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Abstract: Using the fiction of atomicity as a design abstraction and then refining
atomicity as we develop an implementation is widely used in areas of concurrent com-
puting such as database systems and transaction processing. In each of these and similar
areas, associated notions of correctness are used in order to show that a particular im-
plementation artefact which exhibits concurrency is correct in some sense with respect
to a (possibly notional) description which executes with a greater degree of sequential-
ity. Of crucial importance in the proof and deployment of such notions of correctness
is the issue of observability: i.e. in what broad sense do (human or computer) users of
a particular implementation artefact observe the effects of its executions. For example,
if a human user is allowed to observe directly the execution of a particular concur-
rent component then he or she will be able to detect the fact of concurrent — and
so non-atomic — execution. In general, however, the notion of observability is treated
implicitly or not at all. In this paper, we make it explicit and look at the issue of ex-
ploring more fully the connections between atomicity and observability. The ultimate
aim of this consideration is to work towards constructing a more general framework
for (software or hardware) development by refining atomicity.

Key Words: observability, refinement of atomicity, formal development method
Category: F.3.1 Specifying and Verifying and Reasoning About Programs

1 Introduction

Many different areas of computing, such as database systems and transaction
processing, use the fiction of atomicity as a design abstraction.! Taking such an
approach allows developers to design, reason and program in terms of sequential
systems and their executions; the complexity inherent in the use of concurrency
is masked by the use of notions which relate sequential to concurrent execu-
tions and by mechanisms — implicit or otherwise — which guarantee that only
concurrent executions which may be so related are allowed. For example, the
notion of serializability (see [BT87, WVO01]) used in database systems allows

! In this paper, by the term “atomic” or by the property of “atomicity”, we mean the
isolation property described by the I of ACID in the database literature (see, for
example,kWVOl]). We do not mean the all-or-nothing property which is implied by
the A of ACID.
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one to relate a concurrent execution of various transactions to a sequential ex-
ecution in some order of the same set of transactions. Similar is the notion of
linearizability ([HW90]), which lets a programmer work with a system built of
a set of concurrent objects as if those objects could only execute sequentially.
We shall refer to approaches which relate concurrent implementations to (more)
sequential specifications in some way as allowing refinement or relaxation of
atomicity.

It is usually the case that notions of refinement of atomicity are justified
— whether formally or informally — in the following way: there does not exist
any context? in which the (correct) concurrent component can be deployed such
that the difference between it and its sequential counterpart can be detected.? In
other words, any system we can construct using the concurrent component will
have the same behaviour in some sense as if the sequential component were being
used in its place. Among other things, this means that we may reason about the
correctness of the simpler system which uses the sequential component while that
reasoning will still be valid for the system built using the concurrent component.

However, it may be possible to construct certain contexts which are able to
distinguish between the concurrent and sequential components. Hence, it may
be necessary to impose certain restrictions, thereby limiting the set of valid
contexts: as a result, it is only valid contexts that are unable to distinguish
between concurrent and sequential components related using some notion of
atomicity refinement, while arbitrary contexts may be able to tell the difference.
For example, linearizability imposes the restriction that individual user processes
which interact with (possibly concurrent) data objects should be sequential: this
means that they are unable to detect the fact of concurrent execution on the
part of those data objects. In general, the issue of the restrictions to be placed on
contexts is not properly explored: for example, how light in any particular case
might those restrictions be made and how exactly do those restrictions connect
to the notion of correctness used to relate concurrent to sequential components.
Such an exploration is necessary if we are to place atomicity refinement on a
more general footing and to apply it more widely to programs and systems.

Because of the usefulness of the abstraction provided by atomicity, we would
like to add refinement of atomicity to the collection of formal compositional
development methods which can be used to justify the correctness of designs
and implementations with respect to abstract specifications. In the sequential
domain, VDM [Jon90] uses

— data reification: a program is specified in terms of abstract data objects

2 A context is simply a process or network with a “hole” into which another process
may be placed.

3 There are, of course, certain notions where this justification is not used. In such
cases, the approach is usually not compositional and so less appropriate for use as a
development method.
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which match the problem; these objects are then reified into representations
which match the implementation;

— operation decomposition: sequential program combinators are introduced in
stages to satisfy pre/post-condition specifications

Research on rely guarantee-conditions [Jon81, Jon83, Stg90, Col94] extended
operation decomposition to cover interfering programs. This research has blos-
somed in recent years and is seen as a successful way of reasoning about complex
uses of interference. But the proofs are — for obvious reasons — more difficult
than those for standard sequential programs. Hence, we would like to maximise
the use of sequential program development methods (data reification and oper-
ation decomposition) and to introduce concurrency late in the development by
using some notion of atomicity refinement. As indicated above, such an approach
is not new and is practised in a number of different domains but further work is
needed to allow its wider application.

As a first step in that further work, we introduce the notion of observability
as a conceptual framework within which the issue of restrictions on contexts may
be discussed. At a fundamental level, observability simply means what one pro-
cess can observe of (and thereby “know” about) another process, system or its
component parts: it implies a capability to garner information from or on those
entities. For example, linearizability imposes the (implicit) restriction that user
processes which access concurrent data objects are not allowed to communicate
directly with each other: that is, all communication must go via the data ob-
jects themselves. Such a restriction may be framed in terms of observability: we
restrict what each user process can observe of the other user processes and, in-
deed, forbid all such direct observation. In general, we must disallow our (valid)
contexts from observing “directly” the fact of concurrent execution otherwise
they will be able to detect the difference between concurrent and sequential
component processes (what is meant by “directly” is made clearer in Section
2.5).

The concept of observability also plays a useful role when we focus on the
use of refinement of atomicity as a development method. Part of the role of
a development method is to take “hard” proofs and do them once-and-for-all,
leaving any user of the method to establish only simpler facts. By the discussion
in Section 2.6, it may be possible to define the set of valid contexts using cer-
tain syntactic constraints, the checking of which is easier in general than that
of semantic conditions (which may in fact be undecidable in the general case).
This issue is also important when we attempt to show the correctness of a par-
ticular concurrent component by relating its behaviours to those of its (more)
sequential counterpart. In essence, that a particular concurrent component may
be shown to be correct in this sense requires that it does not suffer from (in-
tolerable) interference. In practice, certain constraints can be imposed on the
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component itself which limit or rule out the potential for interference and so
make it much easier to show correctness. In particular, Section 4 refers to work
which uses an object-oriented language to restrict the interface of component
processes — this means that arbitrary and arbitrarily interleaved changes to
data variables within those components are ruled out — and thereby to restrict
what a context may observe of those components. In addition, restrictions are
placed on what constituent entities within the concurrent component itself can
observe of each other, by using restrictions on pointers or references: this, too,
restricts interference in a way that allows concurrency to be introduced safely
— i.e. in a behaviour-preserving way — without requiring extensive proofs to
show correctness.

The remainder of the paper is organised as follows. Section 2 sketches in-
formally a framework within which the notion of observation is identified with
the concept of communication or interaction between processes; this framework
is then used to explore restrictions to be placed on contexts. Section 3 looks at
some existing notions which allow refinement of atomicity and considers them
in terms of the discussion from Section 2. Section 4 then looks at an example of
transforming a sequential into a concurrent process and at the issue of restricting
the possibility for interference by restricting observability.

2 A framework for considering observability and refinement
of atomicity

In this section, we introduce a useful conceptual framework: this will allow us to
unify different notions of observability into the single notion of communication
or interaction. Using this framework, we then look at the issue of restrictions to
be placed on contexts. Note, however, that the presentation of this framework
is informal in nature and it is intended simply as an aid to discussion and as a
basis for further work.

In the general case, restrictions on contexts disallow the detection of dif-
ference between concurrent and sequential component processes simply on the
basis that the former can engage in concurrent executions while the latter can-
not. Difference between such components may also be detected due to the com-
munication of data values in the concurrent case which are not possible in the
sequential case. That the data values returned are correct will usually be dealt
with by the correctness condition which relates concurrent behaviours to sequen-
tial behaviours in the component processes under consideration; issues relating
to the component itself and the data values it transmits are considered in Section
4.
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2.1 Considering observability

At first glance, the computational artefacts which make up the types of system
in which we are interested are many and varied: they range from passive data
objects to active processes interacting with those objects, from data variables
to code of individual programs to whole systems. Moreover, “observation” could
be taken to mean reading of a variable, the receipt of a message, receipt of data
from a remote procedure call, observation of the execution of an event and so
on. In order to manage this complexity, we wish to regard all possible artefacts
under consideration as instances of the same type of entity and similarly to re-
gard all observation as instances of the same type of act. Hence, we adopt the
approach taken in the process algebraic framework and exemplified by [Mil89]
(note that our use of this approach here will be informal in general). In this
approach, all computational artefacts are regarded as agents or processes — the
notion of process is recursive, meaning that processes may be composed of other
processes and so on — and communication is made central to the model of com-
putation employed. Note that (the act of) communication is synchronous and
so is experienced simultaneously by both participants in that communication. In
essence, two processes which are ready to execute the same event may commu-
nicate by simultaneously executing that event. As two processes communicate,
they are said to synchronize on the event involved. Note, of course, that pro-
cesses may communicate with each other only if they are executing in parallel:
thus, communication takes place between concurrently executing processes. Pro-
cesses compute either by communicating with other processes or by indicating
that they are ready to communicate a certain event or events. For example, we
could represent as processes both a data variable and a program which read that
variable. The act of reading that variable would then be represented as a com-
munication between those two processes, namely the simultaneous execution in
both processes of the event representing the transfer of the value stored by the
variable.

The notion of observability is central to the idea of communication. For pro-
cesses can only synchronize on events which are visible and so observable and for
one process to observe something of another means that it must communicate
with that process. Hence, we may identify the notion of observability with that
of communication or interaction. In other words, a process may observe some-
thing of another process only if there is a communication link between the two;
moreover, the pattern of behaviour offered by both processes over that commu-
nication link will determine the nature of the observations which may be made
(remember that the two processes have to synchronize if communication is to be
effected).
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2.2 Contexts, semantics and full abstraction

In general, process algebras take a behavioural approach to semantics and as-
cribe meaning to processes on the basis of the communications in which they
can engage: in other words, the semantics abstracts from internal behaviour and
is only interested in externally observable behaviour. In order to make the dis-
cussion more concrete in the remainder of this section, we assume that processes
are given a semantics in the traces model. This is one of the simplest — and
least discriminating — semantics which may be given to a process: it regards
the meaning of that process to be the set of finite sequences of observable events
which it can perform. The way in which process algebraic semantics are usually
presented and validated — at an abstract level — will be useful to us in the
remainder of this paper as it gives a framework within which may be considered
some of the issues raised when looking at atomicity refinement. We identify two
entities, a context, C', and a process, P. By context, we simply mean a process
which has a “hole” into which another process may be placed and denote by
C[P] the process which results from placing the process P in the context C.
For our purposes here, we may assume that the context consists of a process
which is to communicate with P (i.e. that process and P execute concurrently);
moreover, it may be the case that communication between the process and P is
made internal by the context, so that it cannot be observed by any further user
of C[P]. A semantics is then defined which allows us to calculate the meaning
of any process: we denote as [P] the semantic meaning of P. In order for this
semantics to be acceptable, there are two main requirements imposed. Firstly,
we require that if [P] = [P’], then [C[P]] = [C[P']] for any context C' which
may be constructed in the relevant process language.* This is the congruence
property, which requires that if the semantics cannot distinguish two individ-
ual processes in isolation, then it cannot distinguish them when placed in any
context. It allows us to calculate the semantics of processes in a compositional
manner. Secondly, we require that if [C[P]] = [C[P']] then [P] = [P']. In
other words, if there does not exist any context which allows the semantics to
distinguish P and P’ when placed in it, then they should be identified by the
semantics. A semantics which possesses both of these properties is said to be
fully abstract with respect to the language in which processes may be described.

2.3 A semantics for atomicity refinement

On the basis of the above discussion, it is clear what the challenges are if one is
to achieve a general development method based around atomicity refinement.

4 We assume that our notion of correctness requires processes to be semantically equiv-
alent; however, the discussion here is still valid if we use instead a notion of refine-
ment, where processes are ordered and one process implements another if it is above
it in the refinement ordering.
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Assume that Seq is a sequential process and Conc is a process derived from
Seq but which exhibits a greater degree of concurrency. In other words, we have
experienced atomicity refinement in the move from Seq to Conc. For the purposes
of the remainder of this section, we assume that Seq and Conc are processes with
a procedural interface and so communicate with the context C' using procedures
which are called by C. Moreover, we assume that Seq and Conc provide exactly
a procedure to write data into the relevant process and a procedure to read data
from it (in both cases, all internal processing is hidden); it is also implicit that
Seq and Conc are passive entities which respond to requests from other processes.
(Note that [Bur05] contains a concrete example of these types of process.) We
assume that the context C' is fixed and so both Seq and Conc are to be placed
in C. In the general case, it would be possible to explicitly relax atomicity in
C and so to introduce a new context; indeed, such a thing can be dealt with
using some of the approaches described in Section 3.2. The assumptions detailed
here help ease the presentation and make the following discussion more concrete,
while not restricting its general relevance.

Assume that CW denotes a call to the write procedure, RW a return from
the write procedure, CR a call to the read procedure and RR a return from the
read procedure. In any sequence of behaviours which is possible for Seq, each
call other than possibly the last in the sequence must be immediately followed
by a matching return. Similarly, a return from a particular procedure must be
immediately preceded by the corresponding procedure call. Thus, execution se-
quences such as (CW,RW,CR, RR, CR) or (CW,RW,CW 6 RW) are possible
for Seq. However, Conc may exhibit a wider range of behaviours, since it allows
reads and writes to proceed concurrently: for example, (CW, CR, RR, RW) or
(CW,CR,RW,CW,RW,RR) are possible executions of Conc which are not
possible for Seq. Hence, evidence of the atomicity refinement used to derive
Conc from Seq will manifest itself in the visible behaviours which the processes
may perform and so the processes will be distinguished by the semantics being
used. Moreover, it will be possible to define contexts in general into which Seq
and Conc may be placed such that evidence of that difference is still apparent in
the semantics of context plus process. For example, for any particular sequence
of actions which Conc can perform as evidence of increased concurrency and so
which is not possible for Seq, the context could perform that sequence followed
by some distinguished event. That distinguished event will be possible only for
the context plus Conc and not for the context plus Seq.

However, the use of atomicity refinement in practice shows that, provided the
concurrent behaviours of Conc may be related to the corresponding sequential
behaviours of Seq in some way, then there will be a large class of contexts which
are unable to distinguish between the two processes. Hence, we need a semantic
framework which reflects this fact and so — if attempting to define such a
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semantics in practice — would take the approach which is taken in general by
all approaches based around atomicity refinement. Firstly, we would make less
discriminating the semantics which is used to assign meaning to Seq and Cone so
that processes exhibiting additional concurrency could be related to sequential
processes. Secondly, we would restrict the class of contexts into which processes
derived using atomicity refinement could be placed (if it were possible to refine
the atomicity of the context, then these restrictions would probably be implicit
in the correctness condition to be met by the concurrent context). Finally, we
might change the semantics used to assign meaning to context plus process,
although we would prefer to reclaim a standard semantics for that composition.®
In making less discriminating the semantics which is used to relate Seq and Cone,
we would essentially reduce its power of observation: we would let it see less of the
difference between the two processes. However, if such a relaxed semantic view
is to be useful in practice, it must still be the case that [C[Seq]] = [C[Conc]] if
[Seq] = [Conc] (note that the semantic function used here and indicated by [.]
may be different depending on whether it is applied to a component process or
to context plus process). In order for this property to hold, any restriction of the
observational power of the semantics must be reflected in a restriction on the
set of contexts which are to be regarded as valid. At the very least — if we are
to retain a standard semantic view of context plus process — the context would
have to make internal the communication which occurs between itself and the
process Seq or Conc. In other words, we would restrict what any user of C'[Seq] or
C[Conc] may observe of that process. If this is not done then it may be possible
to observe interleavings of actions in C'[Conc] which are not possible for C[Seq]
since they are due to the additional concurrency exhibited by Conc. There are
also further types of restriction which would need to be placed on contexts and
which can be framed in terms of the issue of observability. These are discussed
in Section 2.6 after introduction of some example processes in Section 2.4 and
of another important issue in Section 2.5. (Note that, in Sections 2.4, 2.5 and
2.6, we assume the semantics of context plus process is given using the standard
traces model; moreover, we assume that all communication between the context
and component process is hidden when the latter is placed in the former.)

2.4 Example processes and contexts

Figure 1 contains some processes to be used to construct example contexts which
will be useful in Sections 2.5 and 2.6. Process P1 calls the write procedure,

® Usually, a process algebraic approach uses a uniform semantics to assign meaning
both to component processes and to context plus process. Indeed, they are all pro-
cesses and not to be distinguished due to the manner of their construction. However,
certain existing notions of atomicity refinement use a different means to give a se-
mantics to component processes than they do to give a semantics to context plus
component process (under such an approach, the latter would be given a standard
semantics). We shall see evidence of this in Section 3.2.
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— P1= CW;RW; TERM1
— P2= CR; RR; TERM?2
— P3= CW; CR; ERROR
— P4= CW,;ERROR

— P5= CR; ERROR

Figure 1: Example processes

receives a return from that procedure and then indicates that it has terminated;
P2 calls the read procedure, waits for a return and then indicates that it has
terminated. P3 calls the write procedure, calls the read procedure and then flags
an error. P4 calls the write procedure and then flags an error; P5 calls the read
procedure and then flags an error.

If we construct a context by placing P1 and P2 in parallel then, when Seq is
placed in that context and thereby all communication hidden between the con-
text and Seq, the resulting process will perform (visibly) TERM1 and TERM?2
in either order. If we place Conc in the same context then the resulting process
will perform exactly the same traces.

If we take P3 as a context then, when Seq is placed in that context and
thereby all communication hidden between the context and Seq, no visible events
will be possible since Seq cannot accept a call to the read procedure while an
execution of the write procedure is still ongoing. However, if we place Conc in
the same context then the resulting process will perform the event ERROR, thus
indicating the fact that difference has been detected between Seq and Conc.

Finally, if we construct a context by placing P4 and P5 in parallel — note
that P4 and P5 would synchronize on the occurrence of ERROR — then, when
Seq is placed in that context, no visible events will be possible since Seq cannot
accept a call to one procedure while an execution of the other procedure is
still ongoing. However, if we place Conc in the same context then the resulting
process will perform the event ERROR, thus indicating the fact that difference
has been detected between Seq and Conc.

2.5 Computation, state and “knowledge”

Before proceeding, we consider briefly what is meant by the notion of “state” in
a process algebraic framework. In such a framework, there is no explicit notion
of data and so no conventional notion of state. Instead, by “state” we effectively
mean a “point of control” — analogous to a program counter — within the
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current process definition: such a point of control determines which parts of
the relevant process definition are to be executed next and so determines which
actions are enabled. In fact, there will usually be multiple points of control within
a single process definition, reflecting the fact that we are modelling a concurrent
process. Execution of an action then moves us forward to a new point of control
and so to a new state.

The most significant issue with regard to the capabilities of the context is the
following. Since to observe means to communicate and the context communicates
with the concurrent component process, Conc, then the context as a whole will
observe and so “know about” those executions of Conc which are not possible for
the sequential Seq. However, it is not entirely straightforward for the context to
unify knowledge regarding the concurrent executions of Conc in a single location
so that action can be taken on its basis. For example, consider the case that
Conc is placed in the context from Section 2.4 where P1 and P2 are executing
in parallel. In this case, P1 and P2 may both have executed a call without
receiving a corresponding return — i.e. P1 knows a write procedure is executing
and P2 knows a read procedure is executing — but they are unable to bring
that knowledge together and so the context as a whole is unable to conclude
that both procedures are executing simultaneously.

In the framework we are considering, that the context, C, could detect that
Conc was concurrent would be indicated by the occurrence of an execution
sequence (of visible actions) for C[Conc] which was not possible for C[Seq].
In other words, the two compositions would perform some common sequence
and, after that sequence had been executed, we would be able to perform a new
event in C[Conc]: this is illustrated by the second and third example contexts
given in Section 2.4.° Thus, the detection of difference equates to the enabling
of events and the subsequent performance of those events. In our framework,
the performance of an event is ultimately undertaken by a single sequential
process — i.e. one defined without any parallel composition — or by a number of
sequential processes synchronizing in parallel.” Hence, the detection of difference
6 In general, looking only at traces may not allow us to detect any difference between

C[Seq] and C[Conc] even though a semantics incorporating some sort of notion of
liveness would allow us to detect a difference. For the purposes of the discussion
here, we are interested in broad classes of context which allow us to detect the
fact of concurrent execution in Conc. In general, those types of context will have
a property which allows us, on the observation of concurrent behaviour in Conec,
to move to some state in the context which it is not possible to reach when it is
composed with Seq. Having reached that new state, the context must be able to
do something which was not previously possible and which can be detected by the
semantics. What that thing actually is — for example, whether it is the performance
of an event not previously possible or the refusal to perform any event — is not of

itself important provided that it is visible to the semantic notion being used.

We may think of sequential processes as described here as being like a single thread
of control. In other words, they need not be a distinct logical entity — such as a user
process accessing a database, for example — perhaps being part of a much larger
entity, and may be ephemeral.

-
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means either that the information regarding this difference has been accumulated
in a particular sequential process within the context — see, for example, the
context, given by P3 in Section 2.4 — and so is encoded in its state (i.e. in the
events which are enabled in that process at that state); or that a number of
different sequential processes within the context are simultaneously in a state
where they are able to execute the same action, thereby indicating the fact of
concurrent execution, while it was not previously possible for them all to be in
those states simultaneously. (The simultaneous execution by different processes
of this same action constitutes a bringing together of the knowledge possessed
by those different processes.) The context given by P4 in parallel with P5 gives
an example of this latter way in which difference may be detected.

Thus, if difference is to be detected then knowledge in the context that pro-
cedures are executing concurrently must be lodged in a single sequential process
or must be brought together by communication. Conversely, if we can ensure
that such knowledge is not unified in these ways then it will not be possible for
the context under consideration to detect the difference between sequential and
concurrent component processes: i.e. the context will be unable to detect the fact
of concurrent execution. (Note we assume that the concurrent component pro-
cess, Conc, has already been shown to be “correct” in relation to the sequential
Seq and so the only way in which difference between the two may be detected is
by the context detecting the fact of concurrent execution on the part of Conc.)
This idea is illustrated further by the discussion in the following section.

2.6 Restrictions on contexts

One possible way in which the context could detect the difference between Seq
and Conc is the following. In Conc, that concurrency is in evidence will usu-
ally be a result of the fact that multiple processes are executing in parallel: for
example, each concurrent procedure execution would be provided by a separate
process. If a single sequential process in the context can communicate with —
i.e. observe — multiple individual processes in Conc, then it may be able to
detect the fact of concurrent execution. For example, if we let a single sequential
process in the context do a call to one procedure and then do a call to another
procedure before receiving the return from the first, then that process can dis-
cover that Conc is executing concurrently (P3 from Section 2.4 constitutes a
simple example of such a context). The execution of these two call events in the
sequential process in the context will lead to a state not reached when inter-
acting with the sequential Seq and so events may be enabled which were not
enabled in the sequential case: hence, the fact of difference may be detected. In
order to avoid this problem, we can restrict what individual sequential processes
within the context can observe of the component process: in particular, we could
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require that each such process should not be able to observe multiple concurrent
processes in the component.

Even if a restriction such as this is enforced, it might be possible for different
sequential processes within the context to communicate with each other and
so to detect a difference. For example, consider the case that two sequential
processes within the context are each calling a procedure in Conc. If we allow
each of those processes to do a call to the procedure and then, before receiving
the corresponding return to both do the same distinguished event, they could
synchronize on this event and so both of those processes could identify the fact
that multiple procedures were executing concurrently (the context from Section
2.4 which is given by P4 in parallel with P5 is a very simple example of this type
of context, although it does not actually engage in return events at all). Hence, it
may be that we have to prevent processes within the context from communicating
with — i.e. observing — each other while they are in the middle of co-operating
with the component process regarding some extended operation: in this case,
they should not be able to communicate with or observe each other while in
the middle of executing a particular procedure. Alternatively, we could require
that any communication possible during the execution of a particular procedure
should also be possible both before and after that procedure execution: hence,
its occurrence could not be used to transfer information regarding the execution
of the procedure.

That the problem described in the last paragraph could arise depends on
the fact that communication is synchronous and so processes may communicate
directly with each other. If processes were forced to communicate asynchronously,
then it could not arise as such. However, asynchronous communication may be
modelled in our framework by requiring that processes communicate via a third-
party process, perhaps representing a buffer, and then this type of problem can
be replicated. In particular, having called a certain procedure in Conc and not
yet received a return, process A could send a message via the buffer to inform
process B of that fact. Process B could then return a message via another buffer
indicating that it, too, had called a procedure but not yet received a return.
Process A could then reply that, when it received B’s message, it still had not
received a return. Hence, since A had not yet received a return on the receipt
of B’s message then it had not received a return when B sent the message.
This means B can conclude that both it and A were simultaneously engaged in
procedure calls to Conc and so that Conc is executing concurrently. This sort of
problem could be avoided by restricting what third-party processes and processes
which call procedures may observe of each other, at least when procedures have
been called and no return yet received.

Even if we avoid all of the problems considered so far, it may still be possible
for the context to detect difference. For example, information regarding concur-
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rent executions could be brought together in the context after those concurrent
executions have ended. One possible way to do this is to use a timestamp facil-
ity, which would let us attach to each procedure call or return event the time at
which it occurred. This information would let us reconstruct the executions of
Conc and so would let us identify the fact of concurrent execution. In order to
provide such a timestamp in the framework we are considering here, we would
assume that processes engaging in call and return events could simultaneously
observe a process representing a global clock. Thus, in order to avoid this prob-
lem we could simply forbid the observation of such a clock process should it
exist.

2.7 General comments on observability

In the above discussion, we have sketched informally a possible framework within
which observability may be considered and have shown how it can be used to
consider and describe restrictions to be placed on contexts when carrying out
atomicity refinement. Before proceeding, it is worth making some further points.
The list of types of “problem” which contexts may exhibit is not intended to be
exhaustive, nor are the possible restrictions described intended to be anything
other than a basis for further work and further discussion. In particular, it is not
claimed that they are necessary if atomicity refinement is to be used successfully.

It is perhaps inevitable that a discussion of observability should be essentially
syntactic in nature since most of the information in which we are interested is
lost on the calculation of process semantics. However, semantic considerations
will certainly play a role in future work which explores how light restrictions on
contexts may be made; in particular, semantic conditions are useful in general
since they may unify a set of diverse syntactic restrictions and give a better in-
sight into what those restrictions actually mean. Of course, syntactic restrictions
are still useful since they are more easily checkable than semantic conditions, the
latter not even being decidable in the general case.

Finally, note that we have made no reference to the issue of mobility in our
consideration of restrictions on contexts. Considering mobility explicitly would
not change significantly the flavour of the above discussion. Rather, it simply
adds a new set of ways in which undesirable observations may be made and so
necessitates an additional class of (syntactic) restrictions to be imposed.

3 Atomicity refinement in the literature

There are a number of notions of correctness which allow relaxation of atomicity
and we look here at some of them in terms of the framework presented in Section
2. This consideration is not intended to be an exhaustive survey of the litera-
ture, rather it has two main purposes. The first is to illustrate the usefulness of
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the concept of observability when looking at existing approaches. The second is
to highlight the way in which certain existing approaches — some of which are
well-known and widely used — are flawed if our goal is to construct a more gen-
eral framework for (software or hardware) development by refining atomicity. In
particular, a number of existing approaches either do not treat at all the question
of contexts or treat them in a limited and perhaps overly restrictive way. Hence,
we may draw the conclusion that further work is needed if atomicity refinement
is to be added to the set of formal, compositional development methods.

3.1 Serializability, linearizability and atomicity

Serializability (see, for example, [B¥87, WV01]) is used in relation to database
systems and allows us to relate the concurrent execution of a set of transac-
tions performed by the system to some sequential execution of the same set of
transactions. The formal models of serializability presented in [B¥87, WV01] are
interested only in the transactions which may be requested of and performed by
the database system. Hence, they do not concern themselves with the issue of
the wider context in which any particular database system might be deployed:
there is no formal notion of user process or of what user processes might do
when not requesting transactions of the database system. Thus, we do not know
— formally at least — what user processes can observe of each other or what
patterns of observation exist between the constituent entities of user processes.
Nor do we know what further users of the system consisting of database plus
immediate user processes might be able to observe of that composite system.
Albeit informally, serializability is often justified as ensuring that user processes
think they are interacting with a database system where transactions execute
sequentially: i.e. users should not be able to tell the difference between a sequen-
tial and a concurrent system. However, the discussion in Section 2 indicates that
a consideration of the issue of context is crucial to ensuring that this goal is met.
One could argue that serializability is most interested in the data values returned
from transactions, specifically the fact that the same data values would be re-
turned by a sequential execution of the relevant transactions: on this reading of
the situation, it is not so important that a user should be unaware of concur-
rent activity per se — which is what the consideration of context in Section 2 is
primarily concerned with — as long as the data returned is acceptable. Nonethe-
less, if we are to give atomicity refinement the status of a formal compositional
development method then we must be absolutely precise regarding not only the
semantics of components where additional concurrency may be introduced but
also regarding the semantics of wider systems where those components may be
deployed. After all, a compositional method requires an explicitly defined way of
composing systems and a way of giving a formal semantics to such compositions.
Even on the basis that the formal models of serializability from [BT87, WV01]
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focus on the interface between the scheduler and the database itself rather than
on that between user programs and the scheduler/database system as a whole,
the formal model says nothing regarding the behaviour of the scheduler.

Linearizability ([HW90]) is used to show the correctness of systems com-
posed of concurrent data objects: in this framework, user processes interact with
those objects using a method-based interface and correctness means they should
not be able to detect the difference between the concurrent objects and their
sequential counterparts. In this case, we do have an explicit (semantic) notion
of user process. However, there are still certain problems which limit the wider
applicability of linearizability as presented in [HW90]. In essence, there is a lack
of fundamental detail on issues of observability and of computation in general,
as well as at least one restriction on observability that is perhaps too harsh. In
this framework, user processes are sequential — they are essentially individual
threads of control — and are disallowed from observing concurrent executions
on the part of the data objects in the sense that, once a process has executed
the call of a particular method, it is not allowed to execute the call of another
method until the first method has returned. In addition, the only events which
user processes perform are interactions with the data objects.

It is not clear to what extent more general types of system could be encoded
in the framework given and so if the broad “architecture” described actually im-
poses a limitation on those systems which may be reasoned about. In particular,
the computations of user processes independently of their interactions with data
objects are not described and there is no explicit notion of combining multiple
threads of control into larger logical entities. There is no notion of making cer-
tain data items local to certain processes (indeed, it is not clear what determines
which data objects a particular process can or will interact with). In addition,
there is no clear notion of how a further system may be composed with the one
under consideration or whether we are simply interested in closed systems (it is
implicit that the latter is the case, since meaningful composition would require
processes to be ready to communicate with objects in different systems and this
idea does not seem to be captured).

There are also problems with respect to observability. Firstly, it is not clear
what those observations might be which are being forbidden by the restrictions
imposed on user processes and making this clear depends on the model of com-
munication being used. In other words, the only way in which the impact of the
restrictions placed on observability can be properly assessed is by knowing what
would be possible if they were lifted. If user processes could communicate syn-
chronously with each other in the general case, then the power of observation
of those processes would be restricted in two main ways in the linearizability
framework: other user processes may not be observed directly and individual
user processes are not endowed with the ability to observe concurrent execu-



676 Burton J., Jones C.B.: Investigating Atomicity and Observability

tions of any data objects. These restrictions may be related directly to the
general discussion in Section 2: they mean that distinct user processes may not
share information on the methods which are currently executing and so may not
detect the fact that multiple such methods are executing concurrently (in the
same object); moreover, individual user processes are denied the capability to
detect directly the fact of concurrent execution on the part of a particular object.
However, by the discussion in Section 2, the restriction on inter-process commu-
nication is perhaps too harsh. It may not be necessary that user processes should
never communicate directly with each other; rather, it may be sufficient to re-
strict communication between any two threads of control so that it occurs only
when no methods requested by those threads of the same object are currently
executing. (Of course, in the linearizability framework we have no information
on what user processes do between method calls.) Moreover, the restriction that
processes may not make any method call while waiting for a return could also
be eased (this restriction means that, as soon as a method call is carried out by
a process, it is unable to observe anything of any data object until it receives
the corresponding return). It is certainly necessary that no process should be
able to make a method call to a particular object while it is waiting for a return
from that same object, since such a possibility would allow it to detect the fact
of concurrent execution on the part of that object. However, even when deal-
ing only with sequential objects, methods from different objects can execute in
parallel. Thus, it seems acceptable that user processes should be able to observe
and interact with other objects even while waiting for a method return from this
one. Of course, as discussed in Section 2 in relation to communication between
two processes via a third-party process, certain restrictions may still need to be
placed on such interactions if evidence of newly-concurrent execution is not to
be detected. If we assume only asynchronous communication between processes
— i.e. that processes communicate only via shared data objects — then the
restrictions imposed on observability are reduced somewhat. In this case, direct
inter-process communication is not possible anyway and so the only restriction
imposed is that individual threads of control are not able to be engaged simul-
taneously in the execution of multiple methods. As we have shown above, this
is a restriction which could possibly be eased.

Finally, due to the way in which user processes are defined — and because
the issue is not made explicit at all — we have no information on what further
users may observe of the system comprising (immediate) user processes plus
data objects. Although we may give a semantics to that system, it is still not
possible to give a semantics to any wider system in which it may be deployed. As
stated with respect to serializability, a compositional development method needs
a general means of composition and a general means of assigning semantics to
compositions.
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We also comment briefly on the approach described in [L.794] and which uses
the i/0 automaton model from [LT87] as a means of representing systems (both
context and component processes are described using the same automaton model
and so contexts are described explicitly.) The approach is concerned with the
correctness of transaction-processing systems and ultimately considers this cor-
rectness at the interface between user programs and the transaction scheduler.
More specifically, a particular (concurrent) transaction-processing system is re-
garded as correct if the system plus scheduler has the same visible behaviours as
a counterpart sequential system plus the scheduler, where only behaviours at the
scheduler/user-program interface are regarded as visible. The scheduler therefore
functions as a wrapper to hide direct evidence of additional concurrent behaviour
and so we disallow user processes from observing directly the behaviours of the
concurrent transaction-processing system. This use of the scheduler is necessary
since the i/0 automaton model cannot relate concurrent to sequential behaviours
when those behaviours are to be regarded as visible in the components under
consideration: in essence, it suffers from the problem described at the beginning
of Section 2.3. In the general case, it may not be possible to hide concurrent
behaviours from user processes using such a wrapper process and it is this fact
which limits the usefulness of the i/o automaton model as we work towards a
general development method based around atomicity refinement.

3.2 Atomicity refinement within a process algebraic framework

We also consider three approaches which have been presented in the process
algebraic framework and which allow atomicity refinement. By their nature,
they are presented in a fully formal framework and are endowed with explicit
means for process or system composition and for deriving the semantics of such
compositions.

The approaches in [Bur04, RG01] are conceptually similar although different
in technical execution. In both of these approaches, the behaviours of the con-
current process Conc are related to those of Seq using an interpretive mapping.
It is in this sense that the semantics used to interpret these component processes
relaxes its power of observation. In addition, Conc may be placed in a context
C' rather than in C, and C’ is then related to C using an interpretive mapping.
In these approaches, the contexts C' and C' must be such that Seq and Conc
respectively will be placed into them within the scope of a hiding operator: this
hiding operator makes internal all direct evidence of communication between
context and component and means that it cannot be observed by any user of the
composition. Hence, the power of observation of such a user will be restricted.
This allows us to reclaim standard process algebraic notions of semantics when
considering context plus component. Beyond this restriction regarding hiding,
the set of valid contexts is restricted implicitly by the requirement that it must
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be possible to verify the correctness of each context using an appropriate inter-
pretive mapping. As a result, it is not clear in practical terms what exactly are
the restrictions imposed on contexts, nor indeed how those restrictions relate to
questions of observability and the use of atomicity refinement. This is therefore
an area in which further work is needed.

In [MS92], barbed congruence is introduced as a notion of behavioural equiv-
alence. The idea behind this is to equip an observer with a minimal ability to
observe actions and/or process states, which ability induces an equivalence rela-
tion between processes. This equivalence relation induces in turn a congruence,
namely equivalence in all contexts (this follows the discussion in Section 2). In
the event that no restrictions are placed on those contexts which may be re-
garded as valid — i.e. valid contexts are simply all those which may be defined
in the language under consideration — then barbed congruence is equivalent to
a standard process algebraic notion of equivalence. However, it becomes strictly
weaker than that existing notion if the set of contexts into which a process may
be placed is restricted (this is the benefit of essentially parameterising the no-
tion of correctness by the set of valid contexts). In [San99a], Sangiorgi presents
a notion of typing called wuniform receptiveness and this notion is used to re-
strict the set of contexts which are regarded as valid. Under this typing, barbed
congruence can be used to show the correctness of processes derived using atom-
icity refinement (see, for example, [San99b] which considers the verification of a
process similar to the example given in Section 4).

There are two important features here. Firstly, the observational power of
the semantics used to relate component processes has been reduced so that
processes exhibiting additional concurrency can be related to their sequential
counterparts. Moreover, that same semantic notion is used to assign a meaning to
context plus component. Though having a uniform notion of correctness across
all processes gives a cleaner treatment, there is no explicit sense in which a
standard notion of correctness may be reclaimed. Hence, there is perhaps lacking
an intuitive sense of what it means to be correct according to this notion. Most
significant, however, is the notion of uniform receptiveness, which is used to
restrict both the set of contexts and the set of possible component processes (it
is used to describe the communication or observational capabilities of processes).
If a particular communication link is receptive in a particular process, then it
will always be ready to receive data over that link. The property of uniformity
requires that data received over the communication link is processed in the same
way whenever it is received. It seems that uniform receptiveness would regard
as invalid the problem contexts described in Section 2.6 and it is likely that it
will play an important role in future work on atomicity refinement. However, it
was not developed specifically to deal with the problem of atomicity refinement
and so the question remains of whether it constitutes the best or most suitable
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restriction to be imposed.

4 An extended example

This section gives an example of “atomicity refinement”. The idea of the re-
search described in [Jon96] (see there for other references) is to maximise the
use of sequential program development methods (data reification and operation
decomposition) and to introduce concurrency late in the development by using
equivalence transformations. Most interestingly for the current paper, studying
some of these equivalences throws considerable light on the conditions under
which it is possible to refine atomicity.

Transformations which are claimed (under reasonable assumptions) to pre-
serve observational equivalence are outlined in Section 4.2. The setting is the
use of a simple concurrent object-oriented language; Section 4.1 outlines the
language and argues for the use of OO languages for concurrency. Section 4.3
contains a discussion of some delicate issues of observation, while two approaches
to giving semantics are outlined in Section 4.4.

4.1 A simple OOL

In standard imperative languages, the interference which arises from concurrency
is difficult to control. A long sequence of innovative ideas including semaphores,
(conditional) critical regions, and monitors have been proposed.® Actually the
question of granularity in imperative programs is even more vexed. In many
papers on concurrency, assignment statements are assumed to execute atomically
but this is clearly an unrealistic assumption for any reasonable implementation.
A key advantage of Object-Oriented Languages (OOLs) is that they put
granularity control in the hands of the program designer. One can note that:

— local (instance) variables can only be referenced by methods of their class;

— if (as below) only one method at a time is active in any one object, there is
no local interference;

— controlled visibility of references (see below) limits interference between ob-
jects; but

— shared references let designers permit interference where needed.

These graded ways of permitting interference result from the fact that meth-
ods provide the only access to instance variables. In other words, we restrict
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class Tab
vars mk: Key < nil; md: Data < nil;
[: private reference Tab + nil;
r: private reference Tab < nil
insert(k: Key, d: Data) method
begin
if mk = nil then (mk < k; md < d)
else if mk = k then md < d
else if k& < mk then
(if I = nil then [ < new Tab fi ;
Linsert(k, d))

else
(if 7 = nil then 7 < new Tab fi ;
r.insert(k, d))
fi;
release
end

search(k: Key) method res: Data
if kK = mk then return(md)
else if k < mk then return(l.search(k))
else return(r.search(k))
fi
end Tab

Figure 2: Symbol table program (sequential)

the manner in which other processes may observe and so interact with these
variables.

Here, a simple OOL which enjoys these properties and can be used to illus-
trate transformations (and discuss the extent to which they are equivalences)
is used. The language is known from [Jon96] and earlier papers cited there as
m0BX.° The main novelty in oS\ is the option to mark references as private

8 Hoare’s contributions (collected in [HJ89]) can be said to have led him away from
the imperative paradigm to communication-based concurrency; it has been argued
elsewhere [Jon05] that the problems of interference are present there as well.

® Note that moB\ is not fully object oriented in the way Smalltalk is because of the
issue that losing the Boolean type would necessitate the passing of something like
“closures”; it is not possible to “call back” because of single method active rule
(one could introduce pure functions and allow for them); the reason that the wo3A
acronym implies that the language is “object based” is that it offers no inheritance
(there are problems with inheritance and concurrency referred to as the “inheritance
anomaly” by Kim Bruce).



Burton J., Jones C.B.: Investigating Atomicity and Observability 681

(the restrictions relating to private references are defined in [Jon94]). Consider
the program in Figure 2: it was developed from a specification written in terms
of abstract objects (mappings) which were reified into the chosen tree repre-
sentation; the post-conditions on that implementation representation were then
decomposed into operations of the (so far) sequential language. Thus, for exam-
ple, the code for the insert method has been shown to satisfy a specification of
an earlier step of design.

The insert method in Figure 2 is sequential in the sense that its invocation
holds its client in a rendez-vous until calls ripple down the tree to the appropriate
insertion point and returns ripple all the way back up to the first server object.
A similar description can be given for search which has to return a value up the
tree and ultimately to the client. (A decision in the design of w08\ is that only
one method is active per object; a method is active until it completes.) Thus
both the insert and search methods can be viewed as “atomic” in the sense that
nothing else (in the program) is active while they are executing.

The next section shows how this atomicity can be relaxed but real inter-
est is in deeper questions of observability (and how one reasons about it): see
Section 4.3.

4.2 Equivalences

Figure 2 contains a sequential program and the idea is at this late stage in de-
sign to “split the atoms” in the sense that the sub-steps of previously atomic
operations will run interleaved with sub-steps of other objects. Obviously, such
splitting will not in general preserve any useful notion of equivalence. It is the
aim of a development method for refining atomicity to identify conditions un-
der which equivalence will be preserved. Moreover, just as with other formal
development methods like data reification, the use of the development method
should be straightforward (whereas its justification might require more technical
reasoning).

Compare the modified program in Figure 3 with the original in Figure 2.
In the second version, insert holds its client up only while the parameters are
transferred to the method invocation; after this, the client is free to execute in
parallel with the server. Furthermore, once the top of the tree passes on the insert
task to the next layer down the tree, the server is also free to accept other calls;
thus multiple insert methods can be active within the tree at the same time.'°
Notice however that the “single method active rule” prevents overtaking.

The story for search is similar but more subtle because a value has to be
returned. It is therefore necessary to hold the client until the required value is
10 In a queue, the order of returns from insert is governed by position; in the tree

here, the order is not even constrained by depth because parallel processes can use
different sub-trees and respond earlier from greater depth.
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class Tab
vars mk: Key < nil; md: Data < nil;
[: private reference Tab + nil;
r: private reference Tab < nil
insert(k: Key, d: Data) method
begin
release;
if mk = nil then (mk < k; md < d)
else if mk = k then md < d
else if k& < mk then
(if I = nil then [ < new Tab fi;
linsert(k, d))

else
(if 7 = nil then 7 < new Tab fi ;
r.insert(k, d))
fi
end

search(k: Key) method res: Data
if &k = mk then release(md)
else if k < mk then delegate(l.search(k))
else delegate(r.search(k))
fi
end Tab

Figure 3: Symbol table program (concurrent)

available; but a higher node in the tree can delegate the task of returning that
value to a lower node. This has the effect of opening up the server to accept other
invocations. Not only does this mean that multiple searches can run in parallel,
but many insert and search methods can all be active in a tree in parallel. As
above, no overtaking can occur.

Informally it is clear that the programs in Figures 2 and 3 can be viewed as
equivalent but one would like formal correctness arguments for such “equiva-
lences”: these are discussed after some subtle questions about observability are
explained.

4.3 A closer look at observability

Picking up on the notion of context described in Section 2, one might say a user
context would not detect the difference between the Tab in Figures 2 and 3: the
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client ought not be able to detect which is used.!! But hopefully a user with a
stopwatch could detect difference, since using concurrency should improve per-
formance (of course, there is an assumption here about multiple processors). For
example, it should be clear that the statement after insert(z) begins executing
earlier in the parallel case because the return from insert is immediate. So it
is already clear that one only means (in some sense) “functionally” equivalent,
not equal timing. In order to be sure that the user cannot detect this difference
within a program, there is no time stamp facility in ToS\.

This naturally leads to the question of whether there are other assumptions
about moB\ and its ability to observe. There are such assumptions and they do
relate to atomicity.

Perhaps the most informative way of looking at the problem is to try to
detect the differences between Figures 2 and 3. Assuming that a Table contains
an association of Key 1 with the value a and 2 with the value b and running
insert(2, bb); insert(1, aa) in parallel with print(search(1)); print(search(2)) is
non-deterministic. With either the sequential or the parallel versions of Tab the
only answer we can not get is aa, b. In the parallel case, the “single method”
rule plays a key role because it prevents overtaking.

In Tab, it is key that w08\ has no way to detect when things finish in the sense
of their order. If mofBX had such a language feature, it could detect differences
between the sequential and parallel versions.

It is clear that programs with more pointers (references) into the trees or
linked queues would be able to detect with which version they were working.
This is the precise role of the restrictions on private references.

4.4 Semantics

The claims above about (non)observability require an underlying semantics for
their justification. Papers on moB8A have employed both operational semantics
and mappings to other (tractable) languages. Each of these approaches has ad-
vantages and drawbacks; they are outlined here because more work is required
to underpin the method of refining atomicity.

One way to give the semantics of a language is to map it to a known lan-
guage. It is desirable that it is relatively easy to prove results in this “known”
language. This is the essence of “denotational semantics” (see [Sto77]): imper-
ative (sequential) languages are mapped to the Lambda calculus which has a
sound mathematical basis in terms of which proofs can be conducted. There is
a rather natural mapping from 7ofSA to the w-calculus [MPW92, SW01] in the
sense that the expansion is linear and there are concepts in this process algebra

' Note that here the set of contexts is immediately limited to those which may be
expressed using mofSA.
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which nicely capture key facets of concurrent OOLs. Given that there is an alge-
bra of m-calculus, this presents a good starting point for proofs. Such a mapping
is described in [Jon94].

The influence of the w-calculus on the design of woSA is acknowledged in the
choice of alphabet for its name (the other major influence was POOL [Ame89)]).
After running into difficulties with proofs in terms of the 7-calculus mapping, at-
tempts were made to provide a direct operational semantics for mofSA. Although
the second author of the current paper is planning another publication on this
approach, it is worth making a few comments.

It is a straightforward task to construct an SOS of a language like ToSA: in
fact the second author uses it in teaching. The essential fact is that the non-
determinacy of progressing any object can be captured by a mapping

ObjMap = Handle - Oinfo

So it is again not difficult to record the semantics for notions related to
atomicity and observability. But as has been remarked above, the key test is
whether the semantics facilitates proofs of the needed results. Recent progress
is encouraging. The proof attempts in [HJ96] led to the pessimistic comment
that “no natural algebra is available for SOS”! But the second author began
to think of ways of adding SOS rules to a generic logical frame like that in
HOL or Isabelle. This is what Nipkow and his colleagues have already done for
Java/Isabelle in [Nip04] (an earlier reference to this idea is [CM92]).

5 Conclusions

In this paper, we have identified the notion of observability with that of commu-
nication or interaction and have highlighted the connections which exist between
observability and atomicity refinement. In particular, we have shown the need
to consider fully and explicitly the question of restrictions to be imposed on
contexts if concurrent and sequential components are to be used interchange-
ably in those contexts. Moreover, we have argued for the use of object-oriented
languages (under certain restrictions on pointers and on the ability of such a
language to observe temporal ordering of events) as a means of limiting obser-
vations to be made of and within concurrent components: this has the effect of
preventing interference within those components and of easing the proof required
in order to show correctness.

The ultimate aim of these considerations is to work towards a formal compo-
sitional development method based around the refinement of atomicity. In order
to proceed further towards this goal, we can identify a number of necessary steps.
Firstly, we aim to develop a significant set of examples where atomicity refine-
ment is needed to show correctness and then to assess against these examples a
number of existing approaches from the literature. This will allow us to develop
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a taxonomy both of types of problem and of approaches to atomicity refinement,
as well as to identify connections between the two. On the basis of such work,
it should be possible to develop a suitable general semantic framework within
which questions relating to atomicity refinement might be considered and in
terms of which a general development method might be built.
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