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1 Introduction

The discussion and analysis throughout this paper will be carried out within the
framework of Bishop’s constructive mathematics2.

It was during the author’s postgraduate studies under the guidance and su-
pervision of Bridges that firmness of the space of a Banach algebra was curiously
looked at. Bishop and Bridges in the final chapter of [4, page 462] discuss the
firmness of the spectrum of Banach algebra. It is a slight translation of that
approach that motivated Bridges and the author to use firmness of the state
space (which is related to the spectrum) in the investigation of positive elements
[9, 13]. It should be pointed out that this short article has two main aims: first,
to highlight this interesting aspect of constructive Banach algebra theory, and
secondly to stand as one of the testimonies to the many areas where Bridges had
been and currently working on. Furthermore, it is the intention of the author
that the materials presented in this article would motivate future investigations
on constructive Banach algebra theory.

The development of constructive Banach algebra theory can be traced back to
Bishop’s work in [2]. Bishop in the final chapter of [3] shed lights in the construc-
tivisation process and, together with Bridges, topped it with a much smoother
development in [4]. For current and recent works on constructive Banach algebra
theory, see [5, 6, 8, 10, 11, 15].

There are two sections that follow immediately after this introductory one.
The first contains some technical results and definitions, and the last presents
the main results. Additionally, there is a brief discussion of extreme points of a
state space and its connection to the character space of the Banach algebra.
1 C. S. Calude, H. Ishihara (eds.). Constructivity, Computability, and Logic. A

Collection of Papers in Honour of the 60th Birthday of Douglas Bridges.
2 This is simply mathematics based on intuitionistic logic where ‘existence’ is strictly

interpreted as ‘computability’. Details on ‘constructive mathematics’ can be found
in [1, 3, 4, 12].
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2 Preliminary

We write B to denote a complex unital Banach algebra with identity e and B′
1

the unit ball of the dual space B′ of B. We define the state space of B to be
set

VB = {f ∈ B′ : f(e) = 1 = ‖f‖} .

For each t > 0 the set

V t
B = {f ∈ B′ : ‖f‖ ≤ 1, |1 − f(e)| ≤ t}

is a t–approximation to VB .
A character of B is a bounded homomorphism of B onto C, and the char-

acter space (or spectrum) of B is the set

ΣB = {u ∈ B′ : u(e) = 1, u(xy) = u(x)u(y) for all x, y ∈ B} .

Bishop and Bridges [4, page 452] showed that we can’t hope in general to prove
constructively the compactness of the spectrum. To see this, let (an)∞n=0 be
an increasing binary sequence and B the algebra consisting of all sequences
x = (xn)∞n=0 of complex numbers for which

‖x‖ =
∞∑

n=0

(1 − an) |xn| (1)

exists. We define the elements x and y = (yn)∞n=0 to be equal if ‖x − y‖ = 0.
Then B is a Banach space equipped with norm given by (1). Moreover, if we
define the product of any two elements x and y of B by

xy =

(
n∑

i=0

xiyn−i

)∞

n=0

,

then B is a Banach algebra with identity e = (1, 0, 0, . . .). Let

z =
(
1, 2−1, 2−2, 2−3, . . .

) ∈ B.

If an = 1 for some n, then the character space ΣB of B consists of the single
element x �→ x0. On the other hand, if an = 0 for all n, then to each complex
number ξ with |ξ| ≤ 1 there corresponds an element uξ of ΣB defined by

uξ (x) =
∞∑

n=0

xnξn.

Suppose ΣB is compact. Since the mapping u �→ |u(z)| is uniformly continuous
relative to the weak∗ topology on the unit ball of B′ it maps ΣB to a totally
bounded subset of R; whence

R = sup {|u(z)| : u ∈ ΣB}
exists. Either R > 1 or R < 2. In the first case, we have an = 0 for all n. In the
second case, we cannot have an = 0 for all n. Thus the statement
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The spectrum of every separable commutative unital Banach algebra is
compact.

implies WLPO.
Recall that an element f of X ′, where X of a normed linear space, is

normable if its norm

‖f‖ = sup {|f(x)| : ‖x‖ ≤ 1}
exists. If X ′ is separable, and (xn)∞n=1 is a dense sequence in the unit ball

X ′
1 = {f ∈ X ′ : ∀x ∈ X (|f (x)| ≤ ‖x‖)}

of X ′, then the weak∗ topology on X ′ is induced by the double norm3, defined
by

|||f ||| =
∞∑

n=1

2−n |f (xn)| (f ∈ X ′) .

Proposition1. For all but countably many t > 0, V t
B is a nonempty, weak∗

compact subset of B′.

Proof. Since the mapping f �→ |1 − f (e)| is uniformly continuous on B′
1 relative

to the double norm, we see from Theorem 4.9 of [4, page 98] that for all but
countably many t > 0, V t is either empty or weak∗ compact. An application of
Corollary 4.5 of [4, page 341] shows that for such t, V t is nonempty and therefore
weak∗ compact. q.e.d.

We say that t > 0 is admissible if V t
B is weak∗ compact. Note that

VB =
⋂{

V t
B : t > 0 is admissible

}
,

the intersection of a family of nonempty, weak∗ compact sets that is descending
in the sense that if 0 < t′ < t, then V t′

B ⊂ V t
B . Being the intersection of a family

of complete sets, VB is complete relative to the double norm.
We say that V is firm if it is compact and ρw (V t, V ) → 0 as t → 0, where

ρw is the Hausdorff metric on the set of weak∗ compact subsets of B′
1.

An element x of B is:

– Hermitian if for each ε > 0 there exists t > 0 such that |Im f(x)| < ε for
all f ∈ V t; we denote the set of all Hermitian elements of B by Her(B).

– positive if for each ε > 0 there exists t > 0 such that Re f(x) ≥ −ε and
|Im f(x)| < ε for all f ∈ V t; we then write x ≥ 0.

An element f of B′ is a positive linear functional if f(x) ≥ 0 for each positive
element x of B; we then write f ≥ 0.

The following lemma is stated is proved [9].
3 Double norms defined by different dense sequences in X are equivalent on X ′

1, and
X ′

1 is weak∗ compact. Moreover, for each x ∈ X the mapping f �→ f (x) is uniformly
continuous on X ′

1 with respect to the double norm.
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Lemma2. Suppose that the state space of B is firm. Let A be a Banach subal-
gebra of B, let {x1, . . . , xN} be a finitely enumerable subset of A with x1 = e,
and let ε > 0. Then there exists an admissible t > 0 such that for each f ∈ A′
with ‖f‖ ≤ 1 and |1 − f (e)| ≤ t, there exists g ∈ VA with

|f (xk) − g (xk)| ≤ ε (1 ≤ k ≤ N)

Lemma3. Let (Kλ)λ∈L be a nonempty family of totally bounded subsets of a
metric space X, and let K =

⋂
λ∈L Kλ. Suppose that for each ε > 0 there exists

λ ∈ L such that for each x ∈ Kλ there exists y ∈ K with ‖x − y‖ < ε. Then K
is totally bounded. If also each Kλ is complete, then K is compact.

Proof. Given ε > 0, choose λ ∈ L as in the hypotheses. Let {x1, . . . , xN}
be a finite ε–approximation to Kλ, and for each n choose yn ∈ K such that
‖xn − yn‖ < ε. Let y ∈ K ⊂ Kλ. Then there exists n such that ‖y − xn‖ < ε
and therefore

‖y − yn‖ ≤ ‖y − xn‖ + ‖xn − yn‖ < ε + ε = 2ε.

Thus {y1, . . . , yn} is a 2ε–approximation to K. Since ε > 0 is arbitrary, K
is totally bounded. If also each Kλ is complete, then K is an intersection of
complete sets and so is complete; whence it is compact. q.e.d.

3 Firmness and positivity

Proposition4. If the state space of B is firm, then so is the state space of every
separable Banach subalgebra of B.

Proof. Let A be a separable Banach subalgebra of B, (xn)∞n=1 a dense sequence
in the unit ball of A, and |||·||| the corresponding double norm on A′. Given ε > 0,
choose N such that

∑∞
n=N+1 2−n < ε. Using Lemma 2, choose t > 0 such that

– V t
B and V t

A are weak∗ compact,
– ρw (V t

B , VB) < ε, and
– for each f ∈ V t

A there exists g ∈ VA such that

|f (xk) − g (xk)| ≤ ε (1 ≤ k ≤ N) . (2)

Let f ∈ V t
A, and choose g ∈ VA such that (2) holds. We have, in A′

1,

|||f − g||| =
∞∑

n=1

2−n |(f − g) (xn)|

=
N∑

n=1

2−n |f (xn) − g (xn)| +
∞∑

n=N+1

2−n |f (xn) − g (xn)|

≤
N∑

n=1

2−nε + 2
∞∑

n=N+1

2−n

< 3ε.

It follows from Lemma 3 that VA is weak∗ compact. It is then clear from the
foregoing that ρw (V t

A, VA) → 0 as t → 0. q.e.d.
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Let K be a convex subset of a normed space, and let x0 ∈ K. We say that
x0 is

– a classical extreme point of K if

∀x, y ∈ K

(
x0 =

1
2

(x + y) ⇒ x = y = x0

)
;

– an extreme point of K if

∀ε > 0 ∃δ > 0 ∀x, y ∈ K

(∥∥∥∥x0 − 1
2

(x + y)
∥∥∥∥ < δ ⇒ ‖x − y‖ < ε

)
.

An extreme point is a classical extreme point, and the converse holds classically.
The proof of the next result is similar to that given in [14, page 38] for the

special case where B is a Banach algebra of functions. This is proved in [9, 13].

Proposition5. Let A be a commutative, unital Banach algebra generated by
Hermitian elements, and

K0 = {f ∈ A′ : f ≥ 0, f(e) ≤ 1} .

Then every classical extreme point of K0 is an element of ΣB.

Lemma6. For each t ∈ (0, 1), if 0 < α, β ≤ 1 and 1 − 1
2 (α + β) < t/2, then

α > 1 − t and β > 1 − t.

Proof. If 1 − 1
2 (α + β) < t/2, then

0 ≤ 1
2
(1 − α) +

1
2
(1 − β) <

t

2
,

so both 1
2 (1 − α) < t/2 and 1

2 (1 − β) < t/2. Hence α > 1 − t and β > 1 − t.
q.e.d.

Proposition7. If the state space V of B is firm, then every extreme point of
V is a character of B.

Proof. Let |||·||| be the double norm corresponding to a dense sequence (xn)∞n=1 in
the unit ball of B with x1 = e. Noting that V ⊂ K0, we show that every extreme
point of V is also one of K0. Accordingly, let f0 be an extreme point of V , and
let ε > 0. Choose δ1 ∈ (0, ε) such that if f, g ∈ V and

∣∣∣∣∣∣ 1
2 (f + g) − f0

∣∣∣∣∣∣ < δ1,
then |||f − g||| < ε. Then choose an admissible t > 0 such that ρw (V t, V ) <
δ1/2. Finally, choose δ2 > 0 such that if f, g ∈ B′ and |||f − g||| < δ2, then
|f(e) − g(e)| < t/2. Now let

δ = min
{

1
2

δ1, δ2

}
,

and consider f, g ∈ K0 with
∣∣∣∣∣∣ 1

2 (f + g) − f0

∣∣∣∣∣∣ < δ. Since∣∣∣∣12 (f + g) (e) − 1
∣∣∣∣ =

∣∣∣∣12 (f + g) (e) − f0 (e)
∣∣∣∣ < t

2
,
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we have |1 − f (e)| < t and |1 − g(e)| < t, by Lemma 6; whence f, g ∈ V t, and
therefore there exist f ′, g′ ∈ V such that |||f − f ′||| < δ1/2 and |||g − g′||| < δ1/2.
We now have∣∣∣∣

∣∣∣∣
∣∣∣∣12 (f ′ + g′) − f0

∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
∣∣∣∣
∣∣∣∣12 (f + g) − f0

∣∣∣∣
∣∣∣∣
∣∣∣∣+ 1

2
|||f − f ′||| + 1

2
|||g − g′|||

<
1
2
δ1 +

1
4
δ1 +

1
4
δ1 = δ1.

Hence |||f ′ − g′||| < ε, and therefore

|||f − g||| ≤ |||f − f ′||| + |||f ′ − g′||| + |||g − g′||| < ε + δ1 < 2ε.

Since ε > 0 is arbitrary, this completes the proof that f0 is an extreme point, and
therefore a classical extreme point, of K0. By Proposition 5, f0 is a character of
B. q.e.d.

Proposition8. If V is weak∗ compact, then every element of V is a convex
combination of characters of B.

Proof. It is easily shown that V is convex. An application of the Krein–Milman
Theorem [4, page 363, (7.5)] shows that V is the closed convex hull of its extreme
points; so we can apply Proposition 7. q.e.d.

Corollary 9. If the state space of B is firm, then the character space of every
separable commutative Banach subalgebra of B is nonempty.

Proof. Let A be a separable commutative Banach subalgebra of B. Proposition
4 shows that VA is firm; in particular, it is compact and so has extreme points.
By Proposition 7, those extreme points are characters of A. q.e.d.

Proposition10. Let V be firm. Then a ∈ Her (B) is positive if and only if
f (a) ≥ 0 for each f ∈ V .

Proof. If a is positive, then for each ε > 0 there exists an admissible t > 0 such
that Re g(a) ≥ −ε and |Im g(a)| < ε for all g ∈ V t. If f ∈ V , then f ∈ V t and
so Re f(a) ≥ −ε and |Im f(a)| < ε. Since ε > 0 is arbitrary, we conclude that
f(a) = Re f (a) ≥ 0.

Conversely, suppose that f(a) ≥ 0 for each f ∈ V . Since there exist admis-
sible numbers t > 0 such that ρw (V, V t) is arbitrarily small, we can choose an
admissible t such that for each g ∈ V t there exists f ∈ V with |g(a) − f(a)| < ε.
It now follows that for each g ∈ V t,

|Im g(a)| ≤ |Im f(a)| + |g(a) − f(a)| ≤ 0 + ε = ε

and
Re g(a) > Re f(a) − ε ≥ 0 − ε = −ε.

Since ε > 0 is arbitrary, we conclude that a ≥ 0. q.e.d.

Theorem 11. Let a be a Hermitian element of a complex unital Banach algebra
B that has firm state space. Then an is positive for each even positive integer n.
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Proof. Let A be a (separable) closed subalgebra of B generated by Hermi-
tian elements a and identity e. By Proposition 4, the state space VA of A is
firm. It follows from Proposition 8 that for each f ∈ VA there exist characters
u1, . . . , um of A, and nonnegative numbers λ1, . . . , λm, such that

∑m
i=1 λi = 1

and |||f −∑m
i=1 λiui||| is arbitrary small. In particular, given any n and ε > 0,

choose ui and λi such that |(f −∑m
i=1 λiui) (an)| < ε. If a ≥ 0 and n is even,

then

Re f (an) ≥ Re
m∑

i=1

λiui (an) −
∣∣∣∣∣f(an) −

m∑
i=1

λiui (an)

∣∣∣∣∣
≥ Re

m∑
i=1

λiui (a)n − ε

≥ −ε,

the last step following from Proposition 10. Since ε > 0 is arbitrary, we have
Re f (an) ≥ 0 for each f ∈ V ; whence, again by Proposition 10, an ≥ 0. q.e.d.
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