
Integrating Lite-Weight but Ubiquitous Data Mining into
GUI Operating Systems

Li Wei
(University of California, Riverside, USA

wli@cs.ucr.edu)

Eamonn Keogh
(University of California, Riverside, USA

eamonn@cs.ucr.edu)

Xiaopeng Xi
(University of California, Riverside, USA

xxi@cs.ucr.edu)

Stefano Lonardi
(University of California, Riverside, USA

stelo@cs.ucr.edu)

Abstract: Most visualization tools introduced in the literature are specialized for a particular
task. In this work, we introduce a novel framework which allows visualization to take place in
the background of normal day to day operations of any GUI based operating system such as
MS Windows, OS X or Linux. Our system works by replacing the standard file icons with
automatically generated icons that reflect the contents of the files in a principled way. We call
such icons Intelligent Icons. While there is little utility in examining an individual icon,
examining groups of them provides a greater possibility of unexpected and serendipitous
discoveries. The utility of Intelligent Icons can be further enhanced by arranging them on the
screen in a way that reflects their similarity/differences. We demonstrate the utility of our
approach on data as diverse as DNA, text files, electrocardiograms, and Space Shuttle
telemetry. In addition we show that our system is unique in also supporting fast and intuitive
similarity search.

Keywords: data mining, visualization, icon
Categories: H.3.0, H.3.3, H.3.4

1 Introduction

At the heart of many information visualization and data mining techniques is a single
question “compared to what?” [11]. In several application domains, the main
objective of data exploration is to arrange the data such that meaningful similarities
and differences are exposed. However the vast majority of visualization/data mining
tools introduced so far are specialized pieces of software that are explicitly run on a
particular dataset at a particular time for a particular purpose. The human effort
involved in this process is high enough that most of these tools are used rarely, even
when data keeps accumulating at very high rates.

Journal of Universal Computer Science, vol. 11, no. 11 (2005), 1820-1834
submitted: 1/9/05, accepted: 1/10/05, appeared: 28/11/05 © J.UCS

In this work we introduce a novel framework which allows lite-weight
visualization and data mining to take place in the background of quotidian computer
activities of any GUI based operating system such as MS Windows, OS X or Linux.
This enables a greater possibility of unexpected, serendipitous and useful discoveries.

Our system works by replacing the standard file icons with icons that reflect the
contents of files in a principled way. We call such icons INTELLIGENT ICONS. While
there is little utility in examining an individual icon, examining groups of them allows
us to take advantage of small multiples paradigm elucidated by Tufte. We can
enhance the utility of INTELLIGENT ICONS by arranging them on the screen in a way
that reflects their similarity/differences, rather than the traditional “view by date”,
“view by size” etc. As we will demonstrate, our approach has utility for data as
diverse as DNA, text, and time series.

The rest of the paper is organized as follows. We conclude Section 1 with a
discussion of related work. Section 2 introduces our ideas on a single data type, DNA.
In Section 3 we generalize these ideas to other types of data. Section 4 contains
demonstrations and experiments. Finally in Section 5 we discuss future directions.

1.1 Prior and Related Work

Our work is closest in sprit to the recent VisualIDs work of Lewis et. al. [7]. The
authors create distinctive icons for files by hashing the file names to seeds of a
pseudorandom generator that in turn is used to create a shape grammar. In this way,
similar filenames will map to similar shapes.

Figure 1 is a simple example which shows the difference between VisualIDs and
INTELLIGENT ICONS. There are three ASCII text files, each of which contains
approximately 16,000 base pairs of mitochondrial DNA. We used string edit distance
as suggested in [7] to measure the distance between file names, and Euclidean
distance to measure the distance between the file icons (as explained in more detail
later). Note that two of the species share the same specific name of “americanus”
(with a different generic name) and this makes them similar in a way that is not
biologically meaningful, whereas the INTELLIGENT ICON approach captures the correct
relationship between the three species.

Ursus
americanus

(bear)

Argulus
americanus
(crustacean)

Mus
musculus
(mouse)

4

6

8

10

12

bear crustaceanmouse

Ursus
americanus

(bear)

Argulus
americanus
(crustacean)

Mus
musculus
(mouse)

4

6

8

10

12

bear crustaceanmouse

Figure 1: The similarity of three DNA files based on name (left) and content (right)

The idea of using the values of variables to change the shape of an icon (glyph)
dates back at least to the classic work of Chernoff [4]. Beddow and others extended
this mapping to colors [3]. Keim et. al. introduced Recursive Patterns in [1].
Recursive patterns can be considered as a general technique to map data to bitmaps,
although icons were not explicitly considered.

1821 Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

2 An Example of an Icon Generation Algorithm

For concreteness we begin with a particular example before considering the general
framework.

2.1 DNA to Intelligent Icon

A DNA string is a very long sequence of symbols drawn from the alphabet {A, C, G,
T}. For example the human mitochondrial DNA has 16,571 such symbols, beginning
with GATCACAGGTCTATCACCCTATTAACCACT.

Although the rich literature on the problem of classifying DNA sequences
contains very sophisticated approaches, here we pursue a very simple technique based
on the frequency of short substrings. First we divide a bitmap into four quadrants and
count the frequency of each of the four possible base pairs. Then we map the
observed frequencies to a linear colormap and produce an icon by filling each section
of the bitmap with the corresponding indexed color, as shown in Figure 2.

CA

TG
0.2 0.4 0.6 0.8 1.00

f(A) = 0.308
f(C) = 0.313
f(G) = 0.121
f(T) = 0.246

Homo sapiens.dna

i ii iii

CA

TG

CA

TG
0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.00

f(A) = 0.308
f(C) = 0.313
f(G) = 0.121
f(T) = 0.246

Homo sapiens.dna

i ii iii

Figure 2: Illustration of the file icon generation for DNA

Note that in this case both the arrangement of the four letters and the choice of
colormap are arbitrary. In order to use as much of the color spectrum as possible, we
normalize the data such that the symbol with lowest frequency maps to zero and the
symbol with highest frequency maps to one. More concretely, if j is one symbol in the
alphabet, then the color index of j is denoted as ci(j), and calculated as:

)](),(),(),(max[/)])(),(),(),(min[)(()(TfGfCfAfTfGfCfAfjfjci −= (1)

We apply this simple mapping to DNA sequences of different mammals.
Unsurprisingly however there is very little difference between the icons obtained. To
improve the discrimination ability of the icons we use more features. Below we show
a general mapping for DNA that has a potentially useful property.

We begin by assigning each letter a unique key value, k:
A → 0 C → 1 G → 2 T → 3

We use l to represent the length of the DNA words. Each word has an index for
the location of each symbol, for clarity we show them explicitly as subscripts. For
example, the first word with l = 4 extracted from the human mitochondrial DNA is
GOA1T2C3. So in this example we would say k0 = G, k1 = A, k2 = T and kl = C. To map a
word into a bitmap we use the following equation to find its row and column values:

1822Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

11

0

1

0
1 2)2(,2mod)2(−−−

=

−

=
−−− ∗=∗= ∑∑ nll

n n
l

n
nlnl

n divkrowkcol (2)

Figure 3: The mapping of DNA words of l = 1, 2 and 3

Figure 3 shows the mapping for l = 1, 2 and (part of) 3. Note that bitmaps
generated this way might be self-similar across different scales, as shown in Figure 4.

Figure 4: The icons created for two species at each level from 1 to 4

2.2 Optimizing and Arranging the Icons

We measure the similarity of icons by the Euclidean distance between their frequency
counts matrices. The distance between two matrices A and B, of the same level l, is

2
2

1

2

1
)(),(ij

i j
ij BABAdist

l l

∑∑
= =

−= (3)

In Figure 5 we have clustered five familiar species based on the Euclidean
distance between their bitmap representations.

AA AC CA CC

AG AT CG CT

GA GC TA TC

GG GT TG TT

A C

G T

AAA AAC A AC

AAG AAT ACG

A AG AGC

AGG

l = 1 l = 2 l = 3

AA AC CA CC

AG AT CG CT

GA GC TA TC

GG GT TG TT

A C

G T

AAA AAC A AC

AAG AAT ACG

A AG AGC

AGG

AA AC CA CC

AG AT CG CT

GA GC TA TC

GG GT TG TT

AA AC CA CCAA AC CA CC

AG AT CG CTAG AT CG CT

GA GC TA TCGA GC TA TC

GG GT TG TTGG GT TG TT

A C

G T

A C

G T

AAA AAC A AC

AAG AAT ACG

A AG AGC

AGG

l = 1 l = 2 l = 3

Argulus
americanus
(crustacean)

l = 1

Homo
Sapiens
(human)

l = 2 l = 3 l = 4

Argulus
americanus
(crustacean)

l = 1

Homo
Sapiens
(human)

l = 2 l = 3 l = 4

1823 Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

Figure 5: Five species clustered by the distance between their bitmap representations

Although the clustering is objectively correct, the differences are very subtle to
the naked eye. For example the bottom right element of all five icons shown in Figure
5 appears to be minor variations of blue violet. This motivates us to enhance the
subjective visual discriminatory power of the icons by normalizing the (ith, jth)
element across all icons. In Figure 6 left, normalization has emphasized the
differences among the bottom right element of all five icons. At this point, we finally
see a hint of the potential utility of INTELLIGENT ICONS. Imagine we encountered the
icon shown in the right of Figure 6. Simply by glancing at all the file icons we might
guess that this animal is more similar to the chimps/human than to the elephants. In
fact, this is the case, Macaca mulatto is commonly known as the rhesus monkey.

Macaca
mulatta.dna

Macaca
mulatta.dna

Macaca
mulatta.dna

Macaca
mulatta.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

Figure 6: Left) Five species clustered by the distance between their normalized
bitmap representations. Right) The icon for another African mammal

We can further leverage off the INTELLIGENT ICONS by arranging them within a
file browser based on their similarity. By way of contrast consider the classic file
browser interaction shown in Figure 7. Using the bounding box section tool, it is hard
to extract meaningful subsets.

1824Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

Figure 7: Twelve DNA files, sorted by name, in a typical file browser

We can use INTELLIGENT ICONS to solve this problem by arranging the icons in
the file browser based on their similarity. Here we adopt Multi-Dimensional Scaling
(MDS) and the “snap-to-grid” technique suggested by Basalaj [2] to arrange the icons.
Figure 8 shows 12 mammals being arranged in this way. Using standard bounding
rectangles, we can select several logical groups, such as both types of Rhinos
(Rhinocerotidae), both types of elephants (Elephantidae), etc. We call the
combination of INTELLIGENT ICONS and the MDS layout a Smart Browser.

African
elephant.dna

Indian
elephant.dna

chimpanzee.dnahippopotamus.dna

Human.dna

orangutan.dna

pygmy
chimpanzee.dna

pygmy
sperm whale.dna

rhesus
monkey.dna

sperm
whale.dna

white
rhinoceros.dna

Indian
rhinoceros.dna

African
elephant.dna

Indian
elephant.dna

chimpanzee.dnahippopotamus.dna

Human.dna

orangutan.dna

pygmy
chimpanzee.dna

pygmy
sperm whale.dna

rhesus
monkey.dna

sperm
whale.dna

white
rhinoceros.dna

Indian
rhinoceros.dna

African
elephant.dna

Indian
elephant.dna

chimpanzee.dnahippopotamus.dna

Human.dna

orangutan.dna

pygmy
chimpanzee.dna

pygmy
sperm whale.dna

rhesus
monkey.dna

sperm
whale.dna

white
rhinoceros.dna

Indian
rhinoceros.dna

Figure 8: Twelve DNA files, arranged by Intelligent Icons, in a typical file browser

1825 Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

3 Generalizing from the DNA Example

We have seen a concrete example of INTELLIGENT ICONS and their utility. We want to
have a software tool that is capable of changing the individual icons of selected file
types and allows arranging the file icons by similarity. The user must create or
download plug-ins that tell our software how to convert their file types.

Below we consider plug-ins for text, time series, and metadata and provide
general guidelines for arbitrary data types. Let us begin by considering the desirable
properties of INTELLIGENT ICONS.

3.1 Desirable Properties of INTELLIGENT ICONS

Below we list four desirable properties of INTELLIGENT ICONS:
• File types should retain distinctiveness. In current operating systems, most

file types (e.g., PDF, PowerPoint, etc.) have a particular icon associated with
them. This makes it easy to determine the file type at a glance.

• Similar files should have similar icons. This is the fundamental property
which allows users to spot clusters, duplicates and outliers in their data.

• File icons should look similar at different resolution (cf. Figure 4). This is
because most operating systems allow user to view icons at various sizes.

• File icon updates should be fast. It is important that files can be added,
deleted or edited, and have their icons instantaneously reflect their content.

3.1.1 Distinctiveness of file type

There is little doubt that having distinctive icons for different file types aids rapid file
navigation. We can retain file distinctiveness while allowing individuality by a
combination of two techniques: 1) Using different colormaps for different file types;
2) Using different mappings for different file types. Figure 9 shows an example.

0.2 0.4 0.6 0.8 1.00

DNA

Text

Time
Series Template for DNA,

text and time series
Template for
video games

i ii

Jedi Knight: Dark
Forces II

Jedi Knight: Jedi
Outcast

Matthew.txt Mark.txt Polar Bear.dna

iii

0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.00

DNA

Text

Time
Series Template for DNA,

text and time series
Template for
video games

i ii

Jedi Knight: Dark
Forces II

Jedi Knight: Jedi
Outcast

Matthew.txt Mark.txt Polar Bear.dnaJedi Knight: Dark
Forces II

Jedi Knight: Jedi
Outcast

Matthew.txt Mark.txt Polar Bear.dna

iii

Figure 9: i) Colormaps used for different file types. ii) Examples of different
mapping templates. iii) A screen capture of a folder with three different file types

1826Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

3.1.2 Similar files should have similar icons

The basic idea discussed in Section 2 of extracting features from the file, measuring
their frequency, and mapping these frequencies to color and spatial arrangements can
be easily applied to other domains. We provide some general guidelines in this section.
Text: Files containing text, such as MS Word, PDF, TEX, TXT files etc. are perhaps
the most commonly encountered file types for the majority of people. To map these
files to icons, we first discard stop words, such as “the”, “of”, “and” etc. Such words
tend to have equal frequency across all documents and thus have little discriminative
power. Next we stem the words using Porters algorithm [9], so that variations on a
word map to a single root, for example “dividing”, “divided” and “divide” all map to
“divid”. Since the number of words left is still much greater than the number of pixels
available, we use a classic text-processing algorithm called Latent Symantec Indexing
(LSI) to reduce the dimensionality of the features.
Time Series: Time series are a ubiquitous and increasingly prevalent type of data.
There is some existing work on visualizing time series that could be adapted for our
needs. For example the Recursive Pattern work of Ankerest et. al. [1] allows recursive
generalization of arbitrary line and column oriented arrangements. Another possibility
is to discretize time series and use the approach for text, or to discretize the time
series into exactly four symbols and use the algorithm for DNA. Here we consider the
later approach in more detail.

We adopt the SAX technique of Lin et. al. [8] to convert real valued time series
into discrete symbols. The SAX representation is created by taking a real valued
signal and dividing it into equal sized sections. Each section is then substituted by its
mean value. This representation is then discretized in such a manner as to produce a
word with approximately equi-probable symbols. Figure 10 shows a relatively short
time series being converted into a pseudo DNA word of 8 symbols.

00 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

AA

C

G

T

GTTG CCA

00 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

AA

C

G

T

GTTG CCA

Figure 10: A real valued time series being discretized into a SAX word

Metadata: It is extremely difficult to extract useful features from many file types,
including executables, music and video files. Fortunately, many such file types can be
mapped to extensive repositories of metadata. For example, we create icons for MP3
music files based not on the file contents, but on metadata provided (automatically)
by CDDB.com. The features available include, Track Artist, Record Label, Year,
Beats Per Minute etc. For video games, there is no completely automatic metadata

1827 Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

server, but an hour’s work enabled us to write a crawler which extracted features from
www.metacritic.com/games/pc/scores/.

3.1.3 File icon at different resolution should look similar to itself

File icons should look similar when viewed at different scales because most operating
systems allow user to view icons at different resolutions. In some cases this “self-
similar” property can be easily arranged. For example in Figure 4 our mapping for
DNA has this property, and our mapping function for time series inherits it.

More generally, this property may be hard to ensure if we wish to use every pixel
of say a 48*48 bitmap. When we reduce the size of this bitmap to 24*24, we must
average the quartets of pixels into one. If the original pixels elements are independent
(a general requirement cf. section 3.1.2), the smaller bitmaps will not resemble the
larger bitmaps. The good news is that it is unlikely we would use all 2,304 pixels of
the largest icon size. Decades of research in machine learning and information
retrieval strongly suggests that although objects may exist in very high dimensional
spaces, meaningful similarity can best be captured in some low dimensional subspace.
We therefore restrict ourselves to some small number of features, typically less than
one hundred, and map each feature to several contiguous pixels in the smallest
bitmap. The larger sizes bitmaps can then be obtained by simple linear extrapolation.
Figure 11 shows how we combine variable level mappings and simple linear
extrapolation for the DNA file icons. The smallest icon is a level 2 mapping of one
feature to 4 pixels; the next size up is simply an enlargement of the smallest size. The
32*32 size icon is a level 3 mapping of one feature to 4 pixels, and the largest icon is
simply an enlargement of the second largest size.

l = 2

16*16
24*24

l = 2 l = 3 l = 3

32*32

48*48

l = 2

16*16
24*24

l = 2 l = 3 l = 3

32*32

48*48

Figure 11: Four different sized DNA icons for Argulus americanus

3.1.4 File icon updates should be fast

In general, if we only need to process a few files to create their INTELLIGENT ICONS,
time complexity might not be an issue. However the issue of time complexity does
become important if the mapping algorithm requires access to multiple files.For
example, we have shown that DNA icons look better if we normalize the frequencies
across all icons. This means that every update (deletions, insertions, and editing
changes) to our files should be accompanied by an update to all icons. These updates
could become unacceptably slow if we have many files.

Our solution is to use a classic idea in the database community, lazy updates [6].
The basic idea is to learn the best mapping on all N files offline and use it to create

1828Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

icons for all N files. If we later add a new file to the collection, we simply use the
current mapping function to immediately create the new icon, and wait for an
opportunity to create the optimal icons for all N + 1 icons.

4 Experimental Evaluation of INTELLIGENT ICONS

The central claim of our paper is that INTELLIGENT ICONS allow unexpected and
serendipitous discoveries. This is difficult to prove in anything but an anecdotal way.

We begin by using Smart Browser to browse the hundreds of datasets in the UCR
archive [5]. One such dataset, known as Kalpakis_ECG, contains 18 normal ECGS.
Figure 12 shows the dataset as most people have viewed it.

Figure 12: Kalpakis_ECG dataset shown in a typical Window XP file browser

When we glanced at this dataset with our Smart Browser, as shown in Figure 13,
we immediately noticed that five of the 18 thumbnails had radically different icons.

normal1.txt normal10.txt normal11.txt

normal12.txt

normal13.txt normal2.txt

normal3.txtnormal4.txt

normal5.txt

normal6.txt

normal7.txt

normal8.txt

normal9.txt

normal14.txtnormal15.txt

normal16.txt

normal17.txt

normal18.txt

normal1.txt normal10.txt normal11.txt

normal12.txt

normal13.txt normal2.txt

normal3.txtnormal4.txt

normal5.txt

normal6.txt

normal7.txt

normal8.txt

normal9.txt

normal14.txtnormal15.txt

normal16.txt

normal17.txt

normal18.txt

Figure 13: Kalpakis_ECG dataset shown in a Smart browser

1829 Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

This structure was so unexpected that we asked UCLA cardiologist, Dr. Helga
Van Herle to explain these findings. She informed us that the 5 recordings in question
are not ECGs! They are in fact examples of the action potential of a normal
pacemaker cell (not to be confused with the man-made devices which mimic them,
and are named after them). Figure 14 illustrates the difference.

0 100 200 300 400 500

ven tricu la r depo la riza tion

in itia l rap id
repo la riza tion

“p la tea u ” s tage

repo la riza tion

recove ry p hase

0 100 200 300 400 500

0 100 200 300 400 5000 100 200 300 400 500

ven tricu la r depo la riza tion

in itia l rap id
repo la riza tion

“p la tea u ” s tage

repo la riza tion

recove ry p hase

0 100 200 300 400 500

Figure 14: Top) Four snippets randomly chosen from Kalpakis ECGs. Bottom) A
snippet from the “normal18.txt” ECG

Another dataset we examined was a NASA dataset containing examples of
telemetry from a Space Shuttle valve. Figure 15 shows five such time series.

TEK00000.CSV

TEK00001.CSV

TEK00003.CSV TEK000002.CSV

TEK00016.CSV

TEK00000.CSV

TEK00001.CSV

TEK00003.CSV TEK000002.CSV

TEK00016.CSV

Figure 15: Five NASA Marotta MPV-41 valve trace files shown in a Smart Browser

1830Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

It is immediately apparent that one file has a quite different structure to the rest.
NASA engineers explained the difference: while the other four files are normal
sequences, file TEK00016.CSV is an abnormal trace, as shown in Figure 16.

TEK00016.CSV

TEK00000.CSV

TEK00001.CSV TEK00003.CSV

TEK000002.CSV

Poppet pulled significantly out of the solenoid before energizing

TEK00016.CSV

TEK00000.CSV TEK00000.CSV

TEK00001.CSV TEK00001.CSV TEK00003.CSV TEK00003.CSV

TEK000002.CSV TEK000002.CSV

Poppet pulled significantly out of the solenoid before energizing

Figure 16: The five time series whose Intelligent Icons are shown in Figure 15

July.txt June.txt April.txt

May.txt Sept.txt

March.txt

Oct.txt Feb.txt

Nov.txt Jan.txt

Dec.txt

August.txt

July.txt June.txt April.txt

May.txt Sept.txt

March.txt

Oct.txt Feb.txt

Nov.txt Jan.txt

Dec.txt

August.txt

Figure 17: Twelve monthly power demand time series shown in a Smart Browser

As a final example we consider twelve monthly electrical power demand time
series from Italy. Figure 17 shows the data viewed in a Smart Browser. It is
immediately apparent that there are two major clusters that correspond to winter
months and summer months. Such a division makes sense. Given that the demand for
heating dominates the winter power demand (Air conditioning is still fairly rare in
Italy). The other obvious observation is that the month of August is an outlier. To get

1831 Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

some insight into this phenomenon we visualize the entire year as a single time series
as in Figure 18. Clearly the month of August is a true outlier, but what is going on?

The answer lies in an Italian cultural phenomenon. According to travel writer
Nella Nencini, “By the middle of July, normal activity begins to wane and by the
beginning of August, shops no longer close between 1 and 4 p.m., they close for two
or three weeks. Dry cleaners close, mechanics close, factories close, wineries close,
restaurants close, even some museums close. Cities like Florence and Venice would
be abandoned if not for the tourists braving the heat to visit artistic treasures.” The
dramatic change in power demand reflects the fact that most major employers (like
Fiat and many government offices) simply shut down for the month.

January

0

100

200

300

December
August

One Year of Italian Power Demand

January

0

100

200

300

December
August

One Year of Italian Power Demand

Figure 18: One year of Italian Power Demand in 1997

4.1 Intelligent Icon Search

Although the primary use of INTELLIGENT ICONS is visualization and data mining,
their utility for query by content is related and potentially so useful that we briefly
consider it here.

Most operating systems support search by ‘name’, ‘date’, ‘size’ etc, and further
enhance the search by ‘name’ by allowing wildcards. However, no current operating
systems support query by content. The utility of such search is becoming increasing
obvious as commercial hard drives now exceed 400 gigabytes in size. For example,
suppose we know that we have a preliminary version of a paper buried among our
files, but we don’t remember its name. It would be useful to be able to simply right
click on the icon, and choose an option “find most similar file”. We have built such a
utility into our Smart Browser tool. When searching for the most similar icon we
exclude from consideration files in the same folder as the query file (for files in the
same folder, user can easily locate the most similar icon with a Smart Browser).

In general, query-by-content search using icons provides very intuitive results.
For example, we have arranged DNA icons for approximately 245 mammals, reptiles
and birds in folders that reflect their geographical location rather than their taxonomic
relationship. If we search for the most similar file to chimpanzee.dna in the
African folder, we are told that the closest match is orangutan.dna in the Asian
folder. Likewise, as shown in Figure 19, a search for the most similar file to
american black bear.dna, returns Polar Bear.dna1.

We omit a detailed study of the efficiency of this search feature for brevity,
except to note that we can search 50,000 icons in an average of 31.9 milliseconds.

1 The Polar Bear is found in the Alaska and Canada, in addition to Iceland, Greenland and Russia, so the

choice of placing it in the Europe folder was somewhat arbitrary. Note that the Asiatic Black Bear
(Ursus thibetanus), which may be more similar to the American Black Bear, has not yet been sequenced.

1832Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

Figure 19: A screen capture of a search interaction with Smart Browser

5 Conclusions and Future Work

We have introduced INTELLIGENT ICONS, a novel technique for allowing visualization
to take place in the background of day-to-day computer use. Future research
directions include an extensive user study and providing support for other file types.

Acknowledgements

We would like to thank Ben Shneiderman and Marti Hearst for encouraging
comments on an early draft of this work. We would also like to thank Dr. Helga Van
Herle of the David Geffen School of Medicine at UCLA and all the donors of
datasets.

References
[1] Daniel A. Keim, Hans-Peter Kriegel, and Mihacl Ankerst. Recursive pattern: A technique

for visualizing very large amounts of data. In Proc of IEEE Conference Visualization ‘95,
pages 279-286, 1995.

[2] Wojciech Basalaj. Proximity visualization of abstract data. PhD thesis, University of
Cambridge Computer Laboratory, 2000.

[3] Jeff Beddow. Shape coding for multidimensional data on a microcomputer display. In
Proceedings of IEEE Conference Visualization ‘90, pages 238-246, 1990.

[4] Herman Chernoff. The use of faces to represent points in k-dimensional space graphically.
In Journal of the American Statistical Association, volume 68, pages 361-368, 1973.

1833 Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

[5] Eamonn Keogh. The UCR time series data mining archive.
[http://www.cs.ucr.edu/~eamonn/TSDMA/index.html]. University of California,
Riverside.

[6] Fabrizio Ferrandina, Thorsten Meyer, and Roberto Zicari. Implementing lazy database
updates for an object database system. In Proceedings of the Twentieth International
Conference on Very Large Databases, pages 261-272, 1994.

[7] John P. Lewis, Ruth Rosenholtz, Nickson Fong, and Ulrich Neumann. VisualIDs:
automatic distinctive icons for desktop interfaces. In Proceedings of the 2004 SIGGRAPH
Conference, ACM Transactions on Graphics (TOG), volume 23, issue 3, pages 416-423,
2004.

[8] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic representation of
time series, with implications for streaming algorithms. In proceedings of the eighth ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages
2-11, 2003.

[9] Martin F. Porter. An algorithm for suffix stripping. Program, volume 14, no. 3, pages 130-
137, 1980.

[10] Jinwook Seo and Ben Shneiderman. A rank-by-feature framework for unsupervised
multidimensional data exploration using low dimensional projections. In Proceedings of
the IEEE Symposium on Information Visualization 2004 (INFOVIS 2004), pages 65-72,
2004.

[11] Edward R Tufte. Envisioning Information. Graphics Press, 1990.

1834Wei L., Keogh E., Xi X., Lonardi S.: Integrating Lite-Weight ...

