
Replication: Understanding the Advantage of Atomic

Broadcast over Quorum Systems

Richard Ekwall
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
nilsrichard.ekwall@epfl.ch

André Schiper
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
andre.schiper@epfl.ch

Abstract: Quorum systems (introduced in the late seventies) and atomic broadcast
(introduced later) are two techniques to manage replicated data. Despite of the fact
that these two techniques are now well known, the advantage of atomic broadcast over
quorum systems is not clearly understood. The paper explains exactly in what cases
atomic broadcast is a better technique than quorum systems to handle replication.

Key Words: atomic broadcast, quorum systems, replication, isolation.

Category: C.2.4, D.4.5

1 Introduction

The requirement for highly reliable and available services has been continuously
increasing in many domains for the last decade. Several approaches for designing
fault-tolerant services exist. The focus in this paper is on software replication.
Replication allows a number of replicas to crash without affecting the availability
of the service.

Quorum systems was the first technique introduced to manage replication
[14, 5]. Since this period, a lot of progress has been accomplished in the un-
derstanding of the problems related to replication. An important step has been
the introduction of group communication, which defines a middleware layer that
hides most of the hard problems related to replication [12]. The advent of group
communication has temporarily led to a decrease of interest in quorum sys-
tems. However, there has been recently a renewed interest in quorum systems
for Byzantine faults [11], an issue not addressed previously. Moreover, there are
now here and there people disagreeing on the advantage of group communica-
tion over quorum systems for replication. The goal of the paper is to clarify this

Research supported by OFES under contract number 01.0537-1 as part of the IST
REMUNE project (number 2001-65002).

Journal of Universal Computer Science, vol. 11, no. 5 (2005), 703-711
submitted: 30/11/04, accepted: 31/1/05, appeared: 28/5/05 © J.UCS

issue, and point out precisely when and why group communication is a better
solution.

The rest of the paper is organized as follows. Section 2 introduces our system
model and three isolation degrees, a key issue to understand the respective scope
of quorum systems and atomic broadcast. Section 3 discusses the absence of iso-
lation requirements. Section 4 discusses the case when only read-write isolation
is required. Section 5 discusses general isolation requirements. Finally, Section 6
concludes the paper.

2 Different isolation degrees

In the context of replication, one of the key issues is the semantics that has to be
provided. We consider in the paper a finite set of processes, where each process
issues a sequence of operations over a finite number of replicated data. Without
restriction to generality, we consider that each operation is either a read or a
write. A read operation reads one replicated data; a write operation writes one
replicated data. The semantics defines the result of each of these read and write
operations. One key aspect of the semantics is the isolation property, as defined
in the context of database systems [15]. We distinguish the following degrees of
isolation:

– No isolation: Any interleaving of operations is possible; only the semantics
of each individual read or write operation is defined.

– Read-write isolation: In addition to the individual semantics of read and
write operations, a read followed by a write on the same data are executed
in isolation.

– General isolation: In addition to the individual semantics of read and write
operations, any sequence of operations can be executed in isolation.

To illustrate the three cases, consider two processes p, q, two replicated data
X , Y , and the following sequences of operations:1

– Sequence of operations issued by p: rp(X), wp(X), rp(Y), wp(Y)

– Sequence of operations issued by q: rq(Y), wp(Y), rq(X), wq(X)

With no isolation, any interleaving of operations of the two processes is pos-
sible.

We express isolation using [. . .] brackets. Here is the same same sequence of
operations with read-write isolation (the consecutive read-write operations are
executed in isolation):

1 rp(X) (respt. wp(X)) denotes a read (respt. a write) of data X by process p.

704 Ekwall R., Schiper A.: Replication: Understanding the Advantage ...

– Sequence of operations issued by p: [rp(X), wp(X)], [rp(Y), wp(Y)]

– Sequence of operations issued by q: [rq(X), wq(X)], [rq(Y), wp(Y)]

Finally, general isolation allows us to specify for example the following isola-
tion requirement:

– Sequence of operations issued by p: [rp(X), wp(X), rp(Y), wp(Y)]

– Sequence of operations issued by q: [rq(X), wq(X), rq(Y), wp(Y)]

3 No isolation

Read-write operations with no isolation corresponds to the notion of register [10].
The strongest register semantics, called atomic register, ensure that the read and
write operations behave as if each operation op issued by process p happened
instantaneously at some time t ∈ [opstart, opend] , where opstart is the time at
which the op is issued by process p, and opend is the time at which op has
completed on p [10].

Atomic registers can be implemented in an asynchronous system (which is
defined as a system in which there is no bound on the transmission delay of
messages, nor on the relative speed of processes). Quorums are here well suited
to implement atomic registers. As an example, consider the data X replicated
on several servers Xi, where each server Xi manages (1) a copy of the data and
(2) a version number. A quorum is defined as any subset of servers. Quorum
systems distinguish read quorums and write quorums, which must satisfy the
following properties [5]:

– Any read quorum has a non-empty intersection with any write quorum.

– Any two write quorums have a non-empty intersection.

Let n be the number of replicas. One standard way to satisfy these properties
is the following [5]:

– A read quorum is any subset of servers of size �n+1
2 �.

– A write quorum is also any subset of servers of size �n+1
2 �.

The operation wp(X ← val) (write val to X) by p is performed as follows:
(1) p reads the version number from a read quorum, (2) then the local variable
vn is set to the highest version number read, and finally (3) the value val with
version number vn + 1 is written to a write quorum.

The read operation rp(X) is slightly less intuitive: (1) the client reads the pair
(value, version) from a read quorum, (2) the read operation returns the value

705Ekwall R., Schiper A.: Replication: Understanding the Advantage ...

val with the highest version number, and finally (3) the value val is written to
a write quorum.2

The specificity of this solution can be summarized as follows: (1) data is sent
back and forth between the servers Xi and the client process p, and (2) servers
only send and receive data. We will come back to this point later.

4 ”Read-write” isolation only

To show the limitations of the atomic register semantics, and the need for read-
write isolation, consider the following sequence of operations, where process p

wants to increment X , while process q wants to decrement X . If X is initially
0, then without read-write isolation, the following execution is possible:3

– rp(X ⇒ 0), rq(X ⇒ 0), wp(X ← 1), wq(X ← −1)

This execution is clearly not desired (the final value of X must be 0). A
correct execution requires that p and q execute the read-write sequence in mutual
exclusion, i.e., in isolation. This can be expressed as follows, where ECS/LCS

allows a process to enter/leave the critical section:

– Operations issued by p:4 ECS , rp(X → u), u ← u + 1, wp(X ← u), LCS

– Operations issued by q: ECS , rq(X → u), u ← u − 1, wq(X ← u), LCS

4.1 Read-write isolation and the consensus problem

We first show that read-write isolation cannot be solved in an asynchronous
system with crash failures. Then we discuss the implementation of read-write
isolation (1) with quorum systems and (2) with atomic broadcast (a group com-
munication primitive).

Consensus is a well known problem defined over a finite set of processes, in
which each process has an initial value and all processes that do not crash have
to agree on a common value that is the initial value of one of the processes [1].
Consensus is not solvable in an asynchronous system if processes may crash [4].
This impossibility also applies to read-write isolation; it follows directly from the
fact that read-write isolation is powerful enough to solve consensus (see also [8]).

2 Without (3), the atomic register semantics is not ensured. To see this, consider (a)
wp1(X ← w) by p1 that starts at t = 1 and ends at t = 6, (b) a read operation
rp2(X) by p2 that starts at t = 2, reads w, and terminates at t = 3, and (c) a read
operation rp3(X) by p3 that starts at t = 4 and ends at t = 5. Without (3), p3 could
read an old value rather than w, which is required by the atomic register semantics.

3 rp(X ⇒ v) denotes a read operation that returns the value v.
4 rp(X → u) denotes that the value returned by the read operation is stored into the

local variable u.

706 Ekwall R., Schiper A.: Replication: Understanding the Advantage ...

To show this, consider consensus to be solved among n processes p1, . . . , pn, with
vali the initial value of process pi. Let the data be here a vector V of n + 1
elements V [0], . . . , V [n]. Initially, we assume V [0] = 0, and all other elements
V [j] undefined. Each process pi executes Algorithm 1, where V [0] is incremented
and V [V [0]] written inside a critical section (lines 2-5).

1: ECS {Enter Critical Section}
2: rpi(V → u) {Read vector V into local vector u}
3: u[0] ← u[0] + 1
4: u[u[0]] ← vali
5: wpi(V ← u) {Write u to vector V }
6: LCS {Leave Critical Section}
7: rpi(V → u) {Read vector V into local vector u}
8: decide u[1] {Consensus decision}
Algorithm 1: Solving consensus with read-write isolation: code of process pi

If at least one process pi is correct, then V [1] is written (with the initial value
of one of the processes). Moreover, since all processes decide on the value V [1],
they all decide the same value, which is the initial value of one of the processes. So
read-write isolation allows us to solve consensus, which shows the contradiction,
i.e., read-write isolation cannot be implemented in an asynchronous system with
process crashes.

4.2 Implementing read-write isolation with quorums

Since read-write isolation cannot be implemented in an asynchronous system
with process crashes, we need additional assumptions. The quorum solution of
Section 3 can be extended to provide read-write isolation if we can solve the
mutual exclusion problem. Implementing mutual exclusion requires to handle
the following situation:

– Process p executes ECS and gets permission to enter the critical section.

– Process p crashes before leaving the critical section.

In this case, p will never release the critical section, i.e., the critical section
must be released on behalf of p. This requires a crash detection mechanism
that detects the crash of p if and only if p has crashed (the critical section
must be released if and only if p has crashed). This corresponds to a perfect
failure detector [1], which is a strong requirement. Note that in addition to a
perfect failure detector, if the read/write quorums are defined as in Section 3,
the solution also requires a majority of correct processes (to always ensure the
existence of a read quorum and of a write quorum).

707Ekwall R., Schiper A.: Replication: Understanding the Advantage ...

4.3 Implementing read-write isolation with atomic broadcast

We now describe a different solution to read-write isolation, which uses a group
communication primitive, namely atomic broadcast (also called total order broad-
cast). Atomic broadcast allows to broadcast messages to a group of processes,
while ensuring that messages are delivered by all members of the group in the
same order. A formal definition can be found in [7, 3]. To show the implemen-
tation of read-write isolation with atomic broadcast, we model the execution of
each process as follows:

1: ECS {Enter Critical Section}
2: rp(X → u) {Read X into local variable u}
3: u ← f(u) {Update u}
4: wp(X ← u) {Write u to X}
5: LCS {Leave Critical Section}

Algorithm 2: Model for read-write isolation: code of process p

Process p first reads X into a local variable u, then does some local computing
expressed by the function f(u), and finally writes the new value of u to X .

With atomic broadcast, denoted by ABcast(), the above schema can be im-
plemented as follows, using a technique called state machine approach [9, 13].
The technique distinguishes between (1) the code of process p (Algorithm 3) and
(2) the code of a server Xi that manages a copy xi of the data X (Algorithm 4).

1: ABcast(f) to gX {gX is the group of servers Xi}
2: wait to receive done from at least one server Xi

Algorithm 3: Read-write isolation: code of process p

1: loop
2: wait for the delivery of f sent by some process p
3: xi ← f(xi) {xi is the local copy of X managed by server Xi}
4: send(done) to p
5: end loop

Algorithm 4: Read-write isolation: code of server Xi

Every server Xi receives the update functions f in the same order, and up-
dates its copy xi using the same update function. Moreover, each server xi ex-
ecutes one update function before considering the next one. So Algorithms 3
and 4 correctly implement atomic registers with read-write isolation. Indeed,

708 Ekwall R., Schiper A.: Replication: Understanding the Advantage ...

the solution requires to solve atomic broadcast. Atomic broadcast is solvable
in an asynchronous system augmented with the failure detector �S among the
group gX ,5 and a majority of correct servers [1].

4.4 Discussion

If we compare the requirements of the quorum solution and of the atomic broad-
cast solution, we observe the following. The two solutions require a majority
of correct processes; the quorum solution requires a perfect failure detector,
while the atomic broadcast solution only requires the weaker failure detector
�S (see [1] for a comparison of failure detectors). To understand how much �S
is weaker than a perfect failure detector, note that �S allows an unbounded
number of false crash suspicions, while a perfect failure detector does not allow
a single false suspicion.

What makes the difference? In the quorum solution, the update function f is
executed by the client process itself. In the atomic broadcast solution, the update
function f is executed by the servers. The former solution requires (1) mutual
exclusion, and (2) to send data back and forth between the client and the servers.
The atomic broadcast solution requires only to send the update function f to
the servers. Executing f on the servers is a more clever solution than executing
f on the client!

5 General isolation

We now discuss the implementation of general isolation. The quorum solution
can trivially be extended to handle general isolation. Indeed, whether mutual
exclusion protects two operations or more than two operations makes no differ-
ence.

Can the atomic broadcast solution be extended to handle general isolation?
Yes, if specific conditions are met (which also means that the solution is not
always applicable):

– when the update function can be defined statically, e.g., when the application
can be implemented using stored procedures, and

– when the identity of the servers to which f must be sent is statically known.

The atomic broadcast solution may also require atomic broadcasts to multiple
groups [6]. We now give two examples where these conditions are satisfied.

5 �S satisfies the following properties: (1) Eventually every process in gX that crashes
is permanently suspected by every correct process in gX , and (2) there is a time
after which some correct process in gX is never suspected by any correct process in
gX [1].

709Ekwall R., Schiper A.: Replication: Understanding the Advantage ...

Example 1: Consider two replicated data X and Y , representing two bank
accounts. Assume a user that wants to withdraw an amount w from account X

and deposit w on the account Y . This can be expressed by the following update
function:

f ≡ (sub(X, w); add(Y, w))

The user simply issues ABcast(f) to gX ∪ gY , where gX , respt. gY , are the
group of replicas of X , respt. Y . Upon delivery of f a server Xi decrements its
local copy xi by w, and a server Yi increments its local copy yi by w.

Example 2: Let us modify slightly Example 1, such that the transfer of w from
account X to account Y takes place if and only if X ≥ w. This can be expressed
as follows:

f ≡ (if X ≥ w then sub(X, w); add(Y, w) endif)

This leads to the following problem: while a server xi can evaluate the condi-
tion X ≥ w, a server yi cannot. Nevertheless, this case can still be implemented
using atomic broadcast: each server xi after the evaluation of the condition
X ≥ w, sends true or false to the servers in gY . A server in gY waits this
message to know whether or not to execute the add operation.

In these two examples the set of data to be accessed is known statically. If this
condition is not met, which is quite common in the case of database transactions,
then the atomic broadcast solution cannot be used (since it cannot be known
to which servers to send the update function). Note that the function could be
sent to all servers, but this solution might be too costly or even impossible to
implement.

6 Conclusion

There is a common misunderstanding of the advantage of group communication
over quorum systems to manage replicated data. We have tried to clarify this
issue by showing the basic difference between the two techniques: when isolation
needs to be provided, group communication consists in sending the update func-
tion to the data servers, while with quorum systems servers send the data to the
clients where the update function is performed. The first solution requires weaker
extensions to the asynchronous system, and so has obvious advantages. We have
also shown that the use of group communication is not restricted to read-write
isolation. This contradicts the claim of Cheriton and Skeen in [2] in the context
of the CATOCS controversy,6 where they write that CATOCS cannot ensure se-
rializable ordering between operations that correspond to group of messages (...)

6 CATOCS = Causally and totally ordered communication support.

710 Ekwall R., Schiper A.: Replication: Understanding the Advantage ...

Locking is the standard solution.7 As shown, this argument is not correct. Apart
from this specific issue, we believe that the paper should allow in the future to
clearly understand the merits of group communication over quorum systems to
manage replication.

References

1. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of ACM, 43(2):225–267, 1996.

2. D. R. Cheriton and D. Skeen. Understanding the Limitations of Causally and To-
tally Ordered Communications. In 14th ACM Symp. Operating Systems Principles,
pages 44–57, Dec 1993.

3. X. Défago, A. Schiper, and P. Urbán. Total Order Broadcast and Multicast Algo-
rithms: Taxonomy and Survey. ACM Computing Surveys, 36(2):372–421, Decem-
ber 2004.

4. M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of ACM, 32:374–382, April 1985.

5. D.K. Gifford. Weighted Voting for Replicated Data. In Proceedings of the 7th
Symposium on Operating Systems Principles, pages 150–159, December 1979.

6. R. Guerraoui and A. Schiper. Genuine atomic multicast in asynchronous systems.
Theoretical Computer Science, 254(1-2):297–316, January 2001.

7. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems.
Technical Report 94-1425, Department of Computer Science, Cornell University,
May 1994.

8. M. Herlihy. Impossibility and universality results for wait-free synchronization. In
Seventh ACM Symposium on Principles of Distributed Computing (PODC), pages
276–290, August 1988.

9. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Comm. ACM, 21(7):558–565, July 1978.

10. L. Lamport. On interprocess communications, i, ii. Distributed Computing,
1(2):77–101, October 1986.

11. D. Malkhi and M. Reiter. Byzantine Quorum Systems. Distributed Computing,
11(4):203–213, 1998.

12. A. Schiper. Practical Impact of Group Communication Theory. In Future Direc-
tions in Distributed Computing, pages 1–10. Springer, LNCS 2584, 2003.

13. F. B. Schneider. Replication Management using the State-Machine Approach. In
Sape Mullender, editor, Distributed Systems, pages 169–197. ACM Press, 1993.

14. R.H. Thomas. A Majority Consensus Approach to Concurrency Control for Multi-
ple Copy Databases. ACM Trans. on Database Systems, 4(2):180–209, June 1979.

15. G. Weikum and G. Vossen. Transactional Iinformation Systems. Morgan Kauf-
mann, 2002.

7 Note that atomic broadcast can be used for locking

711Ekwall R., Schiper A.: Replication: Understanding the Advantage ...

