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Abstract: Contemporary distributed software systems, exposed to highly unpredictable 
environments, are reaching extremely high complexity levels. For example, open 
heterogeneous multi-agent systems that may potentially be spread all around the globe are 
interacting with different types of dynamically changing web-services and web-technologies. 
Traditional control-based handling of adaptability may not be suitable anymore in such 
systems. Therefore there is a tendency for exploring different adaptability models inspired by 
biological phenomena. Biological systems inherently are faced with complexity and 
unpredictable environments, and they exhibit high levels of adaptability. In this article, we 
present a theoretical model of development of complex system, which was built originally by 
Andrzej Gecow, as a computational model in evolutionary biology. This model represents a 
generic complex system subjected to long sequences of adaptive changes. The model was used 
for analysis of development processes and also structural tendencies. By tendencies we mean 
some phenomena that should be expected in any complex system, subjected to a long 
development process. Some of these tendencies are not desirable, for example bloat of the 
system. Some of the phenomena, however, show characteristics of changes that improve the 
system. These characteristics can be applied to optimisation of self-producing and self-adapting 
algorithms of self-maintaining complex software systems. The main structural tendencies 
described in this article are: terminal modifications, terminal majority of additions, and 
covering (reconstructing within the system itself disappearing environmental signals).  

Keywords: complex systems, adaptable architectures, software life cycle 
Categories: H.1.1, C.1.3, D.2, K.4.m, G.m 

1 Introduction 

In plain English adaptation is the act of changing something to make it suitable for a 
new purpose or situation.  In software systems, the term adaptation is used mostly, if 
not exclusively, with the second semantic meaning. What is usually meant by 
software adaptation is that the system will continue to fulfil its original and the same 
purpose in a different set of circumstances, situation or environment. The adaptability 
in such software systems may be achieved by a set of feedback loops between the 
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system, the controller monitoring and changing and adapting the system, and the 
environment itself.  The system purpose is pre-defined in advance as a set of 
specifications, which are kept within the controller. The behaviour of the system is 
automatically altered if the expected outputs are outside of these pre-defined 
specifications.  Such models are built analogously to a way automatic control systems 
work [Kokar 99].  Most of them are based on top-down design and work well in 
limited environments, where changes in environment can be predicted and 
constrained in advance [Meng 00]. Such adaptive systems are tuned to particular 
kinds and specific levels of change in the environment. 

1.1 Traditional Methods of Adaptability  

Most of the adaptability in software systems is achieved via control mechanism, as in 
automatics. There is a central system, with set of sensors and actuators, a controller, 
and an environment. Sensors sense an environment, the system and controller can be 
connected via a set of feedback loops, and the controller tries to keep the system 
within pre-defined boundaries.  This model is be easily implemented; however it is 
static and must be applied in situations where we can predict in advance all the 
changes and variations in the environment. 

To make things more robust and flexible, we could implement into the controller 
an ability to learn, so the rules of changing the system become more dynamic, 
therefore the whole ensemble can follow changes in more dynamic environments.  
Yet it still suffers from some of the drawbacks of the simple model. Although in a 
different scale, there is still usually a limit of environmental change the system can 
cope with, which is predefined within the learning mechanism itself. 

1.2 New Requirements for Adaptive Systems and Biological Inspirations 

Contemporary software systems, especially open multi-agent distributed systems (eg. 
[Purvis 00]) that may potentially be spread all around the globe, interacting with 
different changing web-services and web-technologies are exposed to much more 
demanding, dynamic and unpredictable environments and traditional handling of 
adaptability may not be sufficient anymore in these circumstances. 

To fully benefit from life-like adaptability in software systems, that (at least in 
theory) might match the levels of complexity of biological organism, we need a 
formal mathematical model of all the fundamental concepts like: life, organism, 
evolvability and adaptation.  In this work we will use a formal deductive model of 
process of adaptation described in detail in [Gecow 86]. The major step in 
understanding the process of evolution in natural life was done by Darwin [Darwin 
1859], who proposed mechanisms by which  purposeful adaptive changes take place 
via processes of random mutation and natural selection.  Darwinian mechanisms 
postulate reproduction, statistical character of change processes, and the process of 
elimination. After elimination the organism ceases to exist (is not alive anymore).  
The formal deductive model we are going to use is just based on these rudimentary 
Darwinian mechanisms, and adaptability in software is inspired by the mechanisms 
which handle purposefulness in natural life. 

In this work we use a theory of evolvable ensembles. Some of these ideas have 
been developed over the last three decades [Gecow 75, 83, 86], with the roots of the 
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proposed model traceable to the work of John von Neumann [Neumann 63, 66]. Von 
Neumann submitted that a precise mathematical definition must be given to basic 
biological theories. The work of von Neumann has been, most noticeably, pursued 
and extended by Gregory Chaitin [Chaitin 70, 79]. A slightly different approach in 
formalizing process of life has been pursued by others (e.g.  [Eigen 79]). 

Similarly to von Neumann and Chaitin, our model is based on the discrete model 
universe, an automata space, with a finite number of states. Note however, that the 
formal definition of information, which is being used throughout this article, is 
defined in the context of a static collection of bits (as it was originally proposed in  
[Shannon, 49]) rather than an algorithmic settings (as in  [Chaitin 79]). 

1.3 Theoretical Foundations 

The model we discuss here can be applied to different software architectures. It is 
suited for object-oriented web technologies or multi-agent systems. It is not 
constrained however to these paradigms, and it can be easily implemented in any 
computing paradigm, for example the presented results were obtained on a simple 
computing model based on finite-state automata without memory.  

For the sake of uniformity we will use the term system to denote a coarse-grained 
unit of processing within a given computing framework. A system can be 
implemented within the object-oriented paradigm as an object; or it can be an 
individual agent from agent-oriented paradigm, etc. The important part is that the 
individual system is an ensemble of lower-level structures that can be manipulated at 
runtime. That is, the system can be disassembled into its individual components, and 
re-assembled again during the actual operation of the system. In other words a certain 
level of reflection is needed within a computing paradigm for the proposed model to 
be easily implemented.   

It is believed by some that the information-centric approach to theoretical biology 
is a correct (if not the only) possible path to pursue the research and make progress 
[Orgel 73, Chaitin 79]. We believe that using an information-centric approach with 
formal mathematical models can be more effective for research in the area of 
adaptability and evolvability of software systems than using pure control theory. 

1.4 Research Goals 

The main aim of this work is to build a proper formal theoretical model to investigate 
a wide range of statistical tendencies in the evolution of a complex system. The 
presented model and obtained results represent a set of preliminary, yet useful, hints. 
We are looking for structural tendencies that may be useful when developing new 
methodologies and tools for a new generation adaptive software systems. The 
structural tendencies discussed here may identify specific change mechanisms that 
statistically increase the chances of improving the system (adapt it to new 
requirements). All automatic change generators for our adaptive system must have all 
the information necessary to optimally generate the changes to the system (generating 
hypothesis to be tested). One of the potential benefits for such an automatic change 
generator may be to exploit some of the statistical properties of a collection of 
interacting and interdependent entities. This is what we concentrate on in this article. 
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2 Foundations for the Model 

2.1 Intuitions and Semantics of Base Terms 

Different authors use terms like development, complexity, system, and complex 
systems with different semantic meaning. It is crucial for the reader to understand and 
maintain the semantic meaning of the technical terms used in this article according to 
the authors’ intentions. Some vocabulary will have the semantics as used 
conventionally, but some other vocabulary will depart significantly from their 
colloquial semantics.  

In most of contemporary research, networks are modelled as graphs [Barabasi 
03], or as directed graphs. Some use binary signals between nodes, as in case of 
Boolean and Random Boolean networks [Kauffman 93, Stauffer 96, Albert 00]. For 
us, a system is a directed network of interacting entities, and its description is 
composed of conditional relationships between these entities. The signals between the 
nodes are discrete, but not necessarily binary in nature. Complexity is a measure of the 
relative number of entities and interdependencies in a given system [Weisbuch 88]. 

As will be shown in later sections, a complex system is characterised by a set of 
qualitative differences from a system, and our aim is to identify these differences. One 
of the characteristics of a system is the notion of its function. The function is the 
mapping between system’s inputs and its output. One can define a set of requirements 
on the system function. A system’s function can be compared to a predefined ideal 
function. This measure of quality will indicate the degree to which the system’s 
functional outputs match the ideal functional outputs for the same inputs – similar to 
that predefined ideal function (or the measure of requirements fulfilment). The 
measure of this similarity is called system’s aptness.  

There are many possible different interpretations of the concept of “environment” 
and “system response to a given environment”. In our simulations we provide the 
signals from the environment to the input of the system. These are interpreted as 
external conditions in which the system exists. We assume a constant environment. 
This is required by our modelling purposes. The requirements of the system are 
therefore reduced to a single output vector of the system.  

The system can be subjected to change. A change can be expressed as an 
alteration of the number of a system’s entities, or only a modification in system’s 
configuration (the network of interdependencies). Any change to the system may (and 
in most cases does) change the system’s function. A process that changes a given 
system in a totally random fashion we will refer as a free process. Development is a 
conditional change subject to the non-decrease of the system’s aptness. A process that 
develops the system, that adapts the system to the predefined ideal system’s function, 
or adapts the system to the requirements, we will call: development, adaptive process, 
or adaptive evolution. 

2.2 Basic Assumptions 

As it was introduced above, the system is treated primarily as a network of 
relationships created to fulfil a particular set of requirements. The system is tuned to 
the requirements by a process of change. There are three basic mechanisms that can 
alter the current configuration of a given system. There is a random change, 
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equivalent to the free process introduced in [Section 2.1].  There is an external 
constructor that controls the system and is capable of changing its configuration. And 
there are self-imposed (reflective) and self-maintaining processes within the system 
itself capable of altering its current configuration. 

In our model we assume that the random changes are truly random and can alter 
the system in many possible ways. The other two change mechanisms are 
characterized by the directional change, in a way that is not decreasing the system 
aptness. Therefore, any change of the system performed by the constructor or internal 
system’s processes by definition must be equivalent to the development of the system. 
The adaptive evolution, i.e. development, as introduced in [Section 2.1], inherently 
means that the systems` aptness is not decreasing. Adaptive evolution of a system 
then consists of developmental stages, where the system is changing its configuration 
or structure without the aptness decrease. One can say that the system is being 
changed, or adaptively evolved, by its constructor or internal processes in order to 
increase its aptness. The improvement changes are the result of the following 
procedure: first, random changes to the system are conducted. This is similar to the 
free process. Then, the changes are tested for the aptness. If the change leads to the 
aptness increase, the change is accepted. If the change leads to the aptness decrease, 
the change is not accepted. This method is similar to other evolutionary algorithms, in 
a way that there is a selection procedure that accepts or rejects changes generated by a 
random process. For example see Genetic Algorithms [Vose 99], and Genetic 
Programming [Koza 92]. If requirements imposed on the system (the ideal system’s 
function) or external conditions (system inputs) have changed, it is possible for the 
system’s aptness to decrease. In fact, in most of the cases the aptness will decrease. 
We require the system to compensate for such aptness decrease and adapt to new 
requirements by changing itself in order to maintain its aptness level.  

In a relatively short time free processes will tend to decrease a system’s aptness, 
and will lead to the system’s disintegration. The probability distributions of different 
characteristics of developing systems differ substantially from free processes. In short 
this is exactly what we look for: differences between changes in a system caused by 
free vs. developmental process. By analysing these characteristic tendencies we can 
infer which changes of the system are more apt for system development and for 
maintaining its aptness. We will investigate the statistical differences between free 
and developmental process, and we will call these differences: tendencies. 

We have discovered two basic types of tendencies. These two types have 
different mechanisms of origin. The first one is based on the change propagation from 
change initiation point to outputs of the system. The second one is based on additions 
and removals of elements of a system, and the lack of balance between these two 
processes in different parts of the system. It is intuitively easy to understand that 
smaller changes of system output have more chance to be adaptive. The question is 
what kind of change initiation place should be used, and what the relation of this 
place to system structure is. To investigate this relationship, we obtained the statistical 
dependency of size of change of the system’s outputs as a function of system aptness.   

Each single change of the system is like a step, (generation or iteration) in the 
development process. It is not a step typical to neural networks or cellular automata. 
We will refer to a single change as a single generation. Due to simplification, our 
model does not contain anything that would be equivalent to a step from these 
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constructions. A sequence of subsequent generations represents an evolution of the 
system. This is in analogy to the physical understanding of the term evolution of the 
system. Evolution of the system that does not decrease a system’s aptness is referred 
as adaptive evolution, or development (as discussed above). From the fact that we are 
interested only in statistical tendencies of the observed process, we sometimes do not 
need to use an exact iteration count to observe a directional aspect of the process 
under investigation. In other words we do not need to use t (iteration count, or time 
of system evolution) as g (measure of progression of the process). Sometimes it is 
sufficient to use a statistically significant variable, to measure g, in order to infer the 
process direction. In a developing system, a stage with smaller aptness will always 
precede a stage with higher aptness. Therefore, we can use the aptness itself (variable 
b) as a measure of progression of the process (g), instead of an accurate iteration 
count. There are other possible variables that can be used as a measure of progression 
of the process, for example N, the number of trials to adaptively change the system. 
The reader should keep this point in mind during the following discussion when the 
variable g is referenced. 

3 Simple Vector-based Model 

3.1 Representation of a System 

Let us assume that a system is represented by m entities, which will be modelled 
simply by properties. Each of the properties, signals, has a number of possible 
variants. We assume all the variants of a given signal to be of equal probability. We 
also assume that all signals have the same number s of variants. Let us represent 
variant values by an integer number from 0 to s-1. We then represent a system as a 
vector y:   y = (y1, y2, …, yi, …, ym), where each value  yi ∈ [0,s-1]. In 
our simulations the number s of variants of signal was s=2,4,8,16. 

To obtain a free process we simply modify the system in a random fashion. To 
obtain a development of the system, first we need to define an ideal system y*. In 
other words we need to provide an ideal vector y*. It represents our ideal system. 
Now after any modification, the system is compared to its ideal configuration and we 
obtain a parameter b – number of signals that match to the ideal state. b is a measure 
of similarity of y and its ideal y* and represents aptness of the system.  

)b   (b  a t1t ≥≡ +                                                    1 

For development we require that b cannot decrease. This condition leads to 
development of a system that improves its aptness. The condition a is the adaptive 
condition, t is the iteration (change) counter. After each individual change to the 
system t is incremented by a fixed value 1. It is equivalent to a simulated time. 

3.2 Definition of Tendency 

We try to capture the differences and characteristics between adaptive and free 
processes. In particular, we try to estimate and analyse differences in a probability 
distribution between random changes in the system occurring without and with the 
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improvement condition a. This simple model presented above is enough to 
demonstrate one of the fundamental tendencies: small change tendency. Let X denotes 
a parameter of change for the system. P(X|a) denotes a probability of accepting the 
change with parameter X subject to adaptive condition a, and P(X) is the probability 
of unconditional change of the system with parameter X. P(a|X) denotes a 
probability of the adaptive change of the system for a given change parameter X. The 
probability distributions may change during the progression of the process; therefore 
we can generalize it to multiple generations, and we use the measure of progression of 
the process g to denote a current stage of the process.  In the general case then, we 
have from Bayes: 

g)|P(X g) X,|P(a  g) a,|P(X g)|P(a ⋅=⋅                   2 

For a single generation, when g is constant, P(a|g) is also constant. We can 
calculate the tendency by the probability of acceptance change with parameter X:  
P(a|X).  Or in a general case: P(a|X,g). It is important to note that one does 
not have to know actual distributions of   P(X) or P(X|g) to estimate the tendency. 
It is enough that for different parameters X, that distribution P(a|X) differs. 

3.3 Aptness in Free and Adaptive Processes 

During system evolution, thanks to adaptive condition bt+1 ≥bt parameters b and t 
grow together (see right side of [Fig. 1]). If the ideal system y* is constant then the 
level of aptness, b, may be used in place of g (measure of system progression). It was 
described in [Section 2.2] that we can use the value of aptness itself as a measure of 
progression of the process, instead of a precise generation count. As we are interested 
only in the statistical effects of the process, this can simplify many of the experiments 
and calculations. 

In free processes, probability distribution of aptness b is given by Bernoulli’s 
distribution:  

( )
m

bm

s

1-sm
b  P(b)

−
⋅⎟

⎠
⎞⎜

⎝
⎛=                                               3 

For s=4 and m=64 the aptness distribution is shown on the left side of [Fig. 1]. It 
has maximum at point b =m/s. 

Let L be a number of changed signals. We will call L a change size. To show the 
history of aptness, we must assume some fixed P(L) distribution. For a simple case, 
let each property of a system have a probability equal to 1/4 that it will be changed – 
it gives the same distribution as shown on the left side of [Fig. 1]. With such an 
assumption one can see (right side of [Fig. 1]) that average aptness in (function of 
generation) grows. 
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Figure 1:  Probability of aptness b in free process and average aptness history in 
adaptive (t < 200) and free (t > 200) processes (for fixed P(L)) 

We calculated the probabilities for 200 generations, and after the 200-th change 
adaptive condition was removed. We started a free process of change instead. In a few 
steps aptness drops down and it achieved a level of maximum probability (shown on 
the left of [Fig. 1]). The departure from the maximum probability level and growing 
aptness of the system is a simple consequence of the adaptive condition, and as such it 
is a simple tendency. These effects are even more interesting when analysed from an 
entropy and information point of view [Gecow 86]. 
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Figure 2: Small change tendency for higher aptness b in probability of acceptance.  
L – change size,  m – number of signals (properties),  s – number of signal variant.  

[Fig. 2] shows P(a|L,b) for s=4 and m=16 (in 3D graph) and m=64 with 
three highest b=40,48 and 56 (on 2D graph) that highlight the most interesting area. 
In 3D graph in the grey area on the bottom right side, the probability of acceptance 
P(a|L,b) equals zero. For the interesting upper values of b only very small L 
(change size) is acceptable with significant probability (hard drawn area). For m=64 
this area is smaller. This is the small change tendency.  If s grows, the size L of 
acceptable changes becomes even smaller. The small change tendency leads to other 
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more useful structural tendencies. It creates also a natural identity criterion that has 
more philosophical implications and may be used for definitions of life processes.  

4 Model of Automata Aggregate  

4.1 System Structure 

The previously described model is very simple, and it is enough to demonstrate the 
small changes tendency. We will extend the previous model to show other tendencies 
of the developing system. Previously, however our system had only a vector of 
properties. It lacked any internal structure. Now we add a system structure in a form 
of aggregate of one state automata without memory.  Automaton is the smallest part 
(entity, building block) of system. It is a node in a directed graph. It has a few inputs 
and outputs. In our simulations the number of inputs and outputs of automata in the 
network is set to 2, so each of our automata have, n=2 inputs and also n=2 outputs. 
This is the smallest value that we can assume for useful simulation. The system 
receives signals from environment x. These signals are transformed by a complex 
network (which represent the actual system structure) of interconnected automata into 
system output signals. This output signals are interpreted as properties of the system 
and we compare them to the ideal in order check the improvement condition a. This 
is similar to the previous model. This time outputs of the system (which means 
outputs of some of the finite state automata) are forming the vector y. 

We change the system by adding and removing automata to and from its 
interconnected network of automata. In this model the small change tendency results 
in a few other structural tendencies, and as such is useful for optimisation of system 
development mechanisms. 

 

output signals

outputs
automaton
 - function

inputs

input signals

y*  ideal - requirements

x    environment

aggeregate
  of automata
   - structure

n=2

n=2 m=64

m=64

signal - property
choice 1 variant
of s = 2; ; 8; 164 y properties - effect of function

 

Figure 3: Signal, automaton and aggregate of automata, and their elements  
(see text for details). 

All automata transform input signals into output signals. That is equivalent to 
performing a simple function. Note, that an automaton gets 2 independent input 
signals and after transformation it sends 2 usually different output signals, that then 
become inputs for other automata. Note, that in our model each automaton has two 
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independent outputs. This is one of the differences between our model and Boolean 
Random networks [Kauffman 93, Stauffer 96, Albert 00], where all outputs of a 
single node are always the same (not independent). 

Our network of automata grows randomly, and we enforce the aptness 
improvement condition (adaptive condition a). One input of automaton may be 
connected to only one output of one automaton and one output of an automaton can 
send a signal only to one automaton input. Free automata inputs (not connected from 
other automata) get signals from the environment and free automata outputs (not 
connected to other automata) are system’s outputs. Such a network of automata we 
call an aggregate of automata. This is our model of system structure. 

This model was built and simulated before 1999 [Gecow 75, 83], when Albert-
Laszlo Barabasi showed that most naturally occurring phenomena and systems have 
scale-free distribution of k-node degree [Barabasi 99]. Our aggregate of automata is a 
regular network because the number of links of each node is constant, fixed n=2 for 
output and input, i.e. the degree of node is precisely k=4. Taking into account the 
recent advances in the field, we are preparing a new simulation based on a scale-free 
network model [Barabasi 03].  

The environment is constant (except covering experiments that will be discussed 
later in detail). The environment represents external conditions of system function and 
has a low relationship to requirements for system function (ideal system function). In 
this simple model we do not research quick system answer for an environmental 
stimulus – such an adequate answer is included in the requirements themselves. 

4.2 Coefficient of Change Propagation 

If one of the automaton input signals is changed, then it may cause this automaton 
output to be changed. This in turn will lead to other automata to receive different 
inputs and in turn produce different outputs, and so on.  We are interested in how 
many output signals are changed, on average, after a single change in the input to a 
given single automaton.  To answer this question we simply calculate it from the 
formula below. 

( )
s

1s
nw

−⋅=                                                       4 

Above, w is a coefficient of change propagation, s – the number of variants of 
signal; and n – the number of automaton outputs. Only for n=2, s=2, and not 
bijective functions, can we obtain w<1 and then change in network will fade out. In 
this case both parameters: n and s have absolute minimum values, and we should not 
expect this in real complex systems. In all other cases, the change on average will 
grow in an automata network. One of the important aspects of our model is the 
parameter s. In our model it is more important to have a uniform distribution of 
probability of each variant of a given signal than the actual number of signal variants. 
The difference in probabilities of occurrence of different variants is much more 
significant than the number of signal variants. In our model we assume that the 
probabilities of all variants are the same. Therefore, for modelling a single variant 
which can occur with probability, for example 1/8, we have to simulate it by having 
8 variants, each with 1/8 probability. In that case 7 out of 8 signals will be treated as 
noise. In some situations where some probabilities are very small, it may result in a 
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big number of signal variants. This is directly related to the information content of a 
signal. The bigger the information content, the larger number of signal variants. 

If one draws the aggregate with each signal travelling between automata as 
arrows, one could traverse the network simply following the arrows. If one starts from 
the aggregate inputs, some automata would be visited earlier, and others would be 
visited later. However, with the feedback loops it is not feasible to define a global 
“earlier-later” relationship between all the aggregate’s automata. In the general case, 
this relationship has only local character, we call it functional order. 

For network without feedbacks, we can draw an ideal “earlier-later” relationship, 
called cone of influence [Gecow 83]. Cone of influence is the functional dependency 
between a given automaton and the ones this automaton can influence by its outputs. 
A given automaton divides the system structure into three parts: earlier automata that 
influence the given automaton (in-components as used in [Dorogovtsev 03], and 
notion of supremacy [Holyst 04]), later automata (out-components) that will produce 
outputs depended on a given automaton and neutral automata that are independent, 
and do not influence a given automata. This is, as defined above, a functional order in 
the system structure derived from the signal propagation. 

A given automaton can change the outputs only of the following automata. 
However, the change does not need to fill all the parts of the cone of influence. The 
degree of fill depends on the coefficient of change propagation. In a given aggregate, 
where all automata have the same n and s, the coefficient w is constant. The size L of 
change on outputs of structure depends then only on height of the cone of influence. If 
we draw aggregate, as on the [Fig. 3] where signals go from bottom up and there are 
outputs in top of the structure, then this height of the cone would start at the top of the 
diagram, on the system outputs, and would continue downwards down to the point 
initialising the change. This is equivalent to the concept of depth of change source. 
Initiation of change in deeper parts of the system structure should cause a larger 
change of outputs, because it has larger cone of influence, covering more output 
signals. The small change tendency should prefer small depth. This is the main 
mechanism for structural tendencies. 

4.3 Depth – the Measure of Functional Order 

In our models we have to assume systems with feedback loops, as they are more 
robust, flexible and more adequate to modelling development of software systems. 
Our aggregate will have then highly irregular structure, with feedback loops. 
Therefore the simple view of the cone of influence has only a demonstrative purpose. 
It is quite difficult to refer uniquely to a particular place in the growing structure of 
our aggregate. There are feedback loops, and the structure itself has a very irregular 
character; and there are only two points of reference: aggregate inputs and aggregate 
outputs. The problem of referring to particular automata in different aggregate 
structures is even more difficult because we need a mechanism to identify and refer to 
“similar” regions, in the general case, for different growing aggregate structures.  

We proposed two methods of referring to automata in an aggregate. In the first 
simple method we marked whether the added automaton was placed closer to the 
inputs, or closer to the outputs. We ran analysis based on this, and we called this 
model: edge model. This name represents the fact that all the additions were 
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performed on the “edge of the aggregate”: on the input, and/or on the output of the 
system. We have not used removals in this model. 

The second method was based on calculating the depth of a given automata in 
reference to the aggregate outputs. This allowed us to perform additions and removals 
in the whole volume of the aggregate. We referred to this model as volume model. In 
this model, we used the depth as an approximation of the aggregate functional order. 
See [Fig. 8] for the definition used in our simulations. 

4.4 Changeability 

4.4.1 System Change Distributions 

We know from Bayes condition (equation 2) that probability distributions of the main 
characteristics of changes in a free process should not be important to show statistical 
tendencies (differences between free and adaptive process). However, we can assume 
different probability distributions for different aspects of the aggregate development 
that result in differences in the aggregate structure. In aggregates that differ in 
structure, a given tendency may have a different level of expression. For example, we 
can expect that an aggregate that was grown only by the addition will be different 
from the aggregate grown with both addition and removal changes. This, in turn, will 
influence the tendencies that we are trying to investigate. The fundamental aspects of 
some tendencies are expressed as relationships of intensity of some events. For 
example, when investigating the aggregate tendency to grow, we have to analyse the 
difference between probabilities of acceptance between changes based on addition 
and on removal. One can see that it is very important to pick appropriate probability 
distributions to observe given tendencies. In our model these distributions however 
have an arbitrary character, and can be any. Based on the unknown character of most 
of these distributions, we use uniform probability distributions. It is important to 
remember that sometimes a given tendency influences the expression of the very 
tendency, or other tendencies (feedback loops). 

It is easy to implement the assumption of the uniform probability distribution of 
change in all of the aggregate volume. We implemented removals simply by a random 
selection of an automaton to be removed, from the list of all of the aggregate 
automata. After removing it we reconnect two of its inputs with two of its outputs 
directly. For additions we have to randomly generate a new automaton - we create its 
function (function between its inputs and outputs). Then we select two existing 
connections between automata (including inputs and outputs of the aggregate). We 
“break” the connections, and reconnect the newly created automaton with appropriate 
input and output connections. This is a different algorithm than assumed in random 
graph theory [Albert 02]. Also it differs substantially from the case of addition of a 
new node and directed edges [Dorogovtsev 00]. 

4.4.2 Differences Between Addition and Removal of Automata 

As described above, there are some important differences between adding and 
removing automata to and from a system. The process of automaton removal has 
relatively fewer possibilities and is inherently simpler. This is an important source of 
difference in probabilities of change acceptance due to adaptive condition (changing 
the system without decreasing the system aptness). 
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It is possible to run a test for removal of all individual automata of aggregate to 
check that nothing can be removed without decreasing the aptness. It is however 
impossible to do the same test for addition, simply because one can always add a new 
automata that will not change the system’s aptness. This simply means that by the 
properties of addition and removal, the system will grow in size indefinitely. After 
accepted aggregate change, the conditions for the next aggregate change may 
themselves change. For example if there is nothing that can be removed from the 
aggregate, then after a successful addition possible removals may naturally occur. 

4.4.3 Transparent Automata and Cost 

Due to our assumed adaptive condition (weak inequality) it is possible to always add 
transparent automata. Transparent automata are such automata that do not change the 
output signals for particular inputs. In other words, the output signals are exactly the 
same, with or without such automata. In simulations this is a very common event (to 
randomly select a transparent automaton to be added). These transparent automata, 
given different input signals, will produce appropriate output signals, according to 
their actual function. In that case these transparent automata are not transparent 
anymore. After addition, transparent automata may be kept in the structure, or may be 
subjected to automatic removal – because they do not do anything.  

The issue of transparent automata is similar to, but substantially different from, 
“neutral walk” models, e.g. [Gould 77]. Temporary useless structures and repetitions 
are kept in a “neutral walk” model until they prove to be useful. However, our model 
is too simple to accommodate a “neutral walk” model in its entirety. We do not model 
local optima of aptness, and the ability to jump from one to the other.  

For software systems if we take into consideration memory and CPU time, and 
other similar cost functions to maintain an automaton in the aggregate structure, then 
adding one more extra automaton is always considered as a decrease in the aptness of 
the aggregate. To make it simple, yet general, we used strict inequality in the adaptive 
condition for additions, and weak inequality for removals. This is equivalent to an 
explicit cost function for additions of new automaton. For big values of number of 
signal variants (s) the importance of this extra condition (cost function) is decreasing, 
due to the lower probability of random selections of transparent automata. 

4.4.4 Change of Requirements  

In our model, to obtain a long adaptive process, the ideal y* must be slowly changed 
(the b for a system is kept at the level ¾ of the ideal value of aptness). Without this 
change of requirements, the aptness b in a short time achieves maximum value and 
then any really adaptive change of the aggregate is prohibited. We are interested in 
long-term cumulative adaptive changes that substantially lead to increase of aptness. 

Traditionally, the term “environment” includes external conditions of existence of 
an organism (a system), together with the requirements imposed on the organism to 
exist. We have decoupled these two aspects. The requirements are separate 
(conditions on output signals) to the external conditions (input signals). In our 
simulations the environment of the aggregate was fixed. Only for investigating 
tendency of covering have we used a changing environment.  
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4.5 Calculating the Function of an Aggregate of Automata 

To do the calculation of the aggregate function, we use the description of the structure 
of aggregate (all the connections) and functions of individual automata. We will refer 
to it as: R-algorithm. We developed it in several steps. 

4.5.1 Algorithm R0 

The aggregate structure itself in an obvious way suggests a simple algorithm for 
calculating aggregate outputs. We will call this simple algorithm, R0: 

1. The input signals vector is passed to the aggregate. We mark all these inputs 
as ready signals.  

2. Ready signals are passed to inputs of subsequent automata connected to the 
given signals.  

3. If for a given automaton all its input signals are ready, we calculate the 
output for this automaton. We mark all its output signals as ready signals. 

4. If all output signals of the aggregate are ready, then the R0 algorithm stops. 
Otherwise we continue to step 2. 

It is easy to note, that our simple algorithm R0 can only calculate the outputs for 
the aggregate without feedback loops. For the system with feedback loops, the use of 
the algorithm R0 is not suitable.  

Because our aggregate are constructed in a random fashion, in a single aggregate 
there can be a lot of such cyclic loops and these loops may have a lot of common 
points. For these reasons it is impossible to obtain one stable real output signals vector 
to compare it to the ideal output vector. However, we do not need to calculate the true 
output vector to get a correct statistical size of change L. To calculate L we compare 
outputs of the aggregate before and after the change of the aggregate has been made. 
We can obtain a distribution of probability of acceptance for change parameters. This 
is an important remark that allows us to study the structural tendencies in complex 
systems in our computer-based model system implementation. 

4.5.2 Algorithms R1 and R2 

We first designed algorithm R1, which tries to obtain the most correct output vector 
by calculating properly all the loops and recursive dependencies. This ambitious 
direction appeared not to be successful, and to be expensive and needless. We then 
went on to design a simpler and more fruitful approach. To allow cyclic recursive 
loops we can make any hypothesis of input signal in any place in the loop, and 
calculate the loop only one time to obtain the correct statistical area of change. It is 
not important whether the given chosen hypothesis was accurate or not. It is only 
important to estimate the correct statistical range of change in output of an aggregate. 
This is one of the most important differences in our model, when compared to other 
models. 

To optimise the time of calculations (time was the main limitation of our 
simulations) we only re-calculated the changed signals. For each signal in the 
aggregate, we stored its value from previous calculations; and for circular 
dependencies in loops as well as for input signals from “not changed area”, we used 
this stored value as a hypothesis. Such a rule of function calculation we call R2.  
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4.5.3 Two Maxima of Change Size and a Complexity Threshold 

Both R1 and R2 were used in simulations of the edge model. The results of 
simulations with the algorithm R2 show that in sufficiently complex systems 
(complexity above the threshold) there exist two main peaks in the probability 
distribution of change size (two maxima). Between these two peaks there is a wide 
area of exactly zero probability. This effect is shown on [Fig. 4]. Depicted on [Fig. 4] 
distributions are obtained for four consecutive stages of aggregate growth; in each 
stage aggregate grows by 128 automata. The character of distribution changes in the 
first 3 stages, when the aggregate is below a particular complexity level. However in 
the fourth stage the changes cease, the distribution is stable and looks like stage three.  

The shape of probability distribution of L is our qualitative “measure” of 
complexity in a system. This is a useful notion that gives us a qualitative distinction 
between systems that are not complex (below the threshold) and systems that are 
complex (above the threshold). Most of the authors when discussing complex systems 
use a proper measure of complexity (e.g. algorithmic complexity [Gell-Mann 95], or 
Solomonov-Kolmogorov-Chaitin complexity). This is different from our own 
approach and has different goals. We have obtained one significant but extended 
threshold and two qualitative states, not a smooth and continuous-valued described 
system.  We have discovered that at a particular level a given system starts to exhibit 
different and very interesting properties. This phenomenon is similar to a “phase 
transition” in thermodynamics.  

In research about complex systems to date there is often a reference to a critical 
value for a given parameter. For example in scale-free networks [Barabasi 02, 
Dorogovtsev 03], above a critical network size, average length of the path between 
two nodes will not change with the growth of the network.  Similarly, in self-
organising criticality [Bak 96, 88, 87] after some parameters reach a critical value, the 
system will spontaneously exhibit behaviour characterized by power laws. In our 
case, this level denotes a transition between a system and a complex system with 
particular tendencies [Gecow 86]. 

We have investigated mechanisms of this phenomenon. If the coefficient of 
change propagation is greater than 1, the change should explode onto the whole 
network. Due to the statistical nature of our model and the coefficient of change 
propagation, the change of signals may or may not fade out. Fading out may occur if 
the automata close to the place where the change occurred will not multiply the 
change.  If the aggregate change occurred towards the “end” of the aggregate and few 
changed signals ended up in the aggregate output vector, then the probability of 
fading out is much higher. The probability of this event occurring in a given aggregate 
may not be very small. 

If the change fade-out does not occur in the first several steps, then the 
probability of the change fading out in any following step rapidly drops down. This 
continues up to a certain level, at which the change increased enough almost all the 
automata newly infected by the change have two of their inputs changed. At this 
stage, on average, each infected automata will have less then 2 of its outputs 
“infected”, therefore the change propagation will continue spreading at a lower rate or 
it may fade out. If the average change propagation coefficient for automata is 
relatively low, the change may completely fade out then. This mechanism does not 
depend on the initial position of the change, but it depends on feedback loops present 
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in the system. If feedbacks are present in the system’s structure, then the position of 
the second maximum is constant. 

 

 

Figure 4: Threshold of complexity as appearance of zero-frequency area between two 
peaks in distribution of change size L in sequence stages of aggregate growth. There 
was an observed independency of second peak of connection parameters and linear 
dependency between change size on system output (L) and number of changed 
automata (K).  

The area between these two peaks equals exactly zero. If there are no feedbacks, 
the mechanism is similar in the first few steps of the propagation of the change, but 
later expansion of change depends on the capacity of the cone of influence. It also 
depends on the initial place of change. In this case the section between the two peaks 
is near, but not equal to zero. The position of the second maximum depends on the 
aggregate size. The complexity threshold for a system without feedbacks is different. 
However for both types of systems, with feedback loops and without, such a threshold 
exists and gives similar statistical effects. The size of change in the aggregate outputs 
directly depends on a number of changed automata. [Fig. 4], the right side, shows the 
frequency distribution of K – number of changed automata and its linear statistical 
relationship to L (-change size on the output of the aggregate). 

4.5.4 Algorithm R3  

For parameter K the probability distribution is very similar to L. There are two peaks, 
one for very small K, and the other one for very large K. Both of these peaks are very 
narrow with sharp slopes, and between them there is a large area of exactly zero 
probability. Unlike the distribution for L, the second maximum is not fixed, and 
depends on the number of automata in the aggregate. Once the parameter K reaches 
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the zero-frequency plateau, it must later climb the second peak for K distribution. 
However, all of the cases from the second peak of K distribution, for large K, will not 
be accepted due to the adaptability condition [Section 3.1, Equation 1] and small 
change tendency.  Therefore, we can stop the calculations of a given case as soon as 
parameter K reaches the zero frequency plateaus. This is our modifications to the 
algorithm R2, that we call algorithm R3. Algorithm R3 was fast enough to be used in 
volume models.  

5 Main Structural Tendencies in a Complex System Evolution 

5.1 Aggregate Growth 

Due to the differences in the structure of the evolving aggregate, some tendencies 
may be expressed with a different strength. On the other hand, the differences in the 
structure may also be due to different tendencies in the evolutionary process. This is a 
circular dependency, and to make progress we need to grow the aggregate in a fully 
controlled way, under the adaptive condition. In the edge model as a change 
mechanism we have used only addition of new automata. In such circumstances the 
aggregate is continuously growing. For every single aggregate, we could start with the 
empty one, and proceed up to the size at which the system exhibited tendencies 
characteristic for complex system [see Section 4.5.3].  

Some experiments required a relatively constant size of the aggregate. Therefore 
at the end of each stage (addition of 128 automata) we have kept the number of 
automata fixed, and we were changing the aggregate only by changing the function of 
randomly selected automata already existing in the aggregate. The results of these 
experiments are presented on [Fig. 4]. 

In volume model simulations, the growth of the aggregate is one of the tendencies 
that occur under the adaptive condition. However, as tendencies are valid only in 
complex systems (above the complexity threshold) it is a bit problematic to start the 
simulations with the empty aggregate. In addition to that, we try to use very small 
value of signals, s=4. The interesting effects in such a simulation configuration exist, 
but are extreme small. Without the cost function the aggregate should grow, but in 
first trials with cost we did not obtain aggregate growth. To start the simulations at 
higher complexity levels, we let the aggregate grow through 6 stages up to 768 
automata (only addition operation is active, no removals up to this stage). At this 
stage (768 automata) we added removal processes and this modification resulted in 
the aggregate disintegration, [see Fig. 5.f ] for reference. 

 Our aim was to obtain sufficiently complex aggregate that would show structural 
tendencies described before. However, aggregate disintegration after enabling 
automata removal is a major problem with the current scenario. This required many 
more experiments to solve this problem. This experience shows that obtained 
structures are significantly different (and this was expected). It is shown by a growth 
difference for s=4 without a cost [Fig. 5.a-e], and with initial growth forced by 
additions alone [Fig. 5.a and 5.b], and without initial growth [Fig. 5.c and 5.d]. There 
must be some mechanism with the ability to dynamically regulate the additions and 
removals in aggregate. In this regulatory mechanism removals must depend on the 
coefficient of change propagation and the probability of change acceptance. Each 
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accepted addition or change of requirements will generate new ability of removals, 
but to find them time is needed.  

 

 

Figure 5: The grow of aggregates as a dynamic balance of additions and removals of 
automata.  Aggregate built without removal is different.   

With cost for s=4, this mechanism was outside the correct parameters area, 
possibly due to model simplicity. We have decided to add some elements to the 
system that could potentially improve the model ability to show the discussed 
mechanism. First, we have redefined our aptness function b, in such a way, that it was 
smoother, and it allowed more diversification between different aptnesses for 
different aggregate cases (more discrete steps in the aptness landscape). We used: 

∑ −−−=
j

jj |y*y|)1s(b                                5 

This variant of  b  gave the expected growth of the aggregate for  s=4  with cost 
[Fig. 5.f]. 

Second, we tried one big change of requirements instead of many small changes; 
this however did not give expected growth of the aggregate. Both of these 
modifications did not give any visible effects without cost ([Fig. 5.e] looks exactly the 
same as [Fig. 5.c and 5.d]). In summary, the most important aspect is the coefficient 
of change propagation w, which is dependent on s. When w=1.3 (usually 1.49) 
then there is no growth for s=4 with cost [Fig. 5.f]. For bigger s, for example s=8, 
s=16, we can observe a stable growth of the aggregate. The other important aspect of 
aggregate growth is the ability of the evolutionary process to remove the transparent 
automata. This aspect, however, is very difficult for formal treatment and needs 
further research. 

5.2 Terminal Modifications and Conservation of Deeper Parts 

The main tendency is terminal modifications [Naef, 17] and conservation of deeper 
parts of the aggregate. The description of the depth D that we refer here has been 
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introduced in [Section 4.3] and it is explained in [Fig. 8]. We use here aggregate 
structural relationships to denote functional order. The mechanism of this tendency is 
based on the probability of change fading out. The probability of the change fading 
out is highest if the initial point of change is close to the aggregate’s outputs and 
changed signals can stop rapidly as aggregate output signals, without the ability to 
spread widely into other automata. This mechanism strongly depends on the 
coefficient of change propagation w and then on s. 

 

 

Figure 6: Functionally terminal additions and removals in simulations. 

In [Fig. 6], the distribution of the probability of acceptance is shown in relation to 
depth D. On the left side - for addition and on the right side for removals of automata 
in five different simulations (s=4,8,16 without cost function marked with minus 
sign "-" in simulation name and for s=4,8 with cost function marked with "+"). The 
probability P(a|±,D), where “+” means addition and “-” means removal, is 
normalised by coefficient k shown on picture for better comparison. Only for s=4 
without cost results are different and there is no tendency in removal. For higher s or 
with cost the tendency is stronger. As can be seen in [Fig. 8 and 9], depth D=0 is very 
narrow, but in this case the probability of acceptance is extremely high.  

The terminal modifications tendency applies to any changes – additions and 
subtractions as sources of initiations changes in structure of aggregate. In order to 
refer to the special meaning of the addition new automata in the creation of similarity 
of historic and functional sequence, the terminal modifications tendency for addition 
is named the terminal addition tendency for convenience.  
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5.3 Terminal Majority of Addition and Simplification of Deeper Parts 

Differences between addition and removals, visible in [Fig. 6], create three other 
tendencies: terminal majority of addition and simplification of deeper parts of the 
aggregate (discussed below) and aggregate growth (discussed above).  

 

Figure 7: Functionally terminal majority of additions and simplification of 
functionally deeper parts of the aggregate (left). Average depth of connection of 
automata of aggregate on the right, is much lower then the aggregate with randomly 
connected automata, [see Fig. 9].  

The difference between the number of accepted additions and removals is different in 
different places of structure of the aggregate. There is a race between creation of new 
abilities for removals by additions and finding a possible automaton to be removed. 
Due to the statistical nature of removals, automata that stayed in the structure for 
longer periods, have a bigger chance of being tried to be removed. In shallow parts of 
the aggregate (close to the system outputs), due to the terminal additions tendency, 
additions win (that is, additions are much more frequent). However in deeper parts of 
the aggregate, where automata have been present for a relatively long time, the 
situation is different. Automata there have much more chance to be removed. In the 
deeper parts of the structure there are different densities of automata able to be 
removed than in the shallow parts. 

The term “terminal modifications” means, that most of the accepted changes take 
their place in shallow parts of the structure.  This tendency means that in deeper parts 
of the structure there are fewer changes. However, terminal majority of addition does 
not mean that in deeper parts there is a majority of removals. The second, much more 
crucial tendency is “simplification tendency”. For this one, a majority of removals is 
necessary. This tendency is much more desirable, yet it is not expressed as strongly as 
terminal majority of addition. 
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Figure 8: Functionally terminal majority of additions, simplification of deeper parts 
of aggregate and shunting back. Left side: s=4 with cost, right side: s=8 without cost. 
In the middle there is a specification of depth D - structural measure of functional 
order. W - stage of aggregate grow.  Flow of automata through the border of depth 
and balance of addition and removal in function of depth. 

In the experiments terminal majority of addition occurs strongly (see the left side 
of [Fig. 7] and [Fig. 8]). However, measurements of tendency for simplification of 
functionally deeper parts are not statistically significant. In all runs of simulations, the 
somehow weak tendency can be seen and confirmed. In [Fig. 7] the simplification 
tendency is too small to be observed, but in [Fig. 8], for s=4, it is visible from depth 
D=2, and for s=8, it weakly appears from D=3.  

In [Fig. 8] the large triangle depicts growing aggregate in consecutive stages W. 
In each stage aggregate grows by 128 automata. In the middle of the [Fig. 8], there is 
specification of depth D – the structural measure of functional order. Aggregates on 
both sides are divided by this depth. In each stage and depth, the difference between 
additions and removals is shown as a square, for more additions, and a rectangle, for 
more removals.  As you can see, there is much more addition in depth D=1. The right 
aggregate (s=8 without cost) is shown from stage W=4 (starts from 384 automata), 
because from this stage the aggregate is surely a complex system. All results 
presented on [Fig. 6, 7, 9, 10 and 11] are obtain from the stage 4 onwards (without 
stages 1-3). 

  

347Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...



5.4 Shunting Back 

Terminal additions together with terminal majority of additions forces the aggregate’s 
shallow automata to be pushed deeper and deeper in the aggregate structure (see right 
side in [Fig. 7]). This looks like shunting back [Weisman 04, Holmes 44]. [Fig. 8] 
shows a strong stream down, as constant volume of shallow depth cannot hold all 
newly added automata. Of course, this is only an interpretation, because all automata 
stay in their place without moving. New automata are placed on top of the existing 
ones. It should rather be understood as building up on an old, ready foundation, or 
base. If there is a process actively removing some automata from the parts of the 
aggregate close to its inputs, then it will make some automata from the higher parts of 
the aggregate to be pushed down. That is, when counted from the input of the 
aggregate, automata occupying higher levels will be pushed to lower levels. This is 
exactly what shunting back represents.  

5.5 Similarity of Historical and Functional Order 

The tendencies described above, terminal addition and terminal majority of additions, 
result in a close similarity between historical and functional order (see right side of 
[Fig. 9]). Automata added at the earlier stages of evolution of the aggregate occupy 
deeper parts of the structure, near inputs of the aggregate. In terms of the functional 
order these automata are earlier in the functional dependency graph. Automata added 
later during the evolution, that is younger automata, are occupying shallower regions 
of the structure, near outputs of the aggregate. This is an evident occurrence, and it 
represents a significant statistical dependency. In all simulations, except s=4 without 
cost, these dependencies are identical and statistically significant.  

Due to this similarity, we can expect all the above discussed functional tendencies 
to appear also in historical sequence. Therefore we have used above (for descriptions 
to [Fig. 6, 7, 8 and 9]) the term “functional” to distinguish the terms “terminal” (late, 
shallow) and “deeper” (early) from the historical sequence.  

In simulations we have obtained historical terminal modifications tendency in 
both cases – for additions and removals. In [Fig. 10] we show these tendencies and we 
presented the influence of the cost function (for s=8, with and without cost). We 
show also the participation of transparent automata. The participation of transparent 
automata in case without cost is near 2/3 for additions and even higher for removals. 
Transparent automata were removed in a very short time after their addition. In 
models with cost there is a visible historical terminal majority of additions. In cases 
without cost and for s=8, there is no such tendency, as you see comparing left and 
right graphs. 

We partition all the automata of the aggregate into 8 groups, 1 to 8, according to 
the sequence at which these automata were added to the aggregate. The latest 
additions will be in group 8, and the earliest in group 1. The number of the group we 
refer to as H. In graph of P(a|+,H) parameter H refers to the automaton that 
received the output signal of a newly added automaton. This is then averaged with the 
second output value, and for this reason for old parts probability is not close to zero.  
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Figure 9: Distribution of change frequency in depths for free process and accepted 
additions and removals for s=4 with cost. Functional terminal modification can be 
observed.  Similarity of historic and functional order (all simulations without:  s=4 
without cost). 
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Figure 10: Historical terminal modification tendency for additions and removal in 
simulations:  s = 8 without (uw8-) and with (uw8+) cost. Lower curve shows 
participation of transparent automata. 
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5.6 Recapitulation Old States Deep in a System Structure 

Tendencies of historical and functional terminal additions and conservation of older 
and deeper parts of aggregate, together with terminal majority of additions, through 
shunting back as building up, create a situation that in deeper, old parts of the 
aggregate there are structures similar to the old state of the whole aggregate. The 
older substructures are contained within younger regions of the aggregate. The 
outputs of these substructures, that previously were outputs of the aggregate, appear 
according to the functional order. This phenomenon is called recapitulation of older 
states deep in the structure. This is statistically significant phenomena and should be 
easily visible. To establish the level of conservation of these substructures, we have 
measured the frequency of conservation of the original output signals. The results are 
presented in [Fig. 11]. Only in the early stages, when the automaton is still placed 
very shallow (H=8), it is possible for it to change its output signals. Later (H=7 to 
H=3) there is visible conservation of its output signals. For automata with H=1 and 
H=2 the aggregate was still not complex. 

 

Figure 11: Stability of function (output signals from time of addition) of automata. 
Also random levels are shown.  

5.7 Covering 

If the input signals to the aggregate are changed (environment is changed), then in 
most cases, the only way for the system to maintain its aptness level (to survive) is to 
rebuild within the system itself previous environmental signals. It can be done in 
many ways. Nevertheless, each method must reconstruct a function of the aggregate 
by changing it in functionally a very early place. In a complex system the correction 
must be made near to the source of the dysfunction.  The easiest and universal way is 
to add a new automaton to the changed input of the aggregate, which converts the 
new input signal to the old one. This new automaton repairing the old input signal, we 
call cover, and the tendency to use this mechanism: covering. 
 

350 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...



 

160
 61

3 1

1

1

11

000

2
2 2 2 20 0011

1

119

17

225

161162
  8

165
 13

28

29

159

28
0

77

228

57163
164

166

5
5

7 0

3

167
 55

123

15
168
 36

130

10 0 0

0

179

516
1

1

0

1

1

32

169
 36

14715

170
 29

160

372

3

3221 1

3 1 152

171172
 44144

2

2 121

1

133

267

3

173
 61

13
3

3

2

1

207

>1000

          input
signals

          output
signals

      #  of 
automaton.

 type of
function

number 
of trials 
before
acceptation

144

2

input

output

      of 
  aggregate
input/output

 #

start aggregate m = 32   B = 24
s = 4

3 0123

2

0

automata up to 159

not covering new 
       automaton 171

covering new automaton 173

old
automaton 130

edge model: only   only to inputs or outputs
                                                     of aggregate

+

 

Figure 12: Mechanism of covering – simulation results in detail. Only when a new 
signal on input 2 gave the same function new automata was not a cover. 

Covering has been investigated in the early stages of our research [Gecow 83]. 
Due to limited resources we have used only an edge model (only addition only on 
edge – to input or output of the aggregate) and number of inputs / outputs was 
shortened to m=32. The covering effects are clearly visible, as shown in [Fig. 12].  

On the right-hand side, there is given a description of the numerical value of 
appropriate input or output signals of the aggregate. For example, the value in the 
rectangle represents a symbolic numerical name of the given input/output of the 
aggregate. Bottom number (in a circle) represents a symbolic name of the automaton 
function for transforming inputs into outputs. For our simulations we have randomly 
generated 64 of such functions. By the inputs and outputs of the automaton, we 
provide the actual values for the signals being passed. As shown, automata were 
attached somewhere to the aggregate only when a new signal on input numbered „2” 
maintained the original function of the aggregate. The change faded out after a single 
or the first two steps (automata 161, 163, 164, 166 and 171). Covering is here a very 
strongly expressed tendency.  
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Covering is a very important and interesting tendency, and should be investigated 
further in more detail. For that a new, more robust and improved model needs to be 
developed. It will have fundamental theoretical and practical implications.  

5.8 Other Tendencies 

[Fig. 13] shows another simple yet interesting tendency: specialisation for aggregates 
developed in diverse environments. In all of the environments there are some special 
requirements, ideals. If an aggregate can acquire a method to avoid one of the 
environments (the least frequent one), then it can adapt faster to the remaining ones. 
However, after one of the environments is excluded for a few changes, it is very 
difficult for an aggregate to accommodate that single environment again.  
 

     aggregate

 ideal  y1* for x1

property y1 in x1

x1 environment 1
 

Figure 13: Tendency of specialization. 
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Figure 14: Tendency of integration - after long common evolution earlier independent 
systems must later develop together. 
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There is another, more complex and important problem, that of integrity. [Fig. 14] 
shows a few events during the process of creating a new higher-level super-aggregate 
(that we refer to as integron). After long common evolution, earlier independent 
systems must later develop together. In effect, we expect a structure of higher-level 
integrons, because of the earlier described tendencies of conservations of old areas of 
an aggregate structure. 

 In [Fig. 14] – aggregate 2 works as a cover for aggregate 3; 2,3,4,5 – are 
common automata; 5 – common cover. Environments of early aggregates may be 
independent, but during evolution they lose their independence and they use a mixture 
of environments, properties and requirements. To create a higher-level integron, we 
do not need to increment aptness requirements – long coexistence is enough.  This is 
an example of simple co-evolutionary behaviour. 

6 Summary and Future Work 

It is believed by many researchers in computer science that software systems are soon 
to reach biological levels of complexity. Hardware systems, with their high levels of 
integration are not far behind. For these reasons, computing systems are becoming a 
natural metaphor for an organism as a whole, not only for a brain [Neumann 58] 

When observing large software systems it is easy to draw parallels to biological 
evolutionary processes. For such large software systems (like operating systems), it is 
very difficult to implement some new functionality by modifying the existing 
structures. It is much simpler to provide needed functionality on top, or parallel to the 
existing one, therefore the system is being constantly patched, in a similar way to the 
patching of genetic codes done by natural evolutionary processes [Chaitin 79].  

The main aim of our work is, first, to develop a theory and then to develop tools 
and frameworks for automatic maintenance and automatic adaptation of software 
systems in dynamic environments. In this article we have addressed the theoretical 
aspects of our main objective. We have described a system exhibiting particular 
properties above a certain level of complexity. This threshold level has a statistical 
character and it is commonly referred by other researchers as a phase transition. In the 
presented model we have observed and investigated this effect. We have also 
investigated structural tendencies of a developing complex system. These are 
statistically significant, very strong, and we believe that they will occur in any 
development of complex software system, independently of the development method 
used. That means, regardless of the origins of changes to the system, whether the 
changes are generated randomly by some stochastic process, or whether the changes 
are generated by a team of programmers following a formal software methodology 
and coordinated centrally, these tendencies should be visible (at least to a certain 
degree). This is because all these tendencies are results of relatively simple statistical 
relationships emerging in systems with complexity above the discussed threshold.  

Interestingly, coming independently from two different set of basic definitions 
and assumptions, both models ([Chaitin 79] and [Gecow 75, 83] achieved the same 
conclusions. The process of improvement and the system growth are being 
accomplished by carrying along all the previously developed structure, as new pieces 
of the structure are added [Simon 68]. The simulations and statistical analyses 
together replicate similar conclusions of Chaitin.  The experimental proof of this is 
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that ontogeny recapitulates phylogeny, i.e. each embryo to a certain extent 
recapitulates in the course of its development the evolutionary sequence that led to it  
[Chaitin 79]. The preliminary results based on the finite-state automata model 
discussed in the previous sections present very promising tendencies and robustness. 
Note, that this is the first such detailed exploration of structural tendencies. These 
phenomena have potential usefulness for complex and adaptive software 
development. In the discussed scenario the model exhibited self-adaptability and 
could be successfully used in some applications with binary input-output signals. 

Based on obtained results we can identify some of the properties an efficient 
automatic change generator needs to exhibit. These include among other things, the 
following guidelines: 

- follow small steps of adaptation to new requirements, 
- perform changes close to system outputs, 
- retain system function by rebuilding old environment conditions, 
- do not try to change old mechanisms. 
Future work will include a) formal definitions together with analysis of 

aggregation of aggregations, b) automatic change generators that exhibit changes with 
high probability of acceptance needs to be further explored and investigated; c) more 
experimental data needs to be collected, and bigger real-life problems must be tested 
and evaluated.  A better understanding of the necessary reflective capabilities is also 
required.  Applications in the fields of evolutionary computation and artificial life are 
possible and are also planned as future work.  

One of the interesting tendencies described in this work is specialization and 
integration. These mechanisms have a potential crucial role in practical aspects of 
software maintenance. However, they may also have an important role in biological 
and philosophical aspects of the theory of life. These will be addressed in future 
publications. 
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