obeys the
Boltzman distribution:

P(E) ~ e F/FT

Here, P(E) specifies the probability distribution of the energy values of the
states F, as a function of temperature T" and the Boltzman constant k. On the
one hand, for every temperature, each energy E has nonzero probability, and
thus the system can change its state to one with higher energy. On the other
hand, at low temperature, the system tends to be in states with very low energy,
with the global minimum achieved at temperature zero. Metropolis et al. devised
an algorithm for simulating this annealing procedure by a series of sequential
moves. The basic rule is that the probability with which the system changes its
state from one with energy F; to one with energy FEs is:

o—(B2—E1) /KT
This rule implies that whenever the energy Fs of the new candidate state

is smaller than the current energy E; the system will take the move, and if it
is larger, the state change is probabilistic. Kirkpatrick et al. were apparently
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the first to realize that the above procedure could be used for general optimiza-
tion problems. Several entries must be determined whenever the SA method is
applied. These include the following:

e The set of configuration or states of the system, including an initial config-
uration (which is often chosen at random).

A generation rule for new configurations, which is usually obtained by defin-
ing the neighborhood of each configuration and choosing the next configu-
ration randomly from the neighborhood of the current one.

The target or cost function, to be minimized over the configuration space.
(This is analogue of the energy.)

The cooling schedule of the control parameter, including initial values and
rules for when and how to change it. (This is the analogue of the temperature
and its decrease.)

The termination condition which is usually based on the time and the values
of the cost function and/or the control parameter.

Having defined all of these, the schematic form of the SA method is as follows.
In clause 2(b), random stands for a real number between 0 and 1, selected
randomly [Davidson and Harel 1996].

1. Choose an initial configuration S; and an initial temperature T’

2. Repeat the following (usually some fixed number of times):

a. Choose a new configuration S from the neighborhood of S;

b. Let E; and E5 be the values of the cost function at S; and S5 respectively,
if By < E; or random < eE1=E2)/T then set Sy < S5

3. Decrease the temperature T’

4. If the termination rule is satisfied, stop; otherwise go to step 2

The SA algorithm uses the above procedure for drawing graphs inside rect-
angles. It “randomly” places the vertices of the given graph on the surface of
the given rectangle, and takes it as the initial configuration of the SA method.
For each aesthetic criterion, it defines a term such that minimizing that term
satisfies the criterion. It defines the cost function of the SA method as sum of
these terms (see [Davidson and Harel 1996] for more details).
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3 The Straight Skeletons

There are two types of skeletons for simple polygons, the medial axis, and the
straight skeleton. The medial axis of a given simple polygon P consists of all
the interior points whose closest point on the boundary of P is not unique
[Chin et al. 1995]. While the medial axis is a voronoi-diagram-like concept, the
straight skeleton is not defined by using a distance function, but rather by an ap-
propriate shrinking process. The straight skeleton is defined as the union of the
pieces of angular bisectors traced out by the polygon vertices during the shrink-
ing process. Imagine that the boundary of P is contracted towards P’s interior,
in a self-parallel manner and at the same speed for all edges. The lengths of the
edges might decrease or increase in this process. Each vertex of P moves along
the angular bisector of its incident edges. This situation continues as long as the
boundary does not change topologically. There are two possible types of changes:

Edge event: An edge shrinks to zero, making its neighboring edges adjacent.
Split event: An edge is split, i.e. a reflex vertex runs into this edge, thus splitting
the whole polygon. New adjacencies occur between the split edge and each of
the two edges incident to the reflex vertex.

After either type of event, we are left with a new, or two new, polygons
which are shrunk recursively if they have non-zero area. The straight skeleton,
in general, differs from the medial axis. If P is convex then both structures
are identical; otherwise, the medial axis contains parabolically curved segments
around the reflex vertices of P, which are avoided by the straight skeleton. In
this paper, we consider drawing of free trees inside general simple polygons,
and to avoid parabolically curved segments we use the straight skeletons as
the skeletons of polygons. In the sequel, by the skeleton we mean the straight
skeleton. The skeleton of a given n-gon P partitions the interior of P into n
connected monotone regions which are called faces. Each face is swept by just
one edge of P during the shrinking process. The bisector pieces are called arcs
(or sometimes edges), and their endpoints are called nodes. When P is simple
the structure is tree. The skeleton of n-gon P consists of 2n — 2 nodes and
2n — 3 arcs ([Aichholzer and Aurenhammer 1996], [Aichholzer et al. 1995], and
[Felkel and Obdrzalek 1998]). Figure 1 shows the straight skeleton of a rectangle.

4 Our Algorithm

In this section after introducing some definitions, we explain our algorithm. In
the sequel we use term tree for free tree and term polygon for simple polygon.
Our algorithm produces a polyline grid drawing of the given free tree which is
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Figure 1: The straight skeleton of a rectangle

bounded by the given polygon. All the vertices and the bends are positioned on
the grid points, but this restriction does not apply to the edge crossings.

Definition 1. For skeleton S and its node i, let FaceSet(i; S) be the set of all
the faces which have node i as a vertex on their boundary.

Ezample 1. Consider skeleton S of figure 1, we have FaceSet(0;S) = {FO0, F3}
and FaceSet(1;S) = {F0, F1, F3}.

Definition 2. For tree T and its edge (4, ), let CloserSet(i|j; T) be the set of
all the nodes of the tree whose graph-theoretic distance from node i is shorter
than from node j.

Ezample 2. Consider skeleton S of figure 1, CloserSet(1]4;S) = {0,1,2} and
CloserSet(4]1;S) = {3,4, 5}.

Considering the tree structure of the skeletons, this definition is also appli-
cable to the skeletons. In the following we describe each step of our algorithm in
details. The pseudo-code of our algorithm is as follows.

Free Trees Drawing Algorithm
input: an m-node free tree T and a simple n-gon P.
output: a polyline grid drawing of T which is bounded by P.

Step a. Computing the polygon skeleton and the area of the faces.

Step b. Computing the weights of the nodes of the skeleton.

Step c. Computing the weights of the edges of the skeleton.

Step d. Computing the weights of the edges of the tree.

Step e. Mapping the tree onto the skeleton.

Step f. Removwing the crossings between the tree edges and the polygon sides.
Step g. Drawing the tree using the SA method.
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Step a. Computing the polygon skeleton and the area of the faces.

We compute straight skeleton S of given polygon P by using the algorithm of
[Felkel and Obdrzalek 1998], whose time complexity is O(n xr+n xlogn), where
r is the number of reflex vertices of P. If P is convex then the time complexity
will be O(nlogn), but for general simple polygons it can be as big as O(n?). Let
us call the boundary of faces P face. Since all the Pfaces are simple polygons,
we can use the following formula to compute the area of a face f [Bourke 1988].

n—1
Area(f) = Z(wiyi-i-l — Ti+1Yi)
i=0

N | =

Here x; and y; are the coordinates of vertex i (i = 0..n — 1) of the P face
of face f; x, = xo and y, = yo. To use the above formula, the vertices of the
Pfaces should be ordered clockwise or counter clockwise. The time complexity
of computing the areas of the faces is O(n), since we have 2n — 3 arcs and each
arc is common between two faces.

Step b. Computing the weights of the nodes of the skeleton.
For each node 7 of skeleton S we compute the following sum as the weight of
node i.

Wia(isS)= > Area(f)

fE€FaceSet(i;S)

Wral(i; S) represents the total amount of the area of the faces which are in-
cident to node i of skeleton S. The time complexity of this step is also O(n),
since we have 2n — 3 arcs and each arc is common between two faces.

Step c. Computing the weights of the edges of the skeleton.

To each endpoint i of every edge (i,5) of skeleton S, we assign a weight which
is denoted by Wes(ilj; S). This weight is defined as sum of the weights of the
nodes of CloserSet(i|j; S), and shows the approximate area of the polygon which
is laid on side 7 of edge (7, ). The difference of the weights of endpoints ¢ and
j is considered to be the weight of edge (7, ) and is denoted by Wg((i,j); S).
We can compute the weights of the edges of the skeleton by applying the DFS
method twice. So the time complexity of this step is O(n).

Wesl(ilj; S) = > Wra(m; S)
méECloserSet(i|j;S)

Wes(jli; S) = > Wra(m;S)
meCloserSet(j|i;S)

We((i,§); S) = |Wes(ilj; S) — Wes(4li; S)
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Step d. Computing the weights of the edges of the tree.

To each endpoint 7 of every edge (4, ) of given tree T', we assign a weight which
is denoted by Weg(i|j; T). This weight is defined as sum of the weights of the
nodes of CloserSet(i|j;T), and shows the number of nodes of the tree which is
laid on side i of edge (i, ). The difference of the weights of endpoints i and j is
considered to be the weight of edge (i,7). By |S| we mean the cardinality of a
set S. For each node 7 of tree T' we define Wi 4(7;T) = 1. The time complexity
of this step is also O(n).

Weos(ilj; T) = > Wra(m;T) = |CloserSet(i|j; T)|

méECloserSet(i|;T)

Wes(jli;T) = Z Wra(m;T) = |CloserSet(j|i; T)|
meCloserSet(j|4;T)

WEe((i,§);T) = [Wes(ilf; T) — Wes(44;T))

Definition 3. By the middle edge of skeleton S (tree T') we mean the edge of
the skeleton (tree) that has the minimum weight among all the other edges of
the skeleton (tree).

Definition 4. A skeleton (tree) may have more than one middle edge. In this
case, it is guaranteed by lemma 1 that these edges share an endpoint. This
common endpoint is called the middle node.

Definition 5. By the middle-connected node we mean a node that is connected
to the middle node by an edge.

Definition 6. For tree T and its two nodes i and j, let PathSet((i,7);T) be
the set of all the nodes of the tree which lie on the path between nodes ¢ and j.
This definition is also applicable to the skeletons.

Lemmal. If skeleton S (tree T) has more than one middle edge, then these
edges share an endpoint.

Proof. We prove the lemma for skeleton S, a similar proof applies to tree T.
Suppose edges (a,b) and (¢,d) are two middle edges of skeleton S. If these two
middle edges share an endpoint, the lemma is proved. Otherwise, there is at
least one edge (e, f) which lies on the path between nodes b and ¢ (see figure 2).
Two cases are possible, case I in which Wes(e|f;.S) > Wes(fle; S) and case 11
in which Weg(e|f;S) < Wes(fle; S). We prove the lemma for case I, the proof
is similar for case II.
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Figure 2: Proof of lemma 1

From the definition we have:

Wos(cld; §) = Wia(e; S) + 2 ie pathset((e,);5) Wra(E:5)
+ Wia(f;S) + Wes(elf; S) =

Wesl(cld; S) > Wes(el f;S) (1)

Wes(fle; S) 2 Wra(f;S) + Xicpatnset((f.0):s) Wrali; S)
+Wralc S) + Wes(d|e; S) —

Wes(dle; S) < Wes(fle; S) (2)
From relations (1) and (2) we have

Wes(eld; S) = Wes(dle; S) > Wes(el f;.S) = Wes(fle; S) > 0

l

|Wcs(c|d; S) — WCS(d|C; S)| > |WCS(6|f;S) — Wcs(f|6;5)| —
WE((c,d); S) > We((e, £); S)

This contradicts the assumption that edge (¢, d) is a middle edge. Q.E.D.

Step e. Mapping the tree onto the skeleton.
In this step, we are going to uniformly distribute the vertices of the tree over
the given region. To achieve uniform node distribution, we explore the given
tree and the given skeleton and try to place the tree nodes on the appropriate
parts of the polygon, such that the number of nodes which are laid on a part of
the polygon is proportional to the area of that part. We do this by means of a
recursive mapping procedure.

The input of the mapping procedure is a set of weighted trees and a set of
weighted skeletons, these sets may contain just one member, at least in the first
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and the last calls. Each input tree (skeleton) has a weight which will be precisely
defined in the following, let W (T') (W (S)) denotes the weight of input tree T'
(input skeleton S). The output of the procedure is a mapping list that specifies
which nodes of the given tree(s) should be mapped onto which points of the
given skeleton(s). This mapping list is used by the SA method to spread the
vertices of the given tree over the given region. The termination condition of the
procedure is satisfied when the number of nodes of the given tree or the number
of edges of the given skeleton is equal to one.

The mapping procedure is as follows. If the input set of trees (skeletons) con-
tains just one tree (skeleton) then we check if it has a middle edge or a middle
node, else we suppose the trees (skeletons) of this set belong to a larger tree
(skeleton) which has a middle node. In the other words, we suppose the multi-
member sets of trees and skeletons have middle nodes. So we are facing with
four cases:

Case 1. The input tree and the input skeleton both have a middle edge.

Case 2. The input tree(s) and the input skeleton(s) both have a middle node.
Case 3. The input tree(s) has/have a middle node, but the input skeleton has a
middle edge.

Case 4. The input tree has a middle edge, but the input skeleton(s) has/have a
middle node.

Although we try to distribute the nodes of the given tree uniformly on the
surface of the given polygon, but our mapping procedure is not so successful in
some cases. In the following we describe how the mapping procedure works in
each case, and how much successful it is to satisfy the uniform node distribution
criterion.

CASE 1: In this case the input sets of trees and skeletons both have a sin-
gle member, and their members both have middle edges. Let T and S be the
input tree and the input skeleton, respectively. Also let (u,v) and (k,l) denote
the middle edge of T' and S, respectively. We should record in the mapping list
that (u,v) is mapped onto (k,[). To do this, we substitute edge (u,v) with path
u —w — v, where w is a dummy vertex. We record in the mapping list that w is
mapped onto the middle point of edge (k,1). After termination of the algorithm,
dummy vertex w may appear as a bend in edge (u,v) of the tree.

Let T, (T) and Si (S;) denote the sub-tree and the sub-skeleton induced by
CloserSet(ulv;T) (CloserSet(v|u; T)) and CloserSet(k|l; S) (CloserSet(l|k; S)),
respectively. We update the weights of the edges of T,, T,, Si and S;. To do
this, consider Ty, Ty, Sk and S; as directed trees whose roots are u, v, k and [,
respectively, and the edges are directed from parents to children. The following
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pseudo-code shows how the weights of the edges of sub-tree T, are updated. We
can also use this pseudo-code for updating the weights of the edges of sub-tree T,
by replacing u with v, and for updating the weights of the edges of sub-skeletons
Sy and S; by replacing T, u and v with S, k and [, respectively.

for each directed edge (i,j) of sub-tree T, rooted at u do:
Wes(jlis Tu) = Wes (46 T)
Wes(ilj; Tu) = Wes(ilj; T) — Wes(v|u; T)
We((i,5); Tu) = Wes(ilj; Tu) — Wes(51i; Tu)|

W(Ty) = Wes(ulo;T) (W(Ty) = Wes(vly; T)) and W(Sk) = Wes(k|l;S)
(W(S;) = Wes(l|k; S)) denote the weights of sub-tree Ty, (T,,) and sub-skeleton
Sk (S1). Suppose W(T,,) < W(T,) and W(Sg) < W(S;). We call the mapping
procedure recursively once for T, and Sy, and once for T, and S;. The less value
|W(Ty)/W (Sk) — W(Ty)/W(Si)| is, the more successful the mapping procedure
is in satisfying the uniform node distribution criterion and the nicer drawing is
yield.

CASE 2: In this case the tree(s) and the skeleton(s) both have a middle node.
If the input sets of trees and skeletons “both” have a single member, say T and
S then we record in the mapping list that middle node u of T' is mapped onto
middle node k of S.

If the input set of trees (skeletons) has a single member, say T (S), then we
update the weights of the edges of its sub-trees (sub-skeletons) as follows. Let T,
denotes the sub-tree induced by CloserSet(v|u;T), where u is the middle node
and v is a middle-connected node of 7" and S}, ; denotes the sub-skeleton induced
by CloserSet(l|k; S)U{k}, where k is the middle node and [ is a middle-connected
node of S. So we have S ; = S;U{(k,1)} U{k}. For each middle-connected node
v of T, we update the weights of the edges of sub-tree T}; and for each middle-
connected node [ of S, we update the weights of the edges of sub-skeleton Sy ;.
To do this, consider each sub-tree T, and each sub-skeleton Sj; as a directed
tree whose root is v and k, respectively, and the edges are directed from parents
to children. The following pseudo-code shows how the weights of the edges of
the sub-trees and the sub-skeletons are updated.

for each directed edge (i,j) of every sub-tree T, rooted at
middle-connected node v do:
Wes(jli; Ty) = Wes (516 T)
Wes(ilj; To) = Wes(ilj; T) — Wes(ulv; T)
Wg((i,5); Ty) = [Wes(iljs To) — Wes(jlis Ty)|
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for each directed edge (i,7) of every sub-skeleton Sy which is rooted at
middle node k and includes middle-connected node | do:

Wes(flis Skp) = Wes(4i; S)

Wes(ilj; Skp) = Wes(ilf; S) — Wes(k|l; S) + Wia(k; S)

We((i,5); Ska) = [Wes(ild; Ska) — Wes (316 Sko)l

Let W(Ty) = Wes(vlw; T) and W (Sk;) = Wes(l|k;T) + Wra(k; S) denote
the weights of sub-tree T, and sub-skeleton Sy, ;, respectively. If the input set of
trees (skeletons) has a single member then we assign its sub-trees (sub-skeletons),
as defined above, to two sets else we assign the input trees (skeletons) to two sets,
then we call the mapping procedure for each set. Precisely speaking, we assign the
trees or the sub-trees and the skeletons or the sub-skeletons to two sets of trees,
say GT1 and GT», and to two sets of skeletons, say G.S; and GSy, respectively,
which are balanced as much as possible with respect to sum of the weights of
their members. Let W(GT) = > _p. cqr W(T,) and W(GS) = Zsk,,eGS W(Sk,.).
Suppose W (GT;) < W(GTz) and W(GS;) < W(GS2). We call the mapping
procedure once for GT; and G\Sy, and once for GT5 and GS;. Cleary in some
cases, we may get better results if we assign the trees and the skeletons to
more than “two” sets, which for simplicity we do not discuss it here. The less
value |W(GTy)/W(GSy) — W(GT,)/W(GS>)| is, the more successful the map-
ping procedure is in satisfying the uniform node distribution criterion and the
nicer drawing is yield.

CASE 3: In this case the tree(s) has/have a middle node, but the skeleton
S has a middle edge, say (k,1). Let Sy, (S;) denotes the sub-skeleton induced by
CloserSet(k|l; S) (CloserSet(l|k;S)). The weights of the edges of sub-skeletons
Sk and S; are updated as in Case 1. Let W (Si) = Wes(k|l;S) denotes the
weight of sub-skeleton Sj. If the input set of trees has a single member, say
T, then the weights of the edges of its sub-trees are updated as in Case 2, and
we record in the mapping list that the middle node of the tree is mapped onto
the middle point of the related middle edge of the skeleton. Let T}, denotes the
sub-tree induced by CloserSet(v|u;T), where u is the middle node and v is a
middle-connected node of T'. Also, let W(T,,) = Wes(v|u; T') denotes the weight
of sub-tree T,.

If the input set of trees has a single member then we assign its sub-trees
to two sets else we assign the input trees to two sets, then we call the map-
ping procedure for each set. Precisely speaking, we assign the trees or the sub-
trees to two sets of trees, say G117 and G7T,, which are balanced as much as
possible with respect to sum of the weights of their members. Let W(GT) =
Y1, car W(Ty). Suppose W(GT1) < W(GT) and W (Si) < W(S;). We call the
mapping procedure once for GT7 and Sg, and once for GT5 and S;. The less
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Figure 3: Proof of lemma 2

value |W(GTy)/W (Si) — W(GT»)/W(S;)| is, the more successful the mapping
procedure is in satisfying the uniform node distribution criterion and the nicer
drawing is yield.

CASE 4: In this case the skeleton(s) has/have a middle node, but the tree
T has a middle edge, say (u,v). Let T, (T,) denotes the sub-tree induced by
CloserSet(v|u;T) (CloserSet(ulv;T)). The weights of the edges of sub-trees T,
and T, are updated as in Case 1. Let W (T},) = Weg(ulv; S) denotes the weight
of sub-tree T,. If the input set of skeletons has a single member, say S, then
the weights of the edges of its sub-skeletons are updated as in Case 2. Also, we
substitute middle edge (u,v) of T' with path u — w — v, where w is a dummy
vertex, and we record in the mapping list that w is mapped onto the middle
node of S. Let S ; denotes the sub-skeleton induced by CloserSet(l|k; T) U{k},
where k is the middle node and [ is a middle-connected node of S. Also, let
W(Sk1) = Wes(lk; S) + Wra(k; S) denotes the weight of sub-skeleton Sy, ;.

If the input set of skeletons has a single member then we assign its sub-
skeletons to two sets else we assign the input skeletons to two sets, then we
call the mapping procedure for each set. Precisely speaking, we assign the skele-
tons or the sub-skeletons to two sets of skeletons, say GS; and GS», which
are balanced as much as possible with respect to sum of the weights of their
members. Let W(GS) = 3 g cqs W(Sk). Suppose W(GS1) < W(GS:) and
W(T,) < W(T,). We call the mapping procedure once for T}, and GS1, and once
for T, and G Ss. The less value |W(T,,)/W(GSy) —W(T,)/W(GSs)| is, the more
successful the mapping procedure is in satisfying the uniform node distribution
criterion and the nicer drawing is yield.

The following lemma shows that the weights of the edges of the sub-skeletons
and the sub-trees are updated correctly in step e. The time complexity of step e
is stated by lemma, 3.
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Lemma 2. The weights of the edges of the sub-skeletons and the sub-trees are
updated correctly in step e.

Proof. We show that the updating pseudo-codes are correct. In all the four cases
of step e, if the input sets of trees or skeletons have more than one member then
there is nothing to do, otherwise we are facing with a tree T or a skeleton S, a
middle edge (u,v) or a middle node u and a middle-connected node v, and some
sub-trees or sub-skeletons whose weights should be updated. We can summarize
all the possible cases for updating the weights of the edges of the sub-trees and
the sub-skeletons into two cases.

Case I, in which a sub-tree (sub-skeleton) is attached to the other parts of
tree T (skeleton S) through edge (u,v) and includes node v but not node w.
Considering figure 3, let T}, (S,) denotes the directed sub-tree (sub-skeleton)
induced by CloserSet(v|u;T) (CloserSet(v|u; S)) whose root is v and its edges
are directed from parents to children. For each directed edge (4,7) of sub-tree
T, we have CloserSet(jli;T) = CloserSet(jli;T,) and CloserSet(i|j;T) =
CloserSet(i|j; T,)UCloserSet(u|v; T). Since sets T, and T, are distinct, from the
definition we have Wes(i|7; T) = Wes(ild; Tv)+Wes(ulv; T) and Wes(5i; Ty) =
Wes(jli; T). Because of symmetry, the above statement is correct if edge (i, 7)
belongs to sub-tree Ty. Also it is correct for sub-skeletons S, and S,, since
CloserSet and W definitions are defined the same for trees and skeletons.

Case II, in which a sub-skeleton is attached to the other parts of skeleton S
through edge (u,v) and includes both nodes u and v. Considering figure 3, let
Su,» denotes the directed sub-skeleton induced by CloserSet(v|u; S)U{u} whose
root is u and its edges are directed from parents to children. For each directed
edge (i, j) of sub-skeleton S, , we have CloserSet(jli; S) = CloserSet(j|i; Syv)
and CloserSet(i|j; S) = CloserSet(i|j; Sy) U CloserSet(u|v; S). We have S, =
Sy U{(u,v)}U{u}, so CloserSet(i|j; Sun) = CloserSet(i|j; Sy) U{u}. Since sets
Sy and S,, are distinct, from the definition we have Weg(ilj; S) = Wes(i|j; Sy) +
Wes(u|v; S) and Wes(fli;Sy) = Wes(j]i;S). Then we have Wes(ilj; S) =
Wes(il5 Suw) = Wra(u; S) + Wes(ulv; S). Q.E.D.

Lemma 3. The time complezity of step e is O((n+m) xlog(min{m,n})), where
n is the number of vertices of the given polygon and m is the number of nodes
of the given tree.

Proof. In the four cases of step e, it may be needed to find the middle nodes or
the middle edges of the input skeleton and the input tree, which can be done in
O(n + m) time. Also, it may be needed to update the weights of the edges of
the sub-skeletons and the sub-trees, which can be done in O(n +m) by applying
the DFS method once for each sub-skeleton and each sub-tree. We assign the
sub-skeletons and the sub-trees to two sets which are balanced and we call the
mapping procedure recursively, so the time complexity of step e can be stated
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by the recurrence equation T'(n,m) = O(n+m)+2 x T(n/2,m/2). Solving this
equation, we have O((n +m) x log(min{m,n})) as the time complexity of step
e. Q.E.D.

Step f. Removing the crossings between the edges of the tree and the
sides of the polygon.

Before applying the SA method, all the nodes of the tree, which are included in
the mapping list are placed at the related points of the skeleton. Let the closest
located node of a tree node be an already located node of the tree which has
the shortest graph-theoretic distance from the given node, among all the previ-
ously located nodes of the tree. All the unlocated nodes of the tree are placed
at the locations of their closest located nodes. After all the nodes of the tree
are initially located, if the given polygon is non-convex, there is the possibility
of crossing between the edges of the tree and the border of the polygon. If this
is the case, we remove these crossings by introducing some dummy nodes and
bending the crossing edges of the tree. In other words, we lay those segments of
the crossing edges of the tree which lie outside the polygon on the boundary of
the polygon by adding some dummy nodes and bending the crossing edges of
the tree. By applying rounding or truncation we obtain integer coordinates. The
resulting configuration is the initial configuration of the SA method.

Step g. Drawing the tree using the SA method.

We use the SA method to draw the tree inside the given polygon. We try to
keep the nodes of the tree close to their corresponding points of the skeleton by
introducing some virtual fixed nodes and virtual edges. As our algorithm guides
the SA method, we could achieve fewer edge crossings, more uniform node dis-
tribution, and usually more symmetries than the extended SA algorithm.

5 Drawing Results

In this section, we compare the drawings of our algorithm to those of the ex-
tended SA algorithm. In the examples illustrated here, some random free trees
which are generated by our random free tree generator program are drawn by
our algorithm and the extended SA algorithm. These trees are drawn on a 2D
grid of size 480 x 640 which is bounded by some convex, rectilinear and con-
cave polygons. Our algorithm and the extended SA algorithm both use the same
terms and factors for the cost function of the SA method. Minimization of this
cost function leads to minimization of the number of edge crossings, and uni-
form node distribution. Let us illustrate some drawings of our algorithm and the
extended SA algorithm.

Figure 4 shows the drawings of a 7-node complete binary tree by the ex-
tended SA algorithm (4-a) and by our algorithm (4-b). The size of the bounding
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a. The SA Algorithm b. Our Algorithm

Figure 4: Drawing of a 7-node complete binary tree by the extended SA algo-
rithm (a), and by our algorithm (b).

rectangle is 100 x 200. As can be seen, our drawing is nicer than the drawing of
the extended SA algorithm. This is due to the symmetry and the uniform node
distribution of our drawing which is achieved by using the geometrical proper-
ties of the bounding polygon by our mapping procedure. In this example, the
structure of the given tree completely matches the structure of the skeleton of
the given polygon, and because of this we get such a nice drawing.

Although we do not consider symmetry as a predefined goal, but our algo-
rithm can exploit some symmetries present in both the given trees and the given
polygons. The straight skeleton of a symmetric polygon is normally symmetric.
Also, the definitions of the weights of the edges of the skeleton and the tree re-
flect the symmetries of the skeleton and the tree. The mapping procedure mapps
the nodes of the tree onto the points of the skeleton using these weights, and
exploits the symmetries of the polygon and the tree.

Suppose the given polygon and the given tree are symmetrical. If all the
nodes of the tree are mapped onto the points of the skeleton of the polygon then
our algorithm produces a symmetric drawing. Otherwise, some nodes of the tree
remain unmapped and the SA method is free to determine their positions. In
this case, the drawing of the mapped nodes are symmetric, but we can not say
anything about the symmetry of the drawing of the unmapped nodes.

The drawing of a 63-node complete binary tree by the extended SA algorithm
inside a square is shown in figure 5. As can be seen, although the tree is planar,
the drawing of it by the extended SA algorithm is not planar. The drawing of
this tree by our algorithm is shown in figure 6. The size of the bounding square
in these examples is 400 x 400. Our algorithm divides the given tree into some
clusters of nodes and distributes the nodes on different parts of the drawing
region. So our drawings usually have fewer edge crossings than the drawings of
the extended SA algorithm. In this example, the skeleton has 5 nodes and the
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A\

Figure 5: Drawing of a 63-node complete binary tree by the extended SA algo-

rithm inside a square

Figure 6: Drawing of a 63-node complete binary tree by our algorithm inside a
square

tree has 63 nodes, and just 5 nodes of the tree are mapped onto the skeleton.
As can be seen in figure 6, the darwing of the 5 mapped nodes of the tree is
symmetric while the drawing of the other unmapped nodes is asymmetric.
Figures 7, 8, 9 and 10 illustrate the drawings of a 31-node complete binary
tree inside U-shaped and W-shaped polygons by our algorithm and by the ex-
tended SA algorithm. The sizes of the bounding rectangles which includes the
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Figure 7: Drawing of a 31-node complete binary tree by our algorithm inside a
U-shaped rectilinear polygon

Figure 8: Drawing of a 31-node complete binary tree by the extended SA algo-
rithm inside a U-shaped rectilinear polygon

U-shaped and the W-shaped polygons are 300 x 400 and 200 x 400, respectively.

Let us present our experimental results about the running time, the number
of edge crossings and the node distribution of our algorithm and the extended SA
algorithm. We performed our experiment on a PC with a 500MHZ Intel MMX
processor and a 64MB of RAM, running Windows 98. We generated 10 groups
of random free trees, each group consisting of 10 trees. The trees belonging to
group ¢, ¢ = 1,...,10, have 10 x ¢ nodes. The degree of the nodes of the trees is
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Figure 9: Drawing of a 31-node complete binary tree by our algorithm inside a
W-shaped polygon

WY

Figure 10: Drawing of a 31-node complete binary tree by the extended algorithm
inside a W-shaped polygon

at most 10. We also considered five concave polygons as the bounding polygons.

These polygons are shown in figure 11. We executed our algorithm and the
extended SA algorithm to draw these 100 free trees inside these 5 polygons. We
repeated the test 10 times and computed the average running time, the average
number of edge crossings and the average node distribution. We used the term
=, 1000/ D3 ; for evaluating the node distribution, where D; ; is the Euclidean
distance between nodes ¢ and j. This term also has been used to evaluate the
node distribution in [Davidson and Harel 1996].

To present a summary of the test results, the results of the test for polygons
P> and Ps5 are shown numerically in tables 5, and 5 and graphically in diagrams 12
through 17. Let R.F.T., A.C.N., AN.D. and A.R.T. denote Random Free Tree,
Average Crossing Number, Average Node Distribution and Average Running
Time in seconds, respectively. As can be seen from diagrams 12 through 17,
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P

P2 P3

Py P

Figure 11: Bounding polygons Py, P», P3, Py, and P

our drawings have fewer edge crossings and better node distribution than the
drawings of the extended SA algorithm. This is due to utilizing the geometrical
properties of the bounding polygons by our algorithm. In return, our algorithm
uses negligible extra time to do the job, which is due to the more computations
that is forced by dummy and virtual vertices and edges which our algorithm
adds to the original trees.
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| || Our Algorithm || Ext. SA Algorithm |
[RF.T. |[A.CNJAND|ART|ACNJAND.[ART|

10-node 0 3.71 |526.14 0 15.53 | 8.99

20-node 0 34.85 | 238.74 0 39.10 | 40.16

30-node 0 56.50 | 241.70 0 79.71 | 108.99
40-node 0 |105.10| 452.81 0 148.38 | 240.39
50-node 0 ]182.20|761.86| 0.6 |266.03|434.83
60-node 0 |302.74|1166.71|| 0.6 |388.44|714.51
70-node 0 1442.41|1550.43|| 1.6 |731.38|1128.26
80-node 0.2 |560.98(2078.19| 1.4 |971.03|1692.21
90-node 0.2 |684.48(3156.20| 2 |1299.68(2318.37

100-node|| 0.4 |871.30(4637.83|| 2.2 |1545.79|3124.28

Table 1: Experimental results of running our algorithm and the extended SA
algorithm for drawing free trees inside polygon Py

| || Our Algorithm || Ext. SA Algorithm |
[RF.T. |A.CNJAND.] ART |[A.CNJAND.|ART|

10-node 0.4 3.09 | 194.57 0 19.35 | 10.83
20-node 0 33.15 | 73.31 0 33.08 | 43.15
30-node 0.6 | 83.47 | 185.521 0 99.60 | 116.75
40-node 0 133.37| 425.78 0 160.85 | 248.80
50-node 0 221.64| 629.02 0 267.83 | 445.22
60-node 0.2 |377.26|1025.00| 0.2 |330.81]769.20
70-node 0 516.97|1411.29 | 0.6 |610.40|1177.23
80-node 0.2 |687.66|2244.41| 1.6 |804.091663.45
90-node 0.4 |868.57|2798.951 1 ]1241.22|2445.96
100-node|| 0.4 |1122.46|4386.61 || 3.8 |1508.86|2999.48

Table 2: Experimental results of running our algorithm and the extended SA
algorithm for drawing free trees inside polygon P;
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Figure 12: Average Crossing Number of Our Algorithm and the Extended SA
Algorithm inside Polygon P
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Figure 13: Average Distribution of Our Algorithm and the Extended SA Algo-
rithm inside Polygon P
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Figure 14: Average Running Time of Our Algorithm and the Extended SA Al-
gorithm inside Polygon P»
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Figure 15: Average Crossing Number of Our Algorithm and the Extended SA
Algorithm inside Polygon Ps
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Figure 16: Average Node Distribution of Our Algorithm and the Extended SA
Algorithm inside Polygon Ps
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Figure 17: Average Running Time of Our Algorithm and the Extended SA Al-
gorithm inside Polygon P;
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6 Conclusion

In this paper, we investigated polyline grid drawing of free trees on surfaces of
general simple polygons by means of the straight skeletons and the simulated
annealing method. We focused on achieving uniform node distribution while we
also tried to achieve minimum edge crossings. Although, we did not consider
achieving symmetry as a mandatory task, but our algorithm could exploit some
symmetries presented in both the given trees and the given polygons.

To our knowledge, our work is the first attempt to develop algorithms that
draw graphs on 2D grids which are bounded by simple polygons. Our experimen-
tal results, obtained by running our algorithm and the extended SA algorithm for
100 random free trees, showed that our algorithm produces fewer edge crossings,
more uniform node distribution, and usually exploits more symmetries than the
extended SA algorithm. The cost of these improvements is the negligible more
running time of our algorithm.
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