
Processing Inconsistency of Knowledge on
Semantic Level

Ngoc Thanh Nguyen
(Institute of Control and Systems Engineering,

Wroclaw University of Technology, Poland
thanh@pwr.wroc.pl)

Abstract: Inconsistency of knowledge may appear in many situations, especially in distributed
environments in which autonomous programs operate. Inconsistency may lead to conflicts, for
which the resolution is necessary for correct functioning of an intelligent system. Inconsistency
of knowledge in general means a situation in which some autonomous programs (like agents)
generate different versions (or states) of knowledge on the same subject referring to a real
world. In this paper we propose two logical structures for representing inconsistent knowledge:
conjunction and disjunction. For each of them we define the semantics and formulate the
consensus problem, the solution of which would resolve the inconsistency. Next, we work out
algorithms for consensus determination. Consensus methodology has been proved to be useful
in solving conflicts and should be also effective for knowledge inconsistency resolution.

Keywords: Inconsistent knowledge, conflicts, consensus methods
Categories: E.1, H.2.1, I.2.4, I.2.11

1 Introduction

In many practical situations in order to solve a problem one often has to gather
knowledge from different resources for realizing the task. Nowadays owing to modern
computer technologies gathering knowledge is not a hard task at all, but there may be
two features of this knowledge, which often cause the decision making process
difficult. The first feature is related to the big amount of knowledge, which on one
hand contains many useful elements, but on the other hand it often contains also a lot
of useless elements. For this problem many methods for information filtering and
ordering have been proposed. The second refers to the consistency of the gathered
knowledge. Some elements of this knowledge may refer to the same subject, but they
are not coherent. Hunter [Hunter, 98] describes the resources of inconsistent
knowledge as situations in which one obtains “too much” information.

Generally, a problem of knowledge inconsistency may be formulated as follows:
For a given set of logic formulas, one should find out if these formulas are inconsistent
or not. As stated in [Nguyen, 04a] inconsistent knowledge can be considered on two
levels: syntactic level and semantic level. On the syntactic level inconsistent
knowledge as a set of logic formulae is assumed to have no model [Kifer, 92], that is
on their basis one can conclude false. For example, for the set of formulae {¬α∨β, α,
¬β, α∨¬β} with the inference engine of standard logic one can easily notice that no

Journal of Universal Computer Science, vol. 11, no. 2 (2005), 285-302
submitted: 31/7/04, accepted: 15/12/04, appeared: 28/2/05 © J.UCS

model exists, because in any interpretation if α and ¬β are true then ¬α∨β may not be
true. On the semantic level, on other hand, considered formulae are related to a real
world and on its basis if a fact and its negation may be inferred simultaneously then
we say that the inconsistency exists.

On the syntactic level there are known two main approaches for inconsistency
leaving: The first relies on knowledge base revision and the second is based on
paraconsistent logics. The first approach, most often used in deductive databases,
removes data from the base to produce a new consistent database [de Kleer, 86],
[Doyle, 79], [Gardenfors, 88]. The disadvantage of this approach is that it is hard to
localize the inconsistency and perform the optimal selection, that is with minimal loss
of useful information. In the second approach paraconsistent logics are defined. These
logics give sensible inferences from inconsistent information. Hunter [Hunter, 98] has
defined the following logics: Weakly-negative logic which uses the full classical
language; four-valued logic which uses a subset of the classical language; quasi-
logical logic which uses the full classical language and enables effectively rewriting
data and queries to a conjunction normal form; and finally argumentative logic which
reasons with consistent subsets of classical formulae. Hunter has stated that
paraconsistent logics can localize inconsistency and their conclusions are sensible with
respect to the data. In these logics the inconsistency is not needed to be resolved.
However, this kind of logics does not offer strategies for acting on inconsistency and
the means for reasoning in presence of inconsistency in existing logical systems are
still scant. Apart from the approaches mentioned above, there are a number of
attempts to resolving inconsistent data in databases using labeling mechanisms
[Balzer, 91], [Fehrer, 93]. Fuzzy logic is also useful in inconsistency leaving for
software development [Marcelloni, 01].

On the semantic level a formulae set is considered referring to a concrete real
world. Inconsistency arises if in this world a fact and its negation may be inferred. Up
to now there are known also two approaches for leaving inconsistency on this level.
The first is related to Boolean reasoning and the second concerns measuring up the
inconsistency level. In Boolean reasoning [Brown, 90], [Pawlak, 91] an inconsistency
resolution task is formulated as an optimisation problem, which is next transformed to
such a form of Boolean formula that the first implicant is the solution of the problem.
Finally, in the second approach for solving inconsistency its level is determined by
means of some consistency function. For this aim Hunter [Hunter, 03] proposes a
measure for inconsistency in a set of formulae; Knight [Knight, 02] measures up the
inconsistency in a set of sentences; Nguyen and Malowiecki [Nguyen, 04b] define
consistency functions which enable calculating the consistency level for so called
conflict profiles.

In practice inconsistency of knowledge arises mainly in 3 cases:
• In the first case knowledge is gathered in a period of time and its “topicality”

depends on the timestamps [Ferber, 99], [Katarzyniak, 00], [Tessier, 01]. Thus
some pieces of knowledge may be inconsistent with some others. For this kind of
inconsistency one can actualize the knowledge base by removing from it the non-
actual information, thus the remaining information should be consistent. Another
approach may use paraconsistent logics because owing to the localization of

286 Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

inconsistency one can find out which pieces of knowledge are non-actual [Naqvi,
90].

• In the second case, knowledge results from extracting in a database, for example
by data mining methods. Extracted rules are dependent on the data and some of
them may be contradictory with each other. Here the methods for knowledge base
revision could be useful. However, as mentioned above, using these methods may
cause the loss of useful rules.

• The third case refers to conflicts of knowledge in distributed environments. For the
same subject (conflict issue) the sites may generate different versions (conflict
content) of knowledge [Pawlak, 98], [Nguyen, 02b]. For example, agents in a
multiagent system may have different opinions on some matter. Thus they are in
conflict of knowledge. It seems that for this kind of inconsistency neither
knowledge base revision methods nor paraconsistent logics are useful because the
former cause loss of information and the later enable to localize the inconsistency
but it is not the most important here. The most important is determining a version
of knowledge, which is needed for further processing. Boolean reasoning could be
useful but it is not practical because for using it the values of conflict features have
to be atomic.

In this paper we deal with the inconsistency of knowledge, which arises in the
mentioned above third case. We will resolve it on semantic level using consensus
methods. For this aim we consider two structures of the logic formulas representing
the conflict content: conjunction and disjunction structures. These structures have
been first defined and provisionally analyzed in work [Nguyen, 04a]. In this paper we
present some their modifications and the deeper analysis.

In earlier works [Nguyen, 02a], [Nguyen, 02b] consensus methods have been
proposed for relational structure. In these works a methodology for consensus choice
and its applications in solving conflicts in distributed systems is presented. In this
methodology consensus problem has been considered on 2 levels. On the first level
general consensus methods, which may effectively serve to solving multi-valued and
multi-attribute conflicts are worked out. For this aim a consensus system, which
enables describing multi-valued and multi-attribute conflicts is defined and analyzed.
Next the structures of tuples representing the contents of conflicts are defined as
distance functions between these tuples. Two distance functions (ρ and δ) have been
defined. Finally the consensus and the postulates for its choice are defined and
analyzed. For defined structures algorithms for consensus determination have been
worked out. Besides the problems connected with the susceptibility to consensus and
the possibility of consensus modification, have been also investigated. The second
level concern varied applications of consensus methods in solving of different kinds of
conflicts, which often take place in distributed systems. The following conflict
solutions are presented: reconciling inconsistent temporal data; solving conflicts of the
states of agents’ knowledge about the same real world; determining the representation
of expert information; creating an uniform version of a faulty situation in a distributed
system; resolving the consistency of replicated data and determining optimal interface
for user interaction in universal access systems. A multiagent system (named AGWI)
aiding information retrieval and reconciling in the Web was also implemented by
means of platform IBM Aglets [Nguyen, 05]. Consensus methods are useful in many

287Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

applications, for example, in designing and implementation of intelligent user
interfaces [Sobecki, 04].

This paper is organized as follows: In [Section 2] we define the logical structures
of inconsistent knowledge and their semantics. We use these structures to represent
two kinds of knowledge: positive and negative. [Section 3] presents the consensus
approach for solving inconsistency for these structures, in which the algorithms for
consensus determining are worked out. Some conclusions and directions for future
works are included in [Section 4].

2 Logical Structures of Inconsistent Knowledge

2.1 Basic Notions

For representing inconsistent knowledge an approach based on using relational
structures has been presented [Nguyen, 02a]. In this paper we present the logical
approach for representing this kind of knowledge. On its basis two kind of knowledge
(positive and negative) can be represented.

Formally, we assume that a real world is described by means of a finite set A of
attributes and a set V of attributes’ elementary values, where V=U a∈AVa (Va is caled

the super domain of attribute a). In short, pair (A,V) is call a real world. Let Π(Va)
denote the set of subsets of set Va and be called the domain of attribute a. Let Π(VB) =
U b∈BΠ(Vb). We accept the following assumption: For each attribute a its value is a

set of elementary values from Va, thus it is an element of set Π(Va). By an elementary
value we mean a value, which is not divisible in the system. Thus it is a relative
notion, for example, one can assume the following values to be elementary: time units,
set of numbers, partitions of a set etc.

We define the following notions [Nguyen, 04a]: Let T⊆A,
• A tuple of type T is a function r: T→Π(VT). Instead of r(t) we will write rt and a

tuple of type T will be written as rT. The set of all tuples of type T is denoted by
TYPE(T). A tuple is elementary if all attribute values are empty sets or 1-element
sets. The set of elementary tuples of type T is denoted by E_TYPE(T). Empty
tuple, whose all values are empty sets, is denoted by symbol φ. Partly empty tuple,
whose at least one value is empty, is denoted by symbol θ. Indeed, symbol θ
represents not one tuple, but a set of tuples. Expression r∈θ will mean that in tuple
r at least one attribute value is empty and expression r∉θ will mean that in tuple r
all attribute values are not empty.

• A sum of two tuples r and r' of type T is a tuple r" of type T (r"=r∪r') such that
r"t=rt∪r't for each t∈T.

• A product of two tuples r and r' of type T is also a tuple r" of type T (r"=r∩r') such
that r"t=rt∩r't for each t∈T.

• Let r ∈TYPE(T) and r'∈TYPE(T) where T⊆T’, we say that tuple r is included in
tuple r' (that is rp r'), iff rt⊆r't for each t∈T.
An expression (a = v) or (a ≠ v) where a∈A, v∈Π(Va)

 and v is a finite set, is called
a literal from real world (A,V) (or (A,V)-based for short). If a literal has form (a = v)
we call it a positive literal if it has form (a ≠ v) then we call a negative literal. A

288 Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

negative literal (a ≠ v) can be considered to be equivalent to ¬(a = v). Positive literals
serve for agents to express their positive knowledge, that is knowledge consisting of
statements “something should take place”, while negative literals serve to express their
negative knowledge, that is knowledge consisting of statements “something should not
take place”. However, a negative literal may be transformed into a positive literal
using the attribute super domains, that is literal (a ≠ v) is equivalent o literal (a = v’)
where v’ = Va\v. Thus if Va is a finite set one can operate only positive literals. Notice,
however, that this equivalence is not always true in processing agent knowledge. For
example, a meteorological agent can believe that it will not be rain between 10 a.m.
and 12 a.m., but this does not means that in the opinion of the agent it will be rain
during the rest of the day.

Instead of (a = v) we will write (a,v) and instead of (a ≠ v) we will write ¬(a,v).

2.2 Conjunction Structure

The general aim in this approach is to represent the versions of agents’ knowledge (or
agents’ opinions on some matter), which are inconsistent. We use the standard logic to
represent the knowledge. As it was stated in earlier works [Nguyen, 01], [Nguyen,
02a], [Nguyen, 02b] each conflict consists of 3 parameters: conflict body, conflict
subject and conflict content. As conflict body we understand a set of agents, which
operate in the same environment and generate different states of knowledge; conflict
subject – a contentious issue for which the agents are disagreed; and conflict content –
the agents’ opinions. As a conflict profile we understand a finite set, which consists of
agents’ opinions referring to given subject. In this approach an element of a conflict
profile is a formula in the form of a conjunction of literals:

 l1 ∧l2 ∧...∧ ln
where l1, l2,..., ln are (A,V)-based literals. By CAV we denote the set of all conjunctions
of (A,V)-based literals.

Example 1. Let A be a set of attributes Time, Direction, Wind_Speed which represent
the parameters of wind in a meteorological system. The super domains of the
attributes are the following: VType = {gusty, moderate}; VDirection = {n, w, e, s, n-w, n-e,
s-w, s-e}; VWind_Speed = [0 km/h, 250 km/h] (this interval represents the set of integers
not smaller than 0 and not greater than 250). Examples of formulae representing
agents’ opinions are the following:
 (Type, {gusty}) ∧ (Direction, {n}) ∧ (Wind_Speed, {70}),
 (Type, {gusty}) ∧ (Direction, {n-w, n}) ∧ (Wind_Speed, [100, 200]),

(Type, ∅) ∧ (Wind_Speed, [20, 50]).

The empty value of attributes means that in the opinion of an agent the attribute
should not have value. We should now define the semantics of conflict profile’s
elements. The set of attributes appearing in a disjunction is called its type.

Definition 1. As the semantics of a conjunction we understand the following function:
SC: CAV → Π(E_TYPE(B)),

such that

289Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

 SC(x) = {r∈U BT
TTYPEE⊆)(_ : rT p x’T and ra =∅ iff x’a =∅ for a∈T}

where x = (a1, v1) ∧ (a2, v2) ∧...∧ (ak, vk),
x’ = <(a1, v1), (a2, v2),..., (ak, vk)>,

and
B = {a1,a2,...,ak}.

Thus the semantics of conjunction x is the set of all elementary tuples which are
included in the tuple x’ representing x, and their values referring to an attribute are
empty if and only if the value of x’ is empty for this attribute. The intuition of this
definition is based on the aspect that if conjunction x represents the opinion of an
agent for some issue then set SC(x) consists of all possible scenarios which are
included in x and may take place according to the agent’s opinion. Example 2 should
illustrate the intuition.

Example 2. For the real world defined in Example 1 let the agent’s opinion be the
following:
 x = (Type, {gusty}) ∧ (Direction, {n-w, n}) ∧ (Wind_Speed, {200}).
Then the semantics of x can be represented by the following table:

Type Direction Wind_Speed
gusty n-w 200
gusty n 200

 n-w 200
 n 200

gusty 200
gusty n
gusty n-w
gusty

 n
 n-w
 200

Table 1: The semantics of formula x

Each of elementary tuples from this table represents a scenario, which in the opinion
of the agent should take place. Notice that the lack of some attribute values in several
tuples follows from the types of these tuples.

The tuple x’ in Definition 1 is called corresponding to formula x. Now we
consider another logical structure.

2.3 Disjunction Structure

This structure has been first time proposed in [Nguyen, 04a]. In this paper we provide
its deeper analysis. Notice that in the previous section we assume that a negative
literal can be transformed into a positive literal if the super domain of the attribute is
finite. This assumption is needed in practice because otherwise the semantics of a

290 Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

conjunction containing this literal should be infinite. This means that the agent’s
opinion represented by this formula is too imprecise.

We consider now another form of agent knowledge, in which an agent expresses
its knowledge in the form of a disjunction of literals. We assume also the existence of
positive literals as well as negative literals.

In this structure an agent opinion has the following form:
 l1∨l2∨ ...∨lm

Notice that owing to this structure an agent may express other type of its opinion
than in conjunction structure, viz an agent can now give its opinion in form of a
disjunction referring to a number of scenario attributes.

Notice that formula (l1∨l2∨ ... ∨lm) can be treated as a clause. We can then write
 (l1∨l2∨ ... ∨lm) ≡ (h1 ∨ h2 ∨ ...∨ hk) ∨ (¬b1 ∨ ¬b2 ∨ ...∨ ¬bl)
where h1, h2, ..., hk are positive literals and ¬b1, ¬b2, ..., ¬bl are negative literals
among l1, l2, ..., lm. Further we have

 (l1∨l2∨ ... ∨lm) ≡ (h1 ∨ h2 ∨ ...∨ hk) ∨ ¬(b1 ∧ b2 ∧ ...∧ bl)
 ≡ (b1 ∧ b2 ∧ ...∧ bl) → (h1 ∨ h2 ∨ ...∨ hk)

Formula (b1 ∧ b2 ∧ ...∧ bl) is called a body of the clause, and formula (h1 ∨ h2 ∨ ...∨
hk) is called a head of the clause. It is the well-known form of clauses. The mentioned
above transformation shows that the disjunction structure should be very useful in
practice for agents to express their opinions.

We now define the semantic of bodies and heads of clauses, which is based on
some real world. A clause c is based on a real world (A,V) (or (A,V)-based for short) if
each its literal is (A,V)-based. Then a body of a (A,V)-based clause as a conjunction
should have the following form: (a1, v1) ∧ (a2, v2) ∧...∧ (ak, vk) for {a1,a2,...,ak} ⊆ A.

By BAV we denote the set of all bodies of (A,V)-based clauses. The semantic of
clause bodies is defined as follows:

Definition 2. The semantic of clause bodies is defined by the following function:
SB: BAV →))(_(U AT TTYPEE⊆Π ,

such that
 SB(b) = {r∈U ATB TTYPEE⊆⊆)(_ : rB p b’, ra =∅ iff b’a =∅ for a∈B and rT\B∉θ}

where b = (a1,v1) ∧ (a2,v2) ∧...∧ (ak,vk),
b’ = <(a1,v1), (a2,v2),..., (ak,vk)>,

and
B = {a1,a2,...,ak}.

The body expresses the condition (in the opinion of an agent), which, if fulfilled,
will cause occurrence of some scenarios (represented in the head of the clause). It
follows that a scenario satisfies the condition b of the agent if it belongs to set SB(b).

Example 3. For the real world defined in Example 1 let the body of agent’s opinion
be the following:
 b = (Type, {gusty}) ∧ (Wind_Speed, {200}).
Then the semantics of b consists of the following tuples:

291Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

Type Wind_Speed Direction
gusty 200 n
gusty 200 e
gusty 200 s
gusty 200 w
gusty 200 n-w
gusty 200 n-e
gusty 200 s-e
gusty 200 s-e
gusty 200

Table 2: The semantics of body b

Each of elementary tuples from this table represents a scenario, which satisfies the
condition expressed in the body.

It is not hard to prove the following properties of the semantics of bodies:

Proposition 1. A body
b∗ = (a1, 1aV) ∧ (a2, 2aV) ∧...∧ (an, naV)

where {a1, a2,...,an} ⊆ A should have the following semantics
SB(b∗) = {r∈U AT TTYPEE⊆)(_ : r∉θ}.

From this property it implies that and any body b∗ for any n ≤ card(A), should
represent the statement “everything is possible”.

Proposition 2. Bodies
b = (a1,v1) ∧ (a2,v2) ∧...∧ (ak,vk)

and
b’ = (a1,v1) ∧ (a2,v2) ∧...∧ (ak,vk) ∧ (a,Va)

where attribute a does not occur in b, should have the same semantics, that is
SB(b) = SB(b’).

Bodies b and b’ having the same semantics are called equivalent to each other.
Literal (a,Va) in some sense has the same role as value true in the standard logic.

A notice should be made referring to empty values in bodies. If in a body an
attribute has empty value then it is understood that the attribute should not appear in
the condition. This situation may take place when some attribute expresses a
contradictory feature referring to another.

Now we consider the semantics of clause heads. The head of a clause is in the
form of a disjunction (a1,v1) ∨ (a2,v2) ∨...∨ (al,vl). By HAV we denote the set of all
heads of (A,V)-based clauses. The semantics of heads is defined as follows:

Definition 3. The semantics of clause heads is defined by the following function:

SH: HAV →))(_(ATYPEEΠ ,

such that

292 Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

 SH(h) = {r∈)(_ ATYPEE : rH p h’, rH=φ iff h’=φ and rA\H=φ}

for h = (a1,v1) ∨ (a2,v2) ∨...∨ (al,vl);
h’ = <(a1,v1), (a2,v2),..., (al,vl)>

and
H = {a1,a2,...,al}.

A head expresses the result (in the opinion of an agent), which should occur if the
condition in the body is fulfilled. Its semantics consists of all scenarios, which may
take place. In this definition we use similar assumption to well known closed world
assumption: the disjunction in the clause head is the “most complete” knowledge of an
agent on the subject. Therefore, apart from the attributes appearing in the head, other
attributes should not have values (that is their values are empty).

Example 4. For the real world defined in Example 1 let the head of agent’s opinion be
the following:
 h = (Direction, {n, n-w, n-e}) ∨ (Type, {moderate})
Then the semantics of h consists of the following tuples:

Direction Wind_Speed Type
n ∅ moderate

n-w ∅ moderate
n-e ∅ moderate
∅ ∅ moderate
n ∅ ∅

n-w ∅ ∅
n-e ∅ ∅

Table 3: The semantics of head h

It is not hard to prove the following:

Proposition 3. Heads
h = (a1,v1) ∨ (a2,v2) ∨...∨ (ak,vk)

and
h’ = (a1,v1) ∨ (a2,v2) ∨...∨ (ak,vk) ∨ (a,∅)

where attribute a does not occur in h, have the same semantics, that is
SH(h) = SH(h’).

Heads h and h’ having the same semantics are also called equivalent. Literal
(a,∅) in some sense has the same role as value false in the standard logic.

3 Consensus Determination

In this section we present the algorithms for consensus determination for the defined
logical structures of conflict profiles. The general consensus problem has been defined
in the literature, according to which the consensus for a conflict profile should fulfill
the following two conditions: It should at best represent the elements of conflict

293Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

profile; and should be the best compromise for the inconsistent opinions of agents. It
has been shown [Nguyen, 01] that in general these conditions may not be satisfied
simultaneously. The consensus satisfying the first condition should be determined by
Kemeny function, which minimizes the sum of distances between consensus and
profile elements. The consensus satisfying the second condition, and partially the first
condition, should be determined by the function, which minimizes the sum of squared
distances between consensus and profile elements.

For the needs of consensus determining for a given structure the distance function
should be defined. Next, the criterion for consensus choice should be formulated. In
this work we will concern only the consensus choice satisfying the mentioned above
conditions. Although there have been defined other criteria [Nguyen, 01], consensus
functions satisfying them will be the subject of future work.

3.1 Consensus Determining for Conjunction Structure

3.1.1 Distance Function

Intuitively, the distance between two conjunctions of the same type should be defined
on the basis of the difference in their semantics, because the semantics of a
conjunction gives its interpretation. Thus firstly we define the difference in semantics
of two conjunctions. For x = l1 ∧l2 ∧...∧ ln and x’ = l1’ ∧l2’ ∧...∧ ln’ and their semantics
SC(x) and SC(x’) we define the difference between two sets of tuples SC(x) and SC(x’)
as the minimal cost needed for transformation of one tuples set into the other. By the
operation transforming set SC(x) into set SC(x’) we mean performing such operations
as adding, removing and transformation to the elements of set SC(x), which in the
result give set SC(x’). For the need of the definition of these operations we define the
following cost functions:

• Function d1: V → (0,+∞): specifies the cost for adding (or removing) of an
elementary value to (or from) a set.

• Function d2: V×V → [0,+∞): specifies the cost for transformation of one
elementary value into another.

Similarly like in work [Nguyen, 02a] for functions d1 and d2 we accept the
following assumptions:

a) Function d2 is a metric, i.e. for any x,y,z∈V the following conditions are
held:

- d2(x,y) ≥ 0, d2(x,y) = 0 if and only if x=y,
- d2(x,y) = d2(y,x),
- d2(x,y)+d2(y,z) ≥ d2(x,z);

b) For any x,y∈V)()(11 ydxd − ≤ d2(x,y) ≤ d1(x)+d1(y).

Condition a) is natural because function d2 may be treated as a distance function
between elements from set V. For condition b) notice that its first inequality is
equivalent to the following inequalities

d1(y) ≤ d2(x,y)+d1(x) and
d1(x) ≤ d2(x,y)+d1(y).

294 Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

The first of them corresponds to the following intuition: The optimal way (that is
with the minimal cost) for transforming set {u} into set {u,v} where tuples u and v
contain elements x and y respectively (x,y∈V), consists of adding element y to set {u}.
The cost needed for this operation is equal d1(y). Thus this cost should not be greater
than the cost of the operation which consists of transforming element x into element y
and adding element x. The intuition for the second inequality is similar. The second
inequality of condition b) states that the cost of transformation of one elementary
value into another should not be greater than the sum of removing cost of the first
element and adding cost of the second. The intuition is that if one wants to transform
set {u} into set {v} then generally the cost is not minimal if he removes x from the
first set and next adds y.

Let’s consider an example:

Example 3. For the real world defined in Example 1 let
 x = (Type={gusty}) ∧ (Direction={n}) ∧ (Wind_Speed={200}), and
 x’ = (Type={gusty}) ∧ (Direction={n-w}) ∧ (Wind_Speed={200})
Then the semantics SC(x) of x is represented by the following table:

Type Direction Wind_Speed
gusty n 200

 n 200
gusty 200
gusty n
gusty

 n
 200

Table 4: Set SC(x)

and the semantics SC(x’) of x’ is represented by the following table:

Type Direction Wind_Speed
gusty n-w 200

 n-w 200
gusty 200
gusty n-w
gusty

 n-w
 200

Table 5: Set SC(x’)

As we can see, to transform SC(x) into SC(x’) it is needed to perform 2 operations:
removing value “n” of attribute Direction and adding value “n-w” of the same
attribute, or only 1 operation: transforming value “n” into “n-w”. Because of

295Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

inequality d2(x,y) ≤ d1(x)+d1(y) the minimal cost should come from the second variant,
that is it should be equal d2(n, n-w).

For the simple calculation way one can assume d1(x) = d1(y) = 1 and d2(x,y) =
d1(x) + d1(y).

Now we can give the definition of the distance between two conjunctions:

Definition 4. For conjunctions x = l1 ∧l2 ∧...∧ ln and x’ = l1’ ∧l2’ ∧...∧ ln’ their

distance dC(x,x’) is equal the minimal cost for transforming set SC(x) into set SC(x’).

Notice, however, that it is not convenient to obtain the minimal cost of the
transformation SC(x) into SC(x’) because the semantics of a conjunction is often very
large. Therefore, for calculating this distance we will use the distance function δ
defined for sets of elementary values given in [Nguyen, 02a]. This definition is very
similar to the conception of the difference in semantics of 2 conjunctions. In the same
work a distance function ϕ for tuples has also been defined:

Definition 5. The distance ϕ(r,r') between two tuples r and r' of type B is equal to the
following number

 ϕ(r,r') = ∑ ∈ δBa aa rr
Bcard

)',(
)(

1
.

Comparing these definitions it is not hard to prove the following theorem. Let x =
l1 ∧l2 ∧...∧ ln and x’ = l1’ ∧l2’ ∧...∧ ln’, let r and r’ be the tuples corresponding to x and
x’, respectively. Let B be the type of conjunctions x and x’ (that is it is also the type of
tuples r and r’). Then we have:

Theorem 1. dC(x,x’) = ∑ ∈ δBa aa rr
Bcard

)',(
)(

1
.

Owing to this theorem the calculation of distance between 2 conjunctions is more
easy and effective than calculation of the distance between 2 sets SC(x) and SC(x’).

3.1.2 Consensus Determination

Having defined the distance between conjunctions we can now define the consensus
for conflict profile.

Definition 6. Let P ⊆ CAV be a conflict profile being a set with repetitions, then
a) By a O1-consensus for P we call such conjunction c∈CAV that

 ∑∑ ∈∈∈ = PxCcPx xcdxcd
AV

),'(min),(C
'

C

b) By a O2-consensus for P we call such conjunction c∈CAV that

 2
C

'

2
C)),'((min)),((∑∑ ∈∈∈ = PxCcPx xcdxcd

AV

The O1-consensus is very well known and the most often used in practice.
However, we introduce also O2-consensus, which minimizes the sum of squared

296 Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

distances between the consensus and the elements of the profile. The reason is that this
kind of consensus also plays very essential role in conflict solving, this follows from
the fact that an O2-consensus guarantees the maximal degree of compromise between
contentious opinions of agents and simultaneously is partially the best representative
for these opinions [Nguyen, 01].

On the basis of Theorem 1 for determining both kinds of consensus we can use
the algorithms presented in work [Nguyen, 02a] for relational structure. The general
algorithm for conjunctions may be formulated as follows:

Algorithm 1: Computing consensus for a set of conjunctions.
Given: Finite set P ⊆ CAV of conjunctions of the same type where P = {x1, x2,..., xn}.

Result: Consensus for P.

BEGIN
1. Create tuples r1, r2,..., rn corresponding to conjunctions x1, x2,..., xn,

respectively;
2. Calculate consensus r for tuples r1, r2,..., rn using an algorithm in

[Nguyen, 02];
3. Create conjunction c from tuple r

END.

3.2 Consensus Determining for Disjunction Structure

3.2.1 Distance Function

For opinions in disjunction structure first we propose a method for measuring up the
distance between 2 clauses

c1 = u1
(1), u2

(1), .., um
(1) → t1

(1), t2
(1), ..., tn

(1)
and

c2 = u1
(2), u2

(2), .., um’
(2) → t1

(2), t2
(2), ..., tn’

(2).
Generally, unlike the distance between conjunctions, the bodies and heads must

not have the same type. The distance between 2 clauses may be understood as the sum
of the distance between the bodies and the distance between the heads of these
clauses. Firstly, we deal with the distance between clause bodies.

As for conjunctions, it is intuitive that the distance between 2 bodies should be
equal the minimal cost of translating the semantics of the first body to the semantics of
the second body. Thus we have:

Definition 7. For bodies b = u1 ∧u2 ∧...∧ un and b’ = u1’ ∧u2’ ∧...∧ um’ their distance
dB(b,b’) is equal the minimal cost for transforming set SB(b) into set SB(b’).

On the other hand, the distance between bodies can be calculated using only the
attribute values in these bodies. Because the bodies must not have the same attributes,
it is necessary to transform them to such forms that have the same type. For doing this
we can use the property which follows from Proposition 3. Thus for calculating the
distance dB between 2 bodies b and b’ the following procedure should be used:

1. Creating 2 equivalent bodies by adding to each of them new literals with
attributes which appear in only one of them, and their values are equal to their
super domains;

297Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

2. Calculating for each attribute the distance between its values in the bodies
using function δ assuming d1(x) = d1(y) = 1 and d2(x,y) = d1(x)+d1(y) (see
[Section 3.1]);

3. The distance between the bodies will be equal to the average of the distances
calculated in Step 2.

The basis of Step 1 is relied on Proposition 2. Let b = u1 ∧u2 ∧...∧ un and b’ = u1’

∧u2’ ∧...∧ um’, let r and r’ be tuples corresponding to b and b’ respectively after
performing Step 1 described above. Let B be the type of tuples r and r’. It is not hard
to prove the following:

Theorem 2. dB(b,b’) = ∑ ∈ δBa aa rr
Bcard

)',(
)(

1
.

Let’s consider an example.

Example 4. Let A={a1, a2, a3},
1aV = {x,y,z},

2aV = {1,2,3},
3aV = {+,−,±}. Consider

bodies
b1 = (a1,{x,y}) ∧ (a3,{+})

and
b2 = (a1,{x}) ∧ (a2,{1,2}).

After completing we have 2 bodies b1’ and b2’ equivalent to bodies b1 and b2,
respectively:

b1’ = (a1,{x,y}) ∧ (a2,{1,2,3}) ∧ (a3,{+})
and

b2’ = (a1,{x}) ∧ (a2,{1,2}) ∧ (a3,{+,−,±}).
Using distance function δ we have δ({x,y},{x}) = 1; δ({1,2,3},{1,2}) = 1; and

δ({+},{+,−,±}) = 2, so the distance dB(b1,b2) between bodies b1 and b2 should be
(1+1+2)/3 = 4/3.

The distance dH between 2 heads of clauses may be defined in the similar way.
That is:

Definition 7. For heads h = t1 ∧ t2 ∧...∧ tn and h’ = t1’ ∧ t2’ ∧...∧ tm’ their distance
dH(h,h’) is equal the minimal cost for transforming set SH(h) into set SH(h’).

The calculation of distance dH(h,h’) may be performed in the similar way as
calculation of dB(b,b’). The difference is based only on the first step. Here one should
create 2 equivalent heads by adding to each of them new literals with attributes, which
appear in only one of them, and their values are equal empty set.

Example 5. Using the parameters defined in Example 4 let’s consider the following
heads:

h1 = (a1,{x,y}) ∨ (a3,{+})
and

h2 = (a1,{x}) ∨ (a2,{1}).
After completing we obtain 2 heads h1’ and h2’ equivalent to heads h1 and h2,

respectively:
h1’ = (a1,{x,y}) ∨ (a2,∅) ∨ (a3,{+})

and

298 Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

h2’ = (a1,{x}) ∨ (a2,{1}) ∨ (a3,∅).
Using distance function δ we have δ({x,y},{x}) = 1; δ(∅,{1}) = 1; and δ({+},∅)

= 1, so the distance dH(h,h’) between heads h and h’ should be (1+1+1)/3 = 1.

Now we deal with the calculating distance between 2 clauses. The distance d
between 2 clauses

c = b → h
and

c = b’ → h’
can be calculated on the basis of the distances between the bodies and the heads, by
means of the following definition:

Definition 8. d(c,c’) = 1/2 dB(b,b’) + 1/2 dH(h,h’),

or more generally
d(c,c’) = α⋅dB(b,b’) + β⋅dH(h,h’),

where α and β are parameters representing the weights of distances between bodies
and heads, such that α,β≥0 and α+β=1.

Since function δ is a metric, function d is also a metric. Functions dC, dB, dH are
also metrics.

3.2.2 Consensus Determination

Now, having defined distance function between clauses we can work out an algorithm
for consensus determining for a set of clauses. Similarly like for the conjunction
structure the consensus problem for disjunction structure may be formulated as
follows:

Let CAV denote the set of all (A,V)-based clauses, and let P be a finite subset with
repetitions of set CAV. A clause c∗∈CAV is called:

• an O1-consensus of set P if it satisfies the following condition:

 Σc∈P d(c∗,c) =
AVc C∈

min Σc’∈P d(c,c’); and

• an O2-consensus of set P if it satisfies the following condition:

 Σc∈P (d(c∗,c))2 =
AVc C∈

min Σc’∈P (d(c,c’))2.

For determining a consensus for a clauses set it is needed to complete the clauses
by adding attributes to their bodies and heads so that the same attributes occur in each
clause. The rule of attribute completing is given above in distance determination way.

Assuming that the attributes from the real world (A,V) are independent, for
determining an O1-consensus we can adopt the algorithm given in [Nguyen, 02a], in
which value of each attribute in the consensus can be calculated in an independent
way. We present here 2 algorithms: the first calculates a consensus for an attribute and
the second creates the consensus for a set of clauses. These algorithms are presented
as follows:

299Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

Algorithm 2: Computing O1-consensus cb for attribute b occurring in the clauses.

Given: Finite set P (with repetitions) of (A,V)-based clauses, distance function δ
between attribute values and an attribute b.

Result: O1-consensus cb for attribute b.

BEGIN
 1. Create the set:
 profile(b) = {vb: (b,vb) appears in a clause of set P};
 2. Let X:=∅; Sb:=∑ ∈ δ)(),(bprofiley yX ;

 3. Select from Vb\X an element x such that the sum
 ∑ ∈ ∪δ)()},{(bprofiley yxX is minimal;

 4. If Sb < ∑ ∈ ∪δ)()},{(bprofiley yxX then

 Begin
 Sb:=∑ ∈ ∪δ)()},{(eprofiley yxX ;

 X:=X∪{x};
 End;

 5. If Vb\(X∪{x}) ≠ ∅ then GOTO 3;

 6. Let cb=X;

END.

Algorithm 3: Computing O1-consensus c for set P of clauses.

Given: Finite set P (with repetitions) of (A,V)-based clauses, distance function δ.

Result: O1-consensus c for P.

BEGIN
 1. Complete clauses in P by adding attributes and their values so that all clauses

have the same type;
 2. For each attribute b calculate the consensus cb using Algorithm 2;
 3. Create the body and the head of consensus c by concatenation of ingredients cb

for b appearing in the bodies and the heads of given clauses, respectively;
END.

For determining an O2-consensus for set P it is impossible to treat the attributes in
an independent way. For many structures of attribute values determining a consensus
on the basis of this criterion is a NP-complete problem. An example of such structures
is the relational structure presented in [Nguyen, 02b]. In these cases heuristic
algorithms should be worked out. Besides, genetic algorithms should also be useful.

300 Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

4 Conclusions

In this paper two logical structures for representing inconsistent knowledge on
semantic level are presented. Both of them are multi-valued and multi-attribute. The
first structure is based on representing inconsistent knowledge by conjunctions and the
second refers to disjunctions (or clauses). For each structure the semantics and the
distance functions are defined. On this basic the consensus problem is formulated and
the algorithms for consensus determination are worked out. The future work should
concern working out algorithm for determining consensus for according to criterion of
minimal sum of squared distances for these structures.

References

[Balzer, 91] R. Balzer, Tolerating Inconsistency. In: Proceedings of the 13th International
Conference on Software Engineering. IEEE Press, 1991, 158-165

[Barthelemy, 91] J.P. Barthelemy, M.F. Janowitz, A Formal Theory of Consensus. SIAM
Journal of Discrete Mathematics, Vol. 4, 1991, 305-322

[Brown, 90] F.N. Brown, Boolean Reasoning, Kluwer Academic Publishers, Dordrecht, 1991

[Day, 87] W.H.E. Day, Consensus Methods as Tools for Data Analysis. In: H.H. Bock (ed.):
Classification and related Methods of Data Analysis, Proceedings of IFCS'87, North-
Holland, 1987, 317-324

[Doyle, 79] J. Doyle, A Truth Maintenance System, Artificial Intelligence, Vol. 12, 1979,
231-272

[Ferber, 99] J. Ferber, Multi-Agent Systems. Addison Wesley, New York, 1999

[Fehrer, 93] D. Fehrer, A Unifying Framework for Reason Maintenance. In: M. Clark et. al
(eds): Symbolic and Qualitative Approaches to Reasoning and Uncertainty. LNCS, Vol.
747, 1993, 113-120

[Gardenfors, 88] P. Gardenfors, Knowledge in Flux. MIT Press, 1988

[Hunter, 98] A. Hunter, Paraconsistent Logics. In: D. Gabbay, P. Smets (eds), Handbook of
Defeasible Reasoning and Uncertain Information. Kluwer Academic Publishers, 1998, 13-
43

[Hunter, 03] A. Hunter, Evaluating the Significance of Inconsistencies. In: Proceedings of the
International Joint Conference on AI (IJCAI'03). Morgan Kaufmann, 2003, 468-473

[Katarzyniak, 00] R. Katarzyniak, N.T. Nguyen, Reconciling Inconsistent Profiles of Agents’
Knowledge States in Distributed Multiagent Systems Using Consensus Methods. System
Science, Vol. 26, 2000, 93-119

[Kemeny, 59] J.G. Kemeny, Mathematics without numbers. Daedalus, Vol. 88, 1959, 577−591

[Kifer, 92] M. Kifer, E.L. Lozinski, A Logic for Reasoning with Inconsistency. Journal of
Automatic Reasoning, Vol. 9, 1992, 179-215

[De Kleer, 86] J. De Kleer, An Assumption-based TMS. Artificial Intelligence, Vol. 28, 1986,
127-162

301Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

[Knight, 02] K. Knight, Measuring Inconsistency. Journal of Philosophical Logic, Vol. 31,
2002, 77-98

[Lipski, 79] W. Lipski, On semantic issues connected with incomplete information databases.
ACM Trans. Database Systems, Vol. 4, 1979, 262-269

[Marcelloni, 01] F. Marcelloni, M. Aksit, Leaving inconsistency using fuzzy logic, Information
and software technology, Vol. 43, 2001, 725-741

[Naqvi, 90] S. Naqvi, F. Rossi, Reasoning in Inconsistent Databases. In: Logic Programming:
Proceedings of the North American Conference. MIT Press, 1990, 255-272

[Nguyen, 01] N.T. Nguyen, Using Distance Functions to Solve Representation Choice
Problems. Fundamenta Informaticae Vol. 48, 2001, 295-314

[Nguyen, 02a] N.T. Nguyen, Consensus System for Solving Conflicts in Distributed Systems.
Information Sciences – An International Journal Vol. 147, 2002, 91-122

[Nguyen, 02b] N.T. Nguyen, Methods for Consensus Choice and their Applications in Conflict
Resolving in Distributed Systems. Wroclaw University of Technology Press 2002 (in
Polish)

[Nguyen, 04a] N.T. Nguyen, Consensus methodology for Inconsistent Knowledge Processing.
In: Nguyen N.T. (ed.), Intelligent Technologies for Inconsistent Knowledge Processing.
Advanced Knowledge International, Adelaide, Australia, 2004, 3-20

[Nguyen, 04b] N.T. Nguyen, M. Malowiecki, Consistency Function for Conflict Profiles”.
LNCS Transactions on Rough Sets , Vol. 1, 169-186

[Nguyen, 05] N.T. Nguyen, A. Blazowski, M. Malowiecki, A Multiagent System Aiding
Information Retrieval in Internet Using Consensus Methods. In: Proceedings of SOFSEM
2005. Lecture Notes in Computer Science Vol. 3381, 2005, 399-402

[Pawlak, 91] Z. Pawlak, Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, 1991

[Pawlak, 98] Z. Pawlak, An Inquiry into Conflicts. Journal of Information Science, Vol. 109,
1998, 65-78

[Sobecki, 04] J. Sobecki, M. Weihberg, Consensus-based Adaptive User Interface
Implementation in the Product Promotion; in Keates S. et al. (eds.): "Design for a more
inclusive world", Springer-Verlag, 2004, 111-121

[Tessier, 01] C. Tessier, L. Chaudron, H.J. Müller, Conflicting Agents: Conflict Management
in Multiagent Systems, Kluwer Academic Publishers, 2001

302 Nguyen N.T.: Processing Inconsistency of Knowledge on Semantic Level

