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Abstract: We propose a variant of the Paillier cryptosystem that improves efficiency
in encryption, re-encryption and decryption while preserving the homomorphic prop-
erty. We then use this variant to construct a new verifiable shuffle system and prove
its security. We show that the new shuffle scheme has the least number of rounds
and exponentiations compared to all known shuffle schemes. Finally, we show how to
construct a publicly verifiable mix-net using the shuffle system.
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1 Introduction

A shuffle takes an input list of ciphertexts and outputs a permuted and re-
encrypted version of the input list. The main application (motivation for the
study) of shuffles is to construct mix-nets, a cryptographic system introduced
by Chaum [Chaum 1981] for providing anonymity and unlinkability in commu-
nication. Mix-nets are among the most widely used systems for providing com-
munication privacy, and have found applications in anonymous email systems
[Chaum 1981], Web browsing [Gabber et al. 1997], electronic voting
[Park et al. 1993, Neff 2001, Jakobsson et al. 2002], location privacy for mobile
networks [Kong and Hong 2003] and mobile IPs [Choi and Kim 2003], anony-
mous payment systems [Jakobsson and M’Raihi 1998, Choi and Kim 2003], se-
cure multiparty computation [Jakobsson and Juels 2000] and privacy in adver-
tisements [Juels 2001].

A mix-net consists of a number of mix-centres that collectively permute and
decrypt the input list. Shuffles are used to implement mix-centres. A basic shuffle
permutes its input list of ciphertexts through re-encryption. Mix-centres may
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also partially decrypt the list [Abe 1999], hence called shuffle decryption. Mix-
nets that use shuffle decryption could be more efficient but in case one mix-centre
fails, they require more effort to recover [Furukawa 2004].

The main security objective of a shuffle is to provide unlinkability of its input
elements to output elements, and so effectively keeping the permutation secret.
We refer to this property as shuffle privacy. A second important property of
shuffles is verifiability : that is providing a proof that the output is correctly con-
structed. Verifiability of shuffles is used to provide robustness for mix-nets: that
is ensuring that a mix-net works correctly even if a number of its mix-centres are
malicious. If a shuffle’s proof can be verified by any party, it allows the mix-net to
provide public verifiability : that means the mix-net can prove its correct opera-
tion to any party. These are important properties of mix-nets and so verifiability
of shuffles has received much attention. Shuffles must be efficient and the cost is
measured in terms of computation and communication (number of rounds and
communicated bits). Proving security properties of shuffles traditionally relied
on proving the zero-knowledgeness of the underlying proof system.

Recently, a number of efficient constructions for verifiable shuffles have been
proposed [Abe 1999, Abe and Hoshino 2001, Nguyen and Safavi-Naini 2003]
[Ogata et al. 1997]. In Crypto’01, Furukawa and Sako [Furukawa and Sako 2001]
gave a characterisation of permutation matrices in terms of two equations that
could be efficiently proved, hence proposing an efficient verifiable shuffle with a
3-round proof system. However, the zero-knowledge property of the proof system
remains an open problem. Furukawa et al. [Furukawa et al. 2002] noted a flaw in
their original proof, proposed a new definition of security for shuffles and proved
security of their system with respect to that definition. Neff later gave another
efficient construction [Neff 2001], which was based on a generalisation of Chaum-
Pedersen proof of knowledge of equality of discrete logarithms and the fact that
a polynomial of degree n has at most n roots. An improved version of this
proof system is given in [Neff 2003]. However, like the Furukawa-Sako scheme,
the zero-knowledge property of the Neff proof system has not been correctly
proved and still remains an open problem [Nguyen and Safavi-Naini 2004]. All
these schemes use the El Gamal encryption system and their security relies on
the discrete logarithm assumption. Based on Neff’s method, Groth [Groth 2003]
proposed a very efficient proof system that uses homomorphic commitments. The
input ciphertexts in this scheme can be encrypted by any homomorphic cryp-
tosystem. A recent direction in designing mix-nets has been to trade off some
privacy or correctness for efficiency [Boneh and Golle 2002, Golle et al. 2002,
Jakobsson et al. 2002].

We proposed a formal security model for shuffles [Nguyen et al. 2004] that
provided a unified approach to the assessment of shuffle systems. The model
rigorously defined the above two security properties with respect to an active

987Nguyen L., Safavi-Naini R., Kurosawa K.: A Provably Secure and Efficient...



adversary. In our approach, the definition of shuffle privacy is motivated by
observing the similarity between a shuffle hiding the underlying permutation,
and an encryption system hiding the input message. The definition of verifiability
is based on the notions of completeness and soundness of the proof system that
proves the output is correctly constructed. We also proposed a new efficient
verifiable shuffle based on the Paillier encryption scheme [Paillier 1999]. The
shuffle uses the Furukawa-Sako approach for characterisation of permutation
matrices but has computations over a composite modulus. We prove security of
our verifiable shuffle scheme in this model.

In this paper we build on our results in [Nguyen et al. 2004] by first proposing
an efficient variant of the Paillier encryption system and using it to construct an
efficient verifiable shuffle scheme. We then use the shuffle scheme to construct an
efficient robust mix-net system with public verifiability. Similar to the original
Paillier scheme, the variant encryption scheme provides semantic security against
adaptive chosen plaintext attacks and homomorphism. However, it has more
efficient encryption, re-encryption and decryption. The decryption method of
our proposed variant is the same as the variant proposed in Paillier’s original
paper, however, as we will note in section 3.4, the original variant is insecure for
his suggested selection of parameters and our proposed variant shows how this
problem can be corrected. The efficiency of the verifiable shuffle based on this
variant is not only due to the encryption system’s efficiency but also the fact
that it becomes possible (Theorem 10) to use smaller size exponents (challenges
in the proof system) and so reduce the cost of each exponentiation.

Our proposed proof system provides the same round efficiency as the Nguyen
et al. and Furukawa-Sako proof systems but it requires less exponentiations.
Compared to Groth’s protocol, it reduces the number of rounds to less than half
and only requires slightly more exponentiations. Our proof system also requires
less rounds and exponentiations compared to Neff’s protocol. By using computa-
tion techniques described in [Menezes et al. 1997], such as the fixed-based comb
method and the simultaneous multiple exponentiation algorithm, the computa-
tion cost of the shuffle can be reduced to 3.4n exponentiations while the same
techniques for the Furukawa-Sako and Groth protocols give 4.8n and 3.5n expo-
nentiations, respectively. Hence overall, the proposed shuffle has the least num-
bers of rounds and exponentiations. (Note that exponentiations in our case is in
modulo N2, which is more expensive than modulo p and so the number of bit
operations in Groth’s shuffle is smaller.) Also, similar to the Groth and Nguyen
et al. schemes [Nguyen et al. 2004], our scheme does not require the message
space to be prime (product of two primes instead).

The organization of the paper is as follows. In section 2, we recall some back-
ground on public-key encryption and shuffles. Section 3 shows our modification
of the Paillier encryption scheme, its improvements on efficiency and the flaw in
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Paillier’s variant scheme. The next section gives a verifiable shuffle scheme based
on our variant of the Paillier system, its security proofs and efficiency analysis.
Section 5 constructs a robust mix-net with public verifiability from the verifiable
shuffle and section 6 concludes the paper.

2 Background

2.1 Notations and Terminology

Let lcm and gcd stand for ‘least common multiple’ and ‘greatest common divi-
sor’, respectively. For a set S, |S| denotes the number of elements in the set and
“x ← S” denotes an element x uniformly chosen from S. {Element|Conditions}
denotes the set of Elements satisfying the Conditions. An algorithm A can
simply be viewed as a machine that takes as input a string x, performs some
operations and outputs a string y. It is denoted by y ← A(x). Let PT denote
polynomial-time, PPT denote probabilistic PT and DPT denote deterministic
PT. Let “Pr[Predicate]” denote the probability that Predicate is true. For a
function f : N → R+, if for every positive number α, there exists a positive
integer l0 such that for every integer l > l0, it holds that f(l) < l−α, then f is
said to be negligible. A problem is said to be computationally difficult if for every
PT algorithm, the probability that the PT algorithm can solve the problem is a
negligible function.

2.2 Public-key Encryption Schemes

2.2.1 Syntax

A public-key encryption scheme consists of a key generation algorithm G, an
encryption algorithm E and a decryption algorithm D. It is denoted by (G, E ,D).

– Key generation: The PPT algorithm G on input 1l outputs (pk, sk) where
pk is the public key, sk is the secret key and l is a security parameter. It is
denoted by (pk, sk) ← G(1l).

– Encryption: The PPT algorithm E takes as input the public key pk and a
plaintext m and outputs a ciphertext c. It is denoted by c ← E(pk,m) or
c ← Epk(m).

– Decryption: The DPT algorithm D takes as input the secret key sk and a
ciphertext c and outputs a plaintext such that if c ← Epk(m) then Dsk(c) =
m, where Dsk(c) (or D(sk, c)) denotes the output of D on input sk and c.

A public-key encryption scheme, such as the El Gamal and Paillier schemes,
may have a re-encryption algorithm. Following the definition in [Wikstrom 2002],
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this means there is a PPT algorithm R that takes as input the public key pk

and a ciphertext and outputs another ciphertext such that for every plaintext
m and its ciphertexts c and c′:

Pr[c′ = Rpk(c)] = Pr[c′ = Epk(m)] (1)

where Rpk(c) (or R(pk, c)) denotes the output of R on input pk and c. A public-
key encryption scheme with a re-encryption algorithm is denoted by (G, E ,D,R).

2.2.2 Security

We briefly recall definitions and notions of security used in this paper and more
details can be found in [Goldreich 2004]. There are two equivalent notions of
security for encryption against chosen plaintext attacks, semantic security (SS-
CPA) and indistinguishability (IND-CPA). A chosen plaintext attack means that
the adversary can obtain ciphertexts corresponding to plaintexts that he adap-
tively chooses. Semantic security intuitively means that whatever the adversary
is able to compute about the plaintext from a challenge ciphertext, can also
be computed without the ciphertext. Indistinguishability means that it is com-
putationally infeasible to distinguish encryptions of two plaintexts of the same
length.

There are also two equivalent definitions of encryption security against chosen
ciphertext attacks, semantic security (SS-CCA) and indistinguishability (IND-
CCA). A chosen ciphertext attack means that the adversary can obtain plain-
texts corresponding to ciphertexts that he adaptively chooses, even after the chal-
lenge ciphertext is given. Another type of security requirement is non-malleability
which means that given a ciphertext, it is computationally infeasible to gener-
ate a different ciphertext such that the corresponding plaintexts are related in a
known manner. It has been proved [Goldreich 2004] that non-malleability against
chosen ciphertext attacks (NM-CCA) is equivalent to SS-CCA and IND-CCA.

2.3 Paillier Public-key System

Key generation: Let N = pq, where p and q are large primes, and λ = lcm(p −
1, q−1). The public key is pk = N and the secret key is sk = λ. Hereafter, unless
stated otherwise, we assume all modular computations are in modulo N2.
Encryption: Plaintext m ∈ ZN can be encrypted by choosing r ← Z∗

N and com-
puting the ciphertext e = rN (1 + mN). (Paillier encryption is originally defined
as e = rNgm, where g ∈ Z∗

N2 and its order in modulo N2 is a non-zero multiple
of N . For efficiency, we use g = 1 + N . Our results do not depend on this choice
and are true for all values of g.)
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Re-encryption: A Paillier ciphertext e for a plaintext m can be re-encrypted as
e′ = r′Ne for the same plaintext m, where r′ ← Z∗

N . The re-encryption algorithm
satisfies the condition (1) above.
Decryption: Ciphertext e ∈ Z∗

N2 can be decrypted as m = L(eλ mod N2)/λ mod
N , where the function L takes its input from the set {u ∈ ZN2 |u = 1 mod N}
and is defined as L(u) = (u − 1)/N .
Computational Composite Residuosity (CCR) Assumption: Suppose z ← Z∗

N2 is
given, the Computational Composite Residuosity problem is to find x ∈ ZN

such that there exists r ∈ Z∗
N satisfying z = rN (1 + xN) mod N2. The CCR

assumption states that the CCR problem is computationally difficult.
Decisional Composite Residuosity (DCR) Assumption: A number z ∈ Z∗

N2 is said
to be a wth residue mod N2 if there exists a number y ∈ Z∗

N2 such that z = yw.
Let WN denote the set of N th residues modulo N2. The Decisional Compos-
ite Residuosity problem is to distinguish between an element uniformly chosen
from the set WN and an element uniformly chosen from the set Z∗

N2 . The DCR
assumption states that the DCR problem is computationally difficult.
Security: Theorem 1 states security of the Paillier scheme and its proof can be
found in [Paillier 1999].

Theorem 1. The Paillier encryption scheme provides SS-CPA if and only if the
DCR assumption holds.

NM-CCA robust threshold encryption scheme: Using the twin-encryption paradigm
[Naor and Yung 1990], the Shamir secret sharing scheme [Shamir 1979] and a
simulation-sound proof of equality of plaintexts, Fouque and Pointcheval
[Fouque and Pointcheval 2001] proposed an NM-CCA robust threshold encryp-
tion scheme based on the Paillier public-key system that is proved secure in the
random oracle model.

2.4 Formal Model of Verifiable Shuffles

We proposed a formal model for verifiable shuffles [Nguyen et al. 2004]. The
model defines a verifiable shuffle as a tuple of three elements: a public-key scheme
with a re-encryption algorithm RP, a PPT algorithm S for shuffling and a proof
system (P,V). The shuffling algorithm takes a list of ciphertexts of the public-key
scheme and outputs a permuted list of their re-encryptions. The proof system
proves that the output is really a permutation of re-encryptions of the input
ciphertexts.

The model also specifies two security requirements for verifiable shuffles, pri-
vacy and verifiability. Privacy requires an honest shuffle to protect its secret
permutation whereas verifiability requires that any attempt by a malicious shuf-
fle to produce an incorrect output must be detectable. The definition of privacy
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is based on the similarity between a shuffle hiding the permutation, and a ci-
phertext hiding the message. Adaptive attacks are modelled by an active adver-
sary that uses chosen permutation attacks (CPAS) (similar to chosen plaintext
attacks) or chosen transcript attacks (CTAS) (similar to chosen ciphertext at-
tacks). For CPAS , the adversary can obtain transcripts of the shuffle executions
corresponding to permutations that the adversary adaptively chooses. For CTAS ,
the adversary obtains permutations that correspond to valid shuffle transcripts
that it adaptively chooses. The notions of privacy for shuffles are defined in line
with semantic security and indistinguishability for encryption. Semantic privacy
(SP) formalizes the intuition that whatever is computable about the permuta-
tion from a shuffle execution transcript must also be computable without the
transcript. Indistinguishability (IND) for shuffles means that it is infeasible to
distinguish transcripts of two shuffle executions that correspond to two permu-
tations of the same size. It has been proved that these two notions of privacy
are equivalent and can be interchangeably used [Nguyen et al. 2004].

The definition of verifiability mainly depends on the verifiable shuffle’s proof
system. The proof system proves that the shuffle’s output is a permutation of
re-encryptions of the input ciphertexts. The proof system should satisfy two
conditions, completeness and soundness. The completeness condition states that
if the output is truly a permutation of re-encryptions of the input, then the proof
system accepts with overwhelming probability. The soundness condition means
that if the proof system accepts with overwhelming probability, then the output
is truly a permutation of re-encryptions of the input.

We will show that our proposed verifiable shuffle system achieves SP-CPAS

and verifiability based on some computational assumptions.

2.5 Paillier-based Verifiable Shuffle

We proposed [Nguyen et al. 2004] an efficient verifiable shuffle scheme based on
the Paillier public-key system and proved its security in the formal model above.
Similar to the Furukawa-Sako scheme, a permutation is represented as a ma-
trix (Definition 2) and the proof system proves validity of a set of equations
derived from the matrix (Theorem 3). Computation over a composite modulus
complicates the security proof and requires another theorem, Theorem 4.

Definition 2. A matrix (Aij)n×n is a permutation matrix modulo l if it satisfies
the following for some permutation π

Aij =
{

1 mod l if π(i) = j

0 mod l otherwise

Theorem 3. ([Nguyen et al. 2004]) A matrix (Aij)n×n is a permutation matrix
modulo N , where N = pq with primes p and q, if for all i, j and k, gcd(Aij , N)
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is different from p and q and both of the following equations hold:

n∑
l=1

AliAlj =
{

1 mod N if i = j

0 mod N otherwise
(2)

n∑
l=1

AliAljAlk =
{

1 mod N if i = j = k

0 mod N otherwise
(3)

Theorem 4. ([Nguyen et al. 2004]) For a set of vectors S, let 〈S〉k denote the
vector space spanned by S over Zk (so the coordinates of a vector in 〈S〉k are in
Zk). Consider a set of vectors Sn = {(1, c1, ..., cn) | (c1, ..., cn ∈ ZN ) ∧ (�Qn ⊆
Sn : |Qn| = n + 1 ∧ 〈Qn〉p = Zn+1

p ∧ 〈Qn〉q = Zn+1
q )} (that means Sn is the

set of vectors (1, c1, ..., cn), where c1, ..., cn ∈ ZN and there does not exist any
subset Qn ⊆ Sn of size n + 1 such that Qn spans Zn+1

p and Zn+1
q ). Then |Sn| ≤

(p + q)Nn−1.

2.6 Robust Mix-nets

A mix-net that consists of a set of servers receives as input a list of cipher-
texts. The servers collectively permute and decrypt the input list and the mix-
net finally outputs a permuted list of the corresponding plaintexts. By keeping
the permutation secret, the mix-net can hide the correspondence between input
items and output items hence providing privacy for the originators and receivers
of messages. Informally, a robust mix-net must satisfy the following properties:

– privacy: it is infeasible for an adversary to output a pair of an input item
and the corresponding output item of an honest user with probability non-
negligibly better than a random guess.

– robustness: the probability that the mix-net produces correct output is neg-
ligibly less than 1.

It is also desirable for a robust mix-net to achieve

– public verifiability: that means the correctness of the mix-net’s operation can
be verified by any participant in the system.

3 Modified-Paillier Public-key System

In the Paillier encryption scheme, encryption and re-encryption requires an expo-
nentiation to power N . The following modification of the Paillier scheme allows
encryption and re-encryption operation to use exponentiation of a fixed base
to a random power much smaller than N . Due to the fixed base, we can use
“fixed-based comb method” [Menezes et al. 1997] which improves efficiency for
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multiple exponentiations where the base is fixed and the exponent varies. The
scheme preserves the homomorphic property but requires a new assumption, the
Decisional Fixed Base (DFB) assumption, which is stronger than the DCR as-
sumption. It has an efficient decryption algorithm that uses the same technique
as used in Paillier’s efficient-decryption variant scheme in [Paillier 1999]. We will
also show that the originally proposed parameter selection for Paillier’s variant
scheme makes it insecure and propose a parameter selection method that results
in a secure system.

3.1 Description

Key generation: Let lN and lη be security parameters. Suppose p and q are
distinct lN/2-bit strong primes and p′ and q′ are distinct lη/2-bit primes, such
that p′ is a divisor of p− 1 but not a divisor of q − 1 and q′ is a divisor of q − 1
but not a divisor of p− 1. Suppose N = pq, η = p′q′, θ has order ηN in modulo
N2 and γ = θN . The public key is pk = (N, θ, γ) and the secret key is sk = η.
Encryption: Plaintext m ∈ ZN can be encrypted by choosing an r ← {0, 1}lη

and computing the ciphertext e = γr(1 + mN).
Re-encryption: A Modified-Paillier ciphertext e can be re-encrypted as another
ciphertext e′ = e × γr′

of the same plaintext m, where r′ ← {0, 1}lη .
Decryption: Ciphertext e ∈ Z∗

N2 can be decrypted as m = L(eη mod N2)/η

mod N , where the function L takes its input from the set {u ∈ ZN2 |u =
1 mod N} and is defined as L(u) = (u− 1)/N . This can be done very efficiently
using the Chinese Remainder Theorem [Paillier 1999]. Note that a Modified-
Paillier ciphertext is also a valid Paillier ciphertext, so the decryption can also
be performed using λ = lcm(p − 1, q − 1), as in the Paillier encryption scheme.

3.2 New complexity assumptions

Before proving security of the Modified-Paillier public-key system, we present
new complexity assumptions underlying security of the Modified-Paillier public-
key system.

Computational Fixed Base (CFB) Assumption: Suppose N , θ and γ are
generated as in the key generation algorithm. Let CN,γ be the set {γr(1 + xN) ∈
Z∗

N2 | r ← {0, 1}lη , x ← ZN} (which is the set of Modified-Paillier ciphertexts).
The Computational Fix Based problem is defined as follows: given (N, θ, γ) and
z ← CN,γ , compute x ∈ ZN such that there exists r ∈ {0, 1}lη satisfying z =
γr(1 + xN) mod N2. The Computational Fix Based assumption states that the
Computational Fix Based problem is computationally difficult.

The relationship between the CFB assumption and the CCR assumption is
stated in Lemma 5.
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Lemma 5. If the CFB assumption holds, then the CCR assumption holds.

Proof. To prove that the CFB assumption leads to the CCR assumption, we
show that if a PPT algorithm A can break the CCR assumption, then a PPT
algorithm B, which solves the CFB problem, can be constructed as follows. If B
is given (N, θ, γ, z) where z ← CN,γ , B generates r ← Z∗

N and gives (N, zrN ) to
A.

We observe that if z is uniformly distributed in CN,γ , then zrN is uniformly
distributed in the set Z∗

N2 . Therefore, if A can compute x ∈ ZN such that there
exists r′ ∈ Z∗

N satisfying zrN = r′N (1 + xN) mod N2, then B can compute
x ∈ ZN such that there exists r” ∈ {0, 1}lη satisfying z = γr”(1 + xN) mod N2.
In other words, if A can break the CCR assumption, then B can solve the CFB
problem.

The semantic security of the Modified-Paillier public-key system relies on the
Decisional Fixed Base Assumption, which is presented as follows.

Decisional Fixed Base (DFB) Assumption: Suppose N , θ and γ are gen-
erated as in the key generation algorithm, and CN,γ is defined as above. Let C0

N,γ

be the set {γr | r ← {0, 1}lη}, which is a subset of CN,γ . The Decisional Fix
Based problem is defined as follows: given (N, θ, γ), distinguish between a uni-
form distribution on the set C0

N,γ and a uniform distribution on the set CN,γ . The
Decisional Fix Based assumption states that the Decisional Fix Based problem
is computationally difficult.

The relationship between the DFB assumption and the DCR assumption is
stated in Lemma 6.

Lemma 6. If the DFB assumption holds, then the DCR assumption holds.

Proof. To prove the lemma, we show that if a PPT algorithm A can break the
DCR assumption, then a PPT algorithm B, which solves the DFB problem, can
be constructed as follows. To decide if a value z is uniformly chosen from CN,γ

or from C0
N,γ , B generates r ← Z∗

N and gives zrN to A.
We observe that if z is uniformly distributed in C0

N,γ , then zrN is uniformly
distributed in the set SN of N -th residues modulo N2; and if z is uniformly
distributed in CN,γ , then zrN is uniformly distributed in the set Z∗

N2 . Therefore,
if A can distinguish between a uniform distribution on the set SN and a uniform
distribution on the set Z∗

N2 , then B can distinguish between a uniform distribu-
tion on the set C0

N,γ and a uniform distribution on the set CN,γ . In other words,
if A can break the DCR assumption, then B can solve the DFB problem.
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3.3 Security

Security of the Modified-Paillier public-key system is stated in Theorem 7.

Theorem 7. The Modified-Paillier encryption scheme has SS-CPA if and only
if the DFB assumption holds.

Proof. Assume that m0 and m1 are two known plaintexts and e is the Modified-
Paillier ciphertext of either m0 or m1. Then e is the ciphertext of m0 if and only
if e(1 + m0N)−1 is an exponentiation of γ. Therefore, if a party can distinguish
an exponentiation of γ, he can break SS-CPA of the Modified-Paillier encryption
scheme, and vice versa.

3.4 Parameter Selection in Paillier’s Variant Scheme

Paillier proposed a decryption-efficient variant [Paillier 1999] of his public-key
cryptosystem. In this variant, the public key includes g of order αN (modulo
N2). Paillier recommended the secret key α to be a prime. However, if α is a
prime, then the knowledge of g allows factorization of N = pq or finding the
secret α, as shown in the following. Since g is of order αN (modulo N2), α is
a prime and gλN = 1 mod N2 where λ = lcm(p − 1, q − 1), α is a divisor of λ.
This means that α must divide p − 1 or q − 1, or both. If it divides both p − 1
and q− 1, then it divides N − 1 and can be recovered from factoring N − 1. If α

divides p − 1 but not q − 1, then let h = g(N−1)N mod N2. It can be seen that
h = 1 mod q and h 	= 1 mod p, so we can compute q = gcd(h− 1, N) and hence
N can be factored.

The flaw can be fixed by choosing g of order ηN modulo N2 instead, where
η is computed as in our Modified-Paillier Public-key System.

Our proposed modification shares the decryption algorithm of this scheme
but has a more efficient encryption algorithm because each encryption in our
scheme costs only about one exponentiation of a fixed base to a random power
much smaller than N . In Paillier’s variant scheme, each encryption costs either
one exponentiation to a power very much larger than N or two exponentiations.

4 A Verifiable Shuffle based on the Modified-Paillier
Public-key System

4.1 Description

We construct a verifiable shuffle scheme (RP,S, (P,V)), where the public-key
encryption scheme with a re-encryption algorithm RP is our proposed Modified-
Paillier scheme, S is a PPT algorithm for shuffling and (P,V) is a proof system
for verifiability. Let the system public key be pk = (N, θ, γ), where N = pq
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with primes p and q, and let the secret key be sk = η, as generated in the key
generation algorithm of the Modified-Paillier public-key scheme. The shuffling
algorithm S takes pk, a list of Modified-Paillier ciphertexts e1, ..., en ∈ CN,γ

and a permutation π and outputs another list of Modified-Paillier ciphertexts
e′1, ..., e

′
n ∈ CN,γ , where CN,γ is defined in the definition of the CFB assump-

tion. The proof system (P,V), which is described in the next subsection, must
prove the existence of a permutation π and r1, ..., rn ∈ {0, 1}lη such that e′i =
γrieπ−1(i), i = 1, ..., n.
Outline of the proof system
The proof system is based on ideas underlying the Furukawa-Sako proof system
[Furukawa and Sako 2001] and the Nguyen et al. proof system
[Nguyen et al. 2004]. A permutation is also represented as a permutation ma-
trix, which is defined in Definition 2. It also relies on Theorem 3, which states
conditions of a permutation matrix modulo N .

Representing the permutation π used in the shuffle as a permutation matrix,
the shuffle’s proof system, which proves the correctness of the shuffle, must show
the existence of a permutation matrix modulo N (Aij)n×n and {ri ∈ {0, 1}lη |i =
1, ..., n} satisfying the following relationship between input and output items:

e′i = γri

n∏
j=1

e
Aji

j , i = 1, ..., n (4)

Theorem 3 states conditions to achieve a permutation matrix modulo N .
Then the proof system needs to prove the existence of a matrix (Aij)n×n and
{ri|i = 1, ..., n} satisfying equation 4 and the conditions on the matrix, as stated
in Theorem 3.

In the proof system, based on the CFB assumption, it is computationally
difficult for the prover to compute p and q. Hence, for any matrix (Aij)n×n the
prover can generate, “gcd(Aij , N) is different from p and q”. Therefore, based
on Theorem 3, the proof system needs to prove the following statements:

– Given {ei} and {e′i}, {e′i} can be expressed as equation (4) using {ri} and a
matrix that satisfies equation (2). The part 〈({g̃i

′}, g̃′, e′, {ẇi}, ẇ), {ci}, ({si},
s̃, s, v)〉 of the proof system proves this relationship.

– Given {ei} and {e′i}, {e′i} can be expressed as equation (4) using {ri} and a
matrix that satisfies equation (3). The part 〈({g̃i

′}, g̃′, e′, {ṫi}, {v̇i}, v̇), {ci},
({si}, s̃, s, u)〉 of the proof system proves this relationship.

– The matrix and {ri} in the above two statements are the same. The same
part 〈({g̃i

′}, g̃′, e′), {ci}, ({si}, s̃, s)〉, which is used to show the above two
relationships, proves this statement.

997Nguyen L., Safavi-Naini R., Kurosawa K.: A Provably Secure and Efficient...



4.2 Proof System

The proof system (P,V) proves that the prover P knows a permutation π such
that there exist r1, ..., rn ∈ {0, 1}lη satisfying e′i = γrieπ−1(i). The input to
the proof system is N, θ, γ, {ei}, {e′i}, i = 1, ..., n. Suppose there is a publicly
known set, {g̃i}n

i=1, of elements uniformly generated from CN,γ . Choose M ∈ ZN

such that (p + q)/M is negligible. Let the permutation π be represented by a
permutation matrix modulo N (Aij)n×n. The protocol is as follows:

1. P generates: αi ← ZN , α, r̃i, α̃, δi, ρ, ρi, τ, τi ← {0, 1}lη , i = 1, ..., n

2. P computes in mod N2:

g̃i
′ = γr̃i

n∏
j=1

g̃j
Aji , i = 1, ..., n

g̃′ = γα̃
n∏

j=1

g̃j
αj

e′ = γα
n∏

j=1

e
αj

j

ṫi = γδi(1 + N

n∑
j=1

3αjAji), i = 1, ..., n

v̇i = γρi(1 + N
n∑

j=1

3α2
jAji), i = 1, ..., n

v̇ = γρ(1 + N

n∑
j=1

α3
j )

ẇi = γτi(1 + N

n∑
j=1

2αjAji), i = 1, ..., n

ẇ = γτ (1 + N

n∑
j=1

α2
j )

3. P −→ V: {g̃i
′}, g̃′, e′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ, i = 1, ..., n

4. P ←− V: challenges {ci}(i=1,...,n), ci ← ZM

5. P −→ V:

si =
n∑

j=1

Aijcj + αi mod N, i = 1, ..., n

s̃ = θ
∑ n

i=1 r̃ici+α̃
n∏

i=1

g̃i
di mod N
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s = θ
∑ n

i=1 rici+α
n∏

i=1

edi
i mod N

u = θ
∑ n

i=1 ρici+
∑ n

i=1 δic
2
i +ρ mod N

v = θ
∑ n

i=1 τici+τ mod N

where di = (
∑n

j=1 Aijcj + αi − si)/N, i = 1, ..., n (so di can only be 0 or 1)

6. V verifies in mod N2:

s̃N
n∏

j=1

g̃j
sj = g̃′

n∏
j=1

g̃j
′cj (5)

sN
n∏

j=1

e
sj

j = e′
n∏

j=1

e
′cj

j (6)

uN (1 + N
n∑

j=1

(s3
j − c3

j )) = v̇
n∏

j=1

v̇j
cj ṫj

c2
j (7)

vN (1 + N

n∑
j=1

(s2
j − c2

j )) = ẇ

n∏
j=1

ẇj
cj (8)

4.3 Security

The proposed shuffle provides SP-CPAS and Verifiability as defined in
[Nguyen et al. 2004]. Proofs are based on security proofs of the verifiable shuffle
scheme in [Nguyen et al. 2004] and given in Appendix A.

Theorem 8. The shuffle achieves Verifiability if the CFB assumption holds and
output and input consist of valid Modified-Paillier ciphertexts.

Theorem 9. The shuffle achieves SP-CPAS if the DFB assumption holds.

Theorem 10, which is the generalization of Theorem 4, is used to prove that the
proposed verifiable shuffle scheme provides Verifiability even if the challenges ci,
i = 1, ..., n are chosen from ZM instead of ZN .

Theorem 10. Let U be a subset of ZN . Consider a set Sn = {(1, c1, ..., cn) |
(c1, ..., cn ∈ U) ∧ (�Qn ⊆ Sn : |Qn| = n + 1 ∧ 〈Qn〉p = Zn+1

p ∧ 〈Qn〉q = Zn+1
q )}

(that means Sn is the set of vectors (1, c1, ..., cn), where c1, ..., cn ∈ U and there
does not exist any subset Qn ⊆ Sn of size n + 1 such that Qn spans Zn+1

p and
Zn+1

q ). Then |Sn| ≤ (p + q)|U |n−1.

Proof. This proof is the same as the proof of Theorem 4, except that ‘ZN ’ in
the proof of Theorem 4 is replaced by ‘U ’ in this proof. The proof is shown as
follows.

The theorem is proved by induction.
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– n = 1: Consider a set of vectors S1 ⊆ {(1, c)|c ∈ U} satisfying |S1| > (p+ q);
and a vector (1, c1) ∈ S1. Consider a set R1 = {(1, c1 + kp mod N)|k ∈
Zq} ∪ {(1, c1 + kq mod N)|k ∈ Zp}. As |R1| = p + q − 1, there exists c′1 ∈ U

such that (1, c′1) ∈ S1 but (1, c′1) /∈ R1. Then Q1 = {(1, c1), (1, c′1)} satisfies
(|Q1| = 2) ∧ (〈Q1〉p = Z2

p) ∧ (〈Q1〉q = Z2
q).

– Suppose the theorem holds for n. We prove it is also true for n + 1. Let a
set Sn+1 = {(1, c1, ..., cn+1)|(c1, ..., cn+1 ∈ U) ∧ (�Qn+1 ⊆ Sn+1 : |Qn+1| =
n + 2 ∧ 〈Qn+1〉p = Zn+2

p ∧ 〈Qn+1〉q = Zn+2
q )}. Consider S′

n = {(1, c1, ..., cn)
| ∃cn+1 ∈ U : (1, c1, ..., cn, cn+1) ∈ Sn+1}, there are two possibilities:

1. If �Q′
n ⊆ S′

n : |Q′
n| = n + 1 ∧ 〈Q′

n〉p = Zn+1
p ∧ 〈Q′

n〉q = Zn+1
q , then

|S′
n| ≤ (p + q)|U |n−1, as the theorem holds for n. So |Sn+1| ≤ |S′

n||U | ≤
(p + q)|U |n.

2. If ∃Q′
n ⊆ S′

n : |Q′
n| = n + 1∧ 〈Q′

n〉p = Zn+1
p ∧ 〈Q′

n〉q = Zn+1
q , select a set

T of n + 1 vectors (1, ci1, ..., ci(n+1)) ∈ Sn+1, i = 1, ..., n + 1 such that
Q′

n = {(1, ci1, ..., cin)}

Let d = det

⎛
⎝ 1 c11 ... c1n

.. .. .. ..

1 c(n+1)1 ... c(n+1)n

⎞
⎠ mod N , then gcd(d,N) = 1, so d−1

mod N exists.

For each vector x = (1, x1, ..., xn+1) ∈ Sn+1 (including those in T ), let

dx = det

⎛
⎜⎜⎝

1 c11 ... c1(n+1)

.. .. .. ..

1 c(n+1)1 ... c(n+1)(n+1)

1 x1 ... xn+1

⎞
⎟⎟⎠ = dxn+1 − F (x1, ..., xn) mod N

for some function F. The conditions of Sn+1 lead to either dx = 0 mod
p or dx = 0 mod q.

Suppose dx = 0 mod p, then xn+1 = d−1F (x1, ..., xn) mod p, so the
number of possible vectors x = (1, x1, ..., xn+1) is no more than q|U |n.
Similarly for the case dx = 0 mod q, the number of possible vectors
x = (1, x1, ..., xn+1) is no more than p|U |n and so |Sn+1| ≤ (p + q)|U |n.

4.4 Efficiency

Theorem 10 allows ci, i = 1, ..., n to be chosen in ZM , which is much smaller than
ZN as required in the original verifiable shuffle scheme in [Nguyen et al. 2004].
This reduces the cost of exponentiations to the exponents ci, i = 1, ..., n. Fol-
lowing [Furukawa and Sako 2001] and using computation techniques such as the
fixed-based comb method and the simultaneous multiple exponentiation algo-
rithm [Menezes et al. 1997], the number of exponentiations can be substantially
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reduced. The following table summarizes the result of efficiency comparison be-
tween some of the most well-known shuffle schemes.

Verifiable Number of (No.) No. Exponentiations, No. Rounds
Shuffles Exponentiations efficient techniques

Neff 23n 6.3n 7
Furukawa-Sako 18n 4.8n 3

Groth 12n 3.5n 7
Modified-Paillier 13n 3.4n 3

Table 1: Efficiency Comparison of Verifiable Shuffle schemes

5 A Robust Mix-net based on the Modified-Paillier
Public-key System

5.1 Overview

The main motivation for analysing and constructing verifiable shuffles is to con-
struct robust mix-nets that consist of the following polynomially bounded partic-
ipants. Users send ciphertexts to the mix-net. Each mix-server (also mix-centre)
is implemented as a verifiable shuffle. It takes as input a list of ciphertexts and
outputs a permuted list of the re-encrypted ciphertexts to the next mix server.
Decryption servers collaboratively decrypt the list of ciphertexts output by the
last mix-server. A verifier verifies correctness of the mix-net operation. All com-
munication is assumed accessible by all mix-centres.

Inputs to a mix-net must be encrypted by an NM-CCA encryption scheme
[Jakobsson 1998]. Otherwise, an adversary can trace an input ciphertext ci by
creating another input ciphertext ci′ whose plaintext is related to ci’s plaintext
in a known manner and checking the mix-net’s output for plaintexts that satisfy
the relationship. An example of this attack is shown in [Pfitzmann 1994] against
the mix-net in [Park et al. 1993]. It is also desirable to distribute the decryption
ability, so that a minimum number of decryption servers, the threshold, is needed
to decrypt the ciphertexts. The decryption process should also be robust that
means the corrupted decryption servers should not be able to prevent uncor-
rupted ones from correctly decrypting the ciphertexts. In short, an NM-CCA
robust threshold encryption scheme is required.
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5.2 Model

(Set up) There are t mix servers, S1, · · · , St, one or more decryption servers and
a verifier V. Each mix server is implemented by a verifiable shuffle that shuffles
its input list and proves the correctness of its operation. If the proof succeeds,
the shuffle’s output will be used as the input to the next shuffle. Otherwise, the
next shuffle uses the previous shuffle’s input.

The shuffle uses an NM-CCA robust threshold version of the Modified-Paillier
encryption scheme, which is constructed similar to the NM-CCA robust thresh-
old version of the Paillier encryption scheme
[Fouque and Pointcheval 2001]. A ciphertext encrypted using this scheme has
the form (e, aux), where e is the normal Modified-Paillier ciphertext and aux

allows the ciphertext to be non-malleable.
The secret key sk = λ, where λ = lcm(p − 1, q − 1), is shared among the

decryption servers. Note that the secret key is λ instead of η as in the Modified-
Paillier public-key system. The reason will be explained in the security analysis
of the mix-net.
(Operations)

1. Users send the first mix-server ciphertexts encrypted by the public key of the
mix-net (the NM-CCA robust threshold version of the Modified-Paillier en-
cryption scheme). An input ciphertext (e, aux) needs to pass non-malleability
test by the verifier before sub-ciphertext e is taken to the first mix-server.
Suppose L0 = (c1, · · · , cn) is a list of those sub-ciphertexts taken to the first
mix-server.

2. Each Si in turn computes a randomly permuted and re-encrypted list Li =
(a′

τi(1)
, · · · , a′

τi(n)) from Li−1 = (a1, · · · , an), where a′
i is a re-encryption of

ai and τi is a secretly chosen random permutation on {1, · · · , n}, and then
outputs Li. Si runs a proof system (P,V) to prove that Li is a permutation
of re-encryptions of elements in Li−1.
In case the proof does not succeed, Si is excluded from the mix-net operation.
If i 	= t, the mix-centre Si+1 that receives the output of the corrupted mix-
centre Si, will instead use Si’s input list as its input, effectively disregarding
Si. If i = t, Si’s input list will be sent to the decryption servers.

3. The decryption servers jointly decrypt ciphertexts, which are sent from
the mix-centres, in a robust way and output a list of messages Lout =
(mφ(1), · · · ,mφ(n)), where φ = τt · · · τ1 and mi is a plaintext of ci.

5.3 Security

As a formal security model for mix-nets has not been well defined, we can only
give an informal statement on our mix-net’s security.
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Robustness and public verifiability of the mix-net result from verifiability of
its shuffles (mix-centres). However, as stated in Theorem 8, verifiability of the
shuffle depend on the condition that its output and input consist of only valid
Modified-Paillier ciphertexts. In case this condition does not hold, the output
and input ciphertexts are still valid Paillier ciphertexts. And we show that the
shuffle’s proof system still proves that the output is a permutation of Paillier re-
encryptions of its input ciphertexts. This is stated in Theorem 11 and its proof
is actually one part of the proof for Theorem 8 that can be found in Appendix
A. Theorem 11 implies robustness, and as any honest party can be the verifier,
the mix-net achieves public verifiability.

Theorem 11. Assuming the CFB assumption holds, if the proof system of a
mix-centre accepts with non-negligible probability, then its output is a permuta-
tion of Paillier re-encryptions of its input ciphertexts.

The mix-net’s privacy relies on its shuffles’ SP-CPAS and the following as-
sumption, which states the indistinguishability between a Paillier ciphertext and
a Modified-Paillier ciphertext.

Decisional Paillier Ciphertext (DPC) Assumption: Suppose N , θ and γ

are generated and CN,γ is defined as in the CFB assumption’s definition. The
Decisional Paillier Ciphertext problem is defined as follows: given (N, θ, γ), dis-
tinguish between a uniform distribution on the set CN,γ and a uniform distribu-
tion on the set Z∗

N2 . The Decisional Paillier Ciphertext assumption states that
the Decisional Paillier Ciphertext problem is computationally difficult.

Finally, an informal statement on our mix-net’s security is as follows. The
mix-net system provides robustness and public verifiability under the CFB as-
sumption. The mix-net system provides privacy under the DFB and DPC as-
sumptions.

5.4 NM-CCA robust threshold encryption scheme

To improve efficiency of the NM-CCA robust threshold encryption scheme, in-
stead of using the twin-encryption paradigm as in
[Fouque and Pointcheval 2001], we may combine SS-CPA encryption and proof
of knowledge to provide NM-CCA. However, there is no known scheme that com-
bines the Paillier encryption scheme and proof of knowledge to provide NM-CCA
(even in the random oracle model). A combination of the El Gamal encryption
scheme and the Schnorr proof system has been proved to provide NM-CCA in
the random oracle model but the proof requires either another strong assump-
tion [Tsiounis and Yung 1998] or is in the generic model
[Schnorr and Jakobsson 2000]. Abe [Abe 2004] showed an approach of combin-
ing encryption and proof of knowledge to achieve NM-CCA, but the construction
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does not preserve the homomorphic property which is essential for applications
to mix-nets. (For robustness and the threshold property, the same method in
[Fouque and Pointcheval 2001] can be used.)

The following alteration of the Paillier and Modified-Paillier schemes com-
bines encryption with proof of knowledge and maintains the homomorphic prop-
erty. Let Epa and Emo denote the Paillier and Modified-Paillier encryption algo-
rithms, respectively. For the Paillier scheme, the ciphertext of a message m ∈ ZN

is (e, c, s, rs), where e = Epa(r,m), c = H(e, Epa(rw, w)), s = mc + w mod N ,
rs = rcrw mod N ; H is a hash function H : {0, 1}∗ → ZN and w ← ZN ,
r, rw ← Z∗

N . Similar for the Modified-Paillier scheme, a ciphertext of message
m ∈ ZN is (e, c, s, rs), where g = Emo(r,m), c = H(e, Emo(rw, w)), s = mc + w

mod N , rs = rc + rw and w ← ZN , r ← {0, 1}lη , rw ← Z. Validity of
a ciphertext can be verified by checking whether c

?= H(e, Epa(rs, s)/ec) (or
c

?= H(e, Emo(rs, s)/ec) respectively). Intuitively, e is the normal ciphertext and
c, s and rs show that the ciphertext has been encrypted by someone with the
knowledge of r and m. However, proving that these combinations provide NM-
CCA remains a challenge.

6 Conclusion

In this paper, we proposed a variant of the Paillier encryption scheme that
reduces computation costs of encryption, re-encryption and decryption while
still preserving the homomorphic property. We then presented a verifiable shuf-
fle system based on the Modified-Paillier public-key encryption system, proved
its security and compared its performance with other efficient shuffle systems.
We finally used the shuffle to construct a robust mix-net. An interesting fu-
ture direction is to construct a “Universal Re-encryption” scheme for Mix-nets
[Golle et al. 2004], based on the Modified-Paillier system.
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A Security Proofs

A.1 Proof of Theorem 8 for Verifiability

In the proof system, based on the CFB assumption, it is computationally difficult
for the prover to compute p and q. Hence, for any matrix (Aij)n×n the prover
can generate, gcd(Aij , N) is different from p and q. Therefore, based on Theorem
3, the objective of the proof system can be re-stated as follows. The common
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input to the proof system includes N, θ, γ, {ei}, {e′i}, i = 1, ..., n. The auxiliary
input to the prover P includes permutation π and r1, ..., rn ∈ {0, 1}lη satisfying
e′i = γrieπ−1(i) and does not include the secret key sk = η. The proof system
(P,V) proves that P knows a matrix (Aij)n×n such that equations (2) and (3)
hold and there exist r1, ..., rn ∈ {0, 1}lη satisfying

e′i = γri

n∏
j=1

e
Aji

j , i = 1, ..., n (9)

Based on the definition of Verifiability, Theorem 8 can be concluded from
Theorem 12 and Theorem 13, which state the Completeness and Soundness
properties of the proof system. We also need Theorem 10 to prove Theorem 13.
Theorems 12 and 13 are presented and proved as follows.

Theorem 12. (Completeness) If P knows a matrix (Aij) such that there exist
r1, ..., rn ∈ {0, 1}lη satisfying equations (2), (3) and (9), and P also performs
correctly in the protocol, then V always accepts.

Proof. Suppose P knows a matrix (Aij) such that there exist r1, ..., rn ∈ {0, 1}lη

satisfying equations (2), (3) and (9); and {g̃i
′}, g̃′, g′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ, {ci},

{si}, s̃, s, u, v for i = 1, ..., n are generated as specified in the protocol. Then
the verifier outputs accept, as the following equations hold.

– s̃N
∏n

j=1 g̃j
sj = (θ

∑ n
i=1 r̃ici+α̃

∏n
i=1 g̃i

di)N
∏n

j=1 g̃j

∑ n
i=1 Ajici+αj

= (γα̃
∏n

j=1 g̃j
αj )

∏n
i=1(γ

r̃i
∏n

j=1 g̃j
Aji)ci = g̃′

∏n
i=1 g̃i

′ci .

– sN
∏n

j=1 e
sj

j = (θ
∑ n

i=1 rici+α
∏n

i=1 edi
i )N

∏n
j=1 e

∑ n
i=1 Ajici+αj

j

= (γα
∏n

j=1 e
αj

j )
∏n

i=1(γ
ri

∏n
j=1 e

Aji

j )ci = g′
∏n

i=1 e′ci
i .

– uN (1 + N
∑n

j=1(s
3
j − c3

j )) = (θ
∑ n

i=1 ρici+
∑ n

i=1 δic
2
i +ρ)N (1+

N
∑n

j=1((
∑n

i=1 Ajici + αj)3 − c3
j )) = γρ(1 + N

∑n
j=1 α3

j )
∏n

i=1(γ
ρi(1+

N
∑n

j=1 3α2
jAji))ci

∏n
i=1(γ

δi(1 + N
∑n

j=1 3αjAji))c2
i = v̇

∏n
i=1 v̇i

ci ṫi
c2

i .

– vN (1+N
∑n

j=1(s
2
j−c2

j )) = (θ
∑ n

i=1 τici+τ )N (1+N
∑n

j=1((
∑n

i=1 Ajici+αj)2−
c2
j )) = γτ (1 + N

∑n
j=1 α2

j )
∏n

i=1(γ
τi(1 + N

∑n
j=1 2αjAji))ci = ẇ

∏n
i=1 ẇi

ci .

Theorem 13. (Soundness) Suppose the output and input of the shuffle consist
of valid Modified-Paillier ciphertexts. Under the CFB assumption, if V accepts
with non-negligible probability, then P knows a matrix (Aij) such that there exist
r1, ..., rn ∈ {0, 1}lη satisfying equations (2), (3) and (9).

Proof. We first prove Theorem 11. It can be proved in the same way as the
Soundness proof for Verifiability of the Nguyen et al. shuffle scheme in
[Nguyen et al. 2004] (in the proof of Theorem 5 in that paper), except that the
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CFB assumption and Theorem 10 (in the case U = ZM ) are used instead of the
CCR assumption and Theorem 4, respectively. Intuitively, the similarity is due
to the fact that the Nguyen et al. proof system and this proof system have the
same messages, which include a commitment ({g̃i

′}, g̃′, e′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ),
a challenge {ci} and a response ({si}, s̃, s, u, v). And in both proof systems, the
verifier needs to check the same equations, i.e. equations (5), (6), (7) and (8).

We have {ei} and {e′i} are valid Modified-Paillier ciphertexts. Thus, if {e′i}
is a permutation of Paillier re-encryptions of {ei}, then there exist r1, ..., rn ∈
{0, 1}lη satisfying e′i = γri

∏n
j=1 e

Aji

j , i = 1, ..., n (which is equation (9)). There-
fore, Theorem 13 has been proved.

A.2 Proof of Theorem 9 for Privacy

As SP-CPAS and IND-CPAS are equivalent [Nguyen et al. 2004], proving The-
orem 9 is equivalent to proving Theorem 16 below. We need Definition 14 and
Lemma 15 to prove Theorem 16.

Definition 14. Let R′
m be the set of m-element tuples where all elements are in

CN,γ and let D′
m ⊂ R′

m be the set of m-element tuples where all elements are in
C0

N,γ . The DFBm problem is defined as the problem of distinguishing instances
uniformly chosen from R′

m and those uniformly chosen from D′
m. The DFBm

assumption states that the DFBm problem is computationally difficult.

Lemma 15. For any m ≥ 1, the DFBm assumption holds if the DFB assumption
holds.

Proof. We prove the lemma by induction. We prove that if either the DFB
assumption holds or the DFBm−1 assumption holds, then the DFBm assumption
holds.

We define the subset M ′
m of R′

m to be the set of tuples I = (x1, ..., xm) such
that x1, ..., xm−1 ∈ C0

N,γ and xm ∈ CN,γ . Hence, D′
m is a subset of M ′

m.
If the DFBm problem is easy, then we can either distinguish between instances

chosen uniformly from R′
m and M ′

m or distinguish between instances chosen
uniformly from M ′

m and D′
m. In the former case, it means the DFBm−1 problem

is easy. In the following, we show that in the latter case, the DFB problem is
easy.

For any I1 = (x) ∈ R′
1, we generate a tuple Im ∈ R′

m as
Im = (γr1 , γr2 , ..., γrm−1 , x) where ri ← {0, 1}lη . If I1 is chosen uniformly from
D′

1, then Im is distributed uniformly in D′
m. And if I1 is chosen uniformly from

R′
1, then Im is distributed uniformly in M ′

m. Therefore, if D′
m and M ′

m are
distinguishable, then the DFB problem is easy.

Theorem 16. The shuffle provides IND-CPAS if the DFB assumption holds.
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Proof. The reader can refer to [Nguyen et al. 2004] for definitions of IND-CPAS

and explanations of the notations in this proof.
Suppose there is a publicly known set, {g̃i}n

i=1, of elements uniformly gener-
ated from CN,γ . And suppose the challenge template includes two permutations
π(1), π(2) ∈ Tn, a list of ciphertexts Lin = (e1, ..., en), the list of corresponding

plaintexts L
(p)
in and the corresponding probabilistic inputs C

L
(p)
in ,Lin

Epk
. The actual

challenge oπ(k) , which is randomly generated by using π(k) (k = 1 or 2) and is

given to the adversary, includes Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
, a list of re-encrypted cipher-

texts Lout = (e′1, ..., e
′
n) and V iewP

V (pk, Lin, Lout) = ({g̃i}, {g̃i
′}, g̃′, g′, {ṫi}, {v̇i},

{ẇi}, v̇, ẇ, {ci}, {si}, s̃, s, u, v) Let Oπ(k) be the set of all possible oπ(k) .

Let Og be the set of all tuples og, each of which includes Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
,

a list of random Modified-Paillier ciphertexts Lout = (e′1, ..., e
′
n), the set {g̃i},

a tuple ({g̃i
′}n

i=1, {ṫi}n
i=1, {v̇i}n

i=1, {ẇi}n
i=1) of randomly generated elements of

CN,γ , a set {ci}n
i=1 of randomly generated elements of ZM , a set {si}n

i=1 of
randomly generated elements of ZN , a tuple (s̃, s, u, v) of randomly generated
elements of Z∗

N and g̃′, g′, v̇, ẇ satisfying:

g̃′ = γs̃
n∏

j=1

g̃j
sj g̃j

′−cj (10)

g′ = γs
n∏

j=1

e
sj

j e
′−cj

j (11)

v̇ = γu(1 + N

n∑
j=1

(s3
j − c3

j ))
n∏

j=1

v̇j
−cj ṫj

−c2
j (12)

ẇ = γv(1 + N

n∑
j=1

(s2
j − c2

j ))
n∏

j=1

ẇj
−cj (13)

We first prove that if the DFB5n assumption holds, then the actual challenge
oπ(k) uniformly chosen from Oπ(k) is computationally indistinguishable from a
tuple og uniformly chosen from Og.

We show that from an element

I = (h1, .., hn, h̃1, .., h̃n, t1, .., tn, v1, .., vn, w1, .., wn)

of D′
5n or R′

5n (see Definition 14), we can generate a random element or of Oπ(1)

or Og as follows. Choose {ci}n
i=1 uniformly from ZM , {si}n

i=1 uniformly from ZN

and s̃, s, u, v uniformly from Z∗
N . Compute

αi = si − cπ(1)(i) mod N , i = 1, ..., n

e′i = hieπ−1
(1)(i)

, i = 1, ..., n
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g̃i
′ = h̃ig̃π−1

(1)(i)
, i = 1, ..., n

ṫi = ti(1 + N3απ−1
(1)(i)

), i = 1, ..., n

v̇i = vi(1 + N3α2
π−1
(1)(i)

), i = 1, ..., n

ẇi = wi(1 + N2απ−1
(1)(i)

), i = 1, ..., n

And compute g̃′, g′, v̇, ẇ as in equations (10), (11), (12) and (13). We have

or=(Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
, (e′1, ..., e

′
n), ({g̃i}, {g̃i

′}, g̃′, g′, {ṫi}, {v̇i}, {ẇi}, v̇, ẇ, {ci},
{si}, s̃, s, u, v)).

Then or ∈ Oπ(1) if and only if I ∈ D′
5n, and or ∈ Og if and only if I ∈

R′
5n. So, if the DFB5n assumption holds, then a random element of Oπ(1) is

computationally indistinguishable from a random element of Og, and so is from
a random element of Oπ(2) .

Therefore, if the DFB5n assumption holds, then a challenge generated from
π(1), which is a random element of Oπ(1) , is computationally indistinguishable
from a challenge generated from π(2), which is a random element of Oπ(2) (as both
are computationally indistinguishable from a random element of Og). Based on
Lemma 15, if the DFB assumption holds, then the shuffle achieves IND-CPAS .
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