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Abstract: Rebeca is an actor-based language for modeling concurrent and distributed systems
as a set of reactive objects which communicate via asynchronous message passing. Rebeca is ex-
tended to support synchronous communication, and at the same time components are introduced
to encapsulate the tightly coupled reactive objects which may communicate by synchronous mes-
sages. This provide us a language for modeling globally asynchronous and locally synchronous
systems. Components interact only by asynchronous messages. This feature and also the event-
driven nature of the computation are exploited to introduce a modular verification approach in
order to overcome the state explosion problem in model checking. In this paper we elaborate
on the corresponding theory of the modular verification approach which is based on the formal
semantics of components in extended Rebeca.
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1 Introduction

Using formal methods and among them formal verification is a promising approach in
developing more reliable software systems. In a formal verification approach, we need
a modeling language to represent the behavior of the system, a specification language to
embody the required properties, and an analysis method to verify the behavior against
the required properties. The modeling language can be a formal language or shall be
provided by formal semantics on which the analysis method is established. The specifi-
cation language for concurrent and reactive systems is usually based on automata theory
or temporal logic [18].
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In formal verification approaches, there are two basic methods of analysis: model
checking and deductive methods. Typically, model checking is performed by a software
tool, performing an exhaustive simulation of the model on all possible inputs and then
applying some analysis on it. The main problem with model checking is state explosion.
In a deductive method, the problem is formulated as proving a theorem in a mathemati-
cal proof system, and the modeler attempts to construct the proof of the theorem, usually
using a theorem prover as an aid. Formulating a complex software system as a theorem
is not always easy and working with the existing theorem provers usually needs spe-
cial expertise. Using abstraction and modularity is a general solution for the problem
of modeling and also verification of complex systems. By targeting specific domains,
one may find more efficient specialized approaches and techniques for abstraction and
modularization.

Rebeca (Reactive Objects Language) is an actor-based language with a for-
mal foundation, introduced in [19, 21] which is designed in an effort to bridge the gap
between formal verification approaches and real applications. Rebeca is supported by
a front-end tool for the translation of Rebeca codes into existing model-checker lan-
guages [20, 22, 23], also, recently a tool is developed for direct model checking of
Rebeca codes [15]. Inherent characteristics of Rebeca are used to introduce composi-
tional verification and abstraction techniques for reducing the state space and make it
possible to verify complicated reactive systems.

An extended version of Rebeca is introduced in [24], by enriching the model of
computation with a formal concept of a component. The motivation is to provide a
general framework which integrates in a formally consistent manner, both synchrony
and asynchrony; introducing components to encapsulate tightly coupled reactive ob-
jects which may have synchronous communication; and present a tool-supported for-
mal verification approach which provides us with open components whose behavior are
verified. Certain properties are proven to be preserved when these model checked com-
ponents are composed with other arbitrary components, and so, they can be plugged in
a model relying on their behavior. Components are introduced for integrating different
communication patterns (synchronous and asynchronous), at different levels of abstrac-
tion. At the highest level of abstraction, components only interact asynchronously via
broadcasting anonymous messages. At a lower level of abstraction (within a compo-
nent), computations, on the one hand are driven by asynchronous messages, and on the
other hand can be synchronized by a handshaking communication mechanism. A for-
mal operational semantics of the extended Rebeca language is presented and it is shown
that how components can be used in a modular verification approach. The modular ver-
ification approach, not only provides us with reliable components, but also is useful to
overcome the state explosion problem in model checking.

This paper is an extended version of the conference paper [24]. In the process of
providing rigorous proofs for the theorems, subtle but important changes are made to
the definitions and theorems: the definitions for initial state and also internally
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broadcasting messages are slightly changed to make the theorems valid; formalizing
queue abstraction is changed and it is observed that both queue abstraction and compo-
nent composition can be proved to preserve the specific properties via weak simulation
relation. Proofs are provided for the theorems. Also, the syntax definition now include
the definition of a reactive class, reactive class body, instantiating rebecs, and a model
as a set of components. In order to make the explanations more clear the case study
provided in [24] is changed to a running example and the extended Rebeca model used
in modular verification is added to the paper (Figure 3) which shows the environment
and the components.

Plan of the paper. In the next section we first discuss related work, including re-
lated work on actor models and some other concurrent modeling languages, and also
automatic verification tools. In Sections 3 and 4, we show syntax and formal semantics
of Rebeca, extended by synchronous messages and broadcast communication. We start
with the local configuration within a component and then move to components and
global configuration as the higher level structures in our operational semantics. Sec-
tion 5 explains our approach for verifying properties of components, based on a formal
structural operational semantics, in order to offer reliable off-the-shelf components. A
simple example is used as a running example to explain Rebeca syntax and semantics,
and also to show the module checking approach. In Section 6, we have a short conclu-
sion and a description of our future work.

2 Related Work

Different object-oriented models and languages for concurrent systems have been pro-
posed since the 1980s. The actor model was originally introduced by Hewitt [11] as an
agent-based language. It was later developed by Agha [5] into a concurrent object-based
model. The actor model is proposed as a model of concurrent computation in distrib-
uted, open systems. Actors have encapsulated states and behavior; and are capable of
changing behavior, creating new actors, and redirecting communication links through
the exchange of actor identities. Some interesting work has been done on formalizing
the actor model [25, 10].

The actor model was first explained as a simple functional model [4, 5], but several
imperative languages have also been developed based on it [26]. Besides its theoretical
basis, the actor model and languages provide a very useful framework for understanding
and developing open distributed systems.

Input-output automata for modeling asynchronous distributed systems are intro-
duced by Lynch and Tuttle in [17]. They showed how to construct modular and hi-
erarchical correctness proofs for their models. Alur and Henzinger proposed RML (Re-
active Modules Language) for modeling a system and used a subset of linear temporal
logic, alternating-time temporal logic, to specify its properties [8]. RML supports com-
positional design and verification.
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Many models, including those we mentioned above, have tools for facilitating their
analysis [7]. There are also model checkers which are developed with their own model-
ing languages, such as NuSMV [1] and Spin [3]. However, to the best of our knowledge,
our work presents a first component-based imperative actor-language which integrates
synchronous message passing and which is supported by compositional verification
techniques. Furthermore, the design of the Rebeca language is based on a powerful
yet simple paradigm; providing the basic necessary constructs in a Java-like syntax
which is easy to use for practitioners. The event-driven nature of its semantics, leads
to straightforward approaches which decrease the state space significantly. Abstraction
techniques which preserve LTL-X and ACTL properties, can be applied automatically.
In our previous work [21], components are sub-models which are the result of decom-
posing a closed model in order to apply compositional verification, but here the concept
of a component is what we have in component-based modeling which is an independent
module with a well-defined interface. Once verified, a component can be used as a reli-
able off-the-shelf module. Hence, in the modular verification approach presented here,
although the strategy in abstraction techniques is the same, but the technical details are
quite different. A similar approach in using abstraction techniques for model checking
open SDL systems is used in [13].

3 Rebeca

A model in Rebeca consists of a set of rebecs (reactive object) which are concurrently
executed. Rebecs are encapsulated active objects, with no shared variables. Each rebec
is instantiated from a reactive class and has a single thread of execution which is trig-
gered by reading messages from an unbounded queue. Each message specifies a unique
method to be invoked when the message is serviced. When a message is read from
the queue, its method is invoked and the message is deleted from the queue. Note that
reading messages, thus, drives the computation of a rebec. Rebecs do not provide an ex-
plicit control over the message queue. Regarding the infinite behavior of the semantics,
communication is assumed to be fair [4]: all the sent messages eventually reach their re-
spective inboxes and will eventually be invoked by the corresponding rebec. Each rebec
has an initial message server, and in the initial state the queue of the rebec is empty
and its statement to be executed is the statement of the initial message server.

In order to increase the modeling power of actor-based languages, we extend the
asynchronous communication mechanism of Rebeca with synchronous message pass-
ing and a mechanism for broadcasting anonymous messages. Synchronous messages
are specified only as a signature specifying the name of the message and the types of its
parameters.

For sending a synchronous or asynchronous message to an internal rebec, we spec-
ify its name. An anonymous send statement represents a broadcast to other components.
In order to introduce the extended version of Rebeca we need the following definition.
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Definition 1 Basic definitions.

– The predefined types T : Int for integers, Bool for Booleans, and Reb for rebec
names, i.e., identifiers of the active object in Rebeca.

– The set V ar is the set of typed variables with typical elements x1, x2, . . . , xn,
including instance variables and also local variables. We denote local variables by
u1, . . . , un, values by v1, . . . , vn, and rebec names by r, r′, . . ..

– The set V al is the union of all the values for all the types, i.e., all the integers for
type Int, {True, False} for type Bool, and all the rebec names for type Reb.

– The set Mes is the set of messages with typical elements m,m1, . . . ,mn.

A model in Rebeca is a number of class definitions followed by rebecs instantiated
from them, and components which are declared as sets of rebecs. Each class, consists
of an interface, declaration of instance variables and its body which is a set of method
definitions. The interface includes known objects (rebecs which messages can be sent
to), and provided and required message servers. Figure 1 shows the abstract syntax of
extended Rebeca.

Definition 2 Syntax of extended Rebeca.

The abstract syntax of Rebeca is defined by the BNF-grammar in Figure 1. The detailed
syntax for conditional statements, expressions and actual parameters, and known object
bindings are not included. Brackets ([]) are used to show the optional parts.

An assignment statement written as x = e, assigns the value resulting from the
evaluation of the expression e to variable x. A create statement x = newA(), creates
a new rebec as an instance of reactive class A and assigns its unique identity to the
variable x. A reactive class named by A, is a template that rebecs are instantiated from.
The parameters which can be passed to the created rebec are its known rebecs and the
parameters which are passed to the initial message server. Known rebecs are correspon-
dent to the knownobjects part of the interface of each reactive class and determine the
rebecs which the messages are sent to.

A send statement, can be sending a message to a rebec, specifying its name; or it
can be an anonymous send. An anonymous send statement like m(e1, ..., en), which
does not indicate the name of the receiver, causes an asynchronous broadcast of the
message m with actual parameters e1 to en. This broadcast in fact will involve all the
components of the system as described in the following section on the semantics. Within
a component, this in turn, will cause sending an asynchronous message to one of its
rebecs (non-deterministically chosen). Alternatively, we could also broadcast internally
the message to all the rebecs of the receiving component; however, this model is not
consistent with our queue abstraction theory described later.
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<model> ::=
<reactiveclasses>
<main>
<components>

<reactiveclasses> ::= {<reactiveclass>}+
<reactiveclass> ::=

reactiveclass <reactiveclassName>’(’<queueLength>’)’ ’{’
<knownobjects>
<provided>
<required>
<statevars>
<body>

’}’
<knownobjects> ::=

knownobjects ’{’
{<var>’;’}*

’}’
<provided> ::=

provided ’{’
{<methodName>’;’}*

’}’
<required> ::=

required ’{’
{<methodName>’;’}*

’}’
<statevars> ::=

statevars ’{’
{<var>’;’}*

’}’
<body> ::=

{<method>’;’}+
<method> ::=

msgsrv <methodName> ’(’ <parameters> ’)’[ ’{’
{<statement>’;’}*

’}’]
<parameters> ::= <var> | <var> ’,’ <parameters>
<var> ::= <typeName> <varName>
<statement> ::=

<send> | <assignment> | <conditional> | <create> | <receive>
<send> ::=

[<varname> ’.’] <methodName> ’(’ {<actualParameters>}* ’)’
<assignment> ::= <varname> = <expr>
<create> ::=

<varname> = new <reactiveclassName> ’(’ <knownobjectsBindings>;
<actualParameters> ’)’

<receive> ::= receive ’(’ <methodNames>’)’
<main> ::=

main ’{’
{<rebec>’;’}+

’}’
<rebec> ::=

<reactiveclassName> <varname> ’(’ <knownobjectsBindings>;
<actualParameters> ’)’

<components> ::=
components ’{’

{<varnames>’;’}+
’}’

<varnames> ::= <varname> | <varname> ’,’ <varnames>

Figure 1: Extended Rebeca syntax
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Execution of a send statement, say r.m(e1, ..., en), consists of sending a message
m with actual parameters e1 to en to the rebec r. Message passing can be both syn-
chronous as well as asynchronous. Asynchronous messages define a corresponding
message-handler S, also called a method, and there is no explicit receive statement
for them. An asynchronous message will be stored in an unbounded message queue of
the callee, after which the caller proceeds with its own computation. When this message
is read by the callee the corresponding statement is executed.

Synchronous messages are specified only in terms of their signature, they do not
specify a corresponding handler S. Synchronous message passing involves a ‘hand-
shake’ between the execution of a send-statement by the caller and a receive state-
ment by the callee in which the (synchronous) message name specified by the caller
is included. A receive statement, say receive(m1, ...,mn), denotes a nondeterminis-
tic choice between receiving messages m1 to mn. This kind of synchronous message
passing is a two-way blocking, one-way addressing, and one-way data passing commu-
nication. It means that both sender and receiver should wait at the rendezvous point,
only sender specifies the name of the receiver, and data is passed from sender to re-
ceiver.

When a sender sends a synchronous message it is blocked, waiting for the receiver
to reach to the corresponding receive statement (which includes the message sent by
the sender as an option). But this happens only if the receiver is not already waiting for
that message, in the latter case the sender and the receiver meet, the data is passed to the
receiver and they both got unblocked and continue their execution. If there are more than
one sender waiting for a receive statement, then arriving to that receive statement, the
receiver makes a nondeterministic choice between the incoming messages. According
to that choice the corresponding sender get unblocked, passes the data, and continues
its execution. Other senders stay in their blocked state.

The body of each method is a sequence of statements. It can be denoted by S as a
sequential statement composed of the basic actions. A method definition, method, can
be denoted as msgsrv m(u1 : t1, . . . , un : tn)[: S], which denotes the method that is
invoked by message m with virtual parameter u1 to un of type t1 to tn, and the body S.
The definition of method body S is optional, and we have the convention that m(u1 :
t1, . . . , un : tn) : S corresponds to an asynchronous message, and m(u1 : t1, . . . , un :
tn) corresponds to a synchronous message. Note that synchronous messages do not
invoke a method and as such they model synchronous data transmission.

After defining the reactive classes we have two parts as main part and components
part. In the main part the set of rebecs are instantiated and in the components part the
grouping of rebecs into components are determined.

The Bridge Controller: syntax. Here, we explain a simple example to show the syn-
tax of extended Rebeca. Consider a bridge with a one-way track where only one train
can pass at a time. This example can be easily extended to multiple tracks. Trains enter
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the bridge from its left side, pass it, and exit from the right side. Rebeca code for this
example is shown in Figure 2. We model the two ends of the bridge by two reactive ob-
jects controlling these ends. The template of these reactive objects are described by the
classes leftController and rightController. The rebecs theLeftCtrl and theRightCtrl are
instantiated from these two classes and together form a component. Trains are modeled
by the Train class. Many trains can be instantiated from this class, but in this example
we only have two trains instantiated. Each single train instance makes a component. All
the reactive classes have their corresponding initial message server.

In Figure 2, encapsulation of rebecs in a component and also three types of mes-
sage passing can be seen. The two left and right controllers of the bridge are tightly
coupled and are encapsulated in a component. It allows the synchronous message pass-
ing between them. Trains are independent objects and can communicate by broadcast-
ing asynchronous messages. It is also shown that the broadcasted messages are only
serviced by one of the provider rebecs.

Three kinds of message passing used in this example are now further explained. The
ReachBridge and GoOnTheBridge messages are asynchronous messages which are sent
to internal rebecs of a component, here, they are both sent to self. The messages Leave
and Arrive are broadcasted to anonymous receivers, which only one of the rebecs pro-
viding these messages react to. The message server of Arrive is provided by rebecs
instantiated from leftController reactive class, and the message server of Leave is pro-
vided by rebecs instantiated from rightController reactive class. There is a synchronous
message, passed, which intends to synchronize the theLeftCtrl and theRightCtrl rebecs,
which are rebecs included in a component.

The variable OnTheBridge of the reactive class Train is used in Section 5 for veri-
fication purposes and two variables trainsin and trainsout are added to the code of left-
Controller and rightController for modular verification (also explained in Section 5).

4 Operational Semantics

We will define the semantics of extended Rebeca in terms of a labeled transition system.
Semantics is defined in a structured manner which reflects the hierarchy of re-

becs, component and component system: First we introduce a labelled transition system
which describes the behavior of a rebec in isolation. This transition system forms the
basis for a labelled transition system which describes the behavior of a component as
a set of rebecs. Finally, the latter system is used as a basis for describing the overall
behavior of a system of components.

Definition 3 Local configuration.

Assuming a model with rebec template definitions: A1 = B1, . . . , An = Bn, where Bi

is the body of the class, rebecs are instantiated from these templates. A local configura-
tion l for a rebec is defined as a tuple l =< r, σ, S, q > where
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reactiveclass leftController() { reactiveclass Train(){
knownobjects {} knownobjects {}
provided { Arrive; } provided { YouMayPass; }
required { YouMayPass; } required { Arrive; Leave;}
statevars { int trainsin; } statevars{boolean OnTheBridge;}
msgsrv initial() { msgsrv initial(int MyTrainNr){
trainsin = 0; self.ReachBridge();

} OnTheBridge = false;
msgsrv Arrive (int TrainNr) { }
YouMayPass(TrainNr); msgsrv YouMayPass(int TrainNr){
trainsin = trainsin + 1; if (TrainNr == MyTrainNr){
receive(passed); self.GoOnTheBridge();

} OnTheBridge = true;
msgsrv passed(); }

} }
msgsrv GoOnTheBridge() {

Leave();
OnTheBridge = false;
self.ReachBridge();

reactiveclass rightController() { }
knownobjects { leftController left; } msgsrv ReachBridge() {
provided { Leave; } Arrive(MyTrainNr);
required {} }
statevars { int trainsout; } }
msgsrv initial() {
trainsout = 0; main {

} Train train1(;1);
msgsrv Leave() { Train train2(;2);
trainsout = trainsout + 1; leftController theLeftCtrl();
left.passed(); rightController theRightCtrl

(theLeftCtrl;);
} components:

} {train1};{train2};
{theLeftCtrl, theRightCtrl};

}

Figure 2: Bridge controller example, modeled in extended Rebeca

– r denotes the rebec identity,

– σ ∈ V ar → V al assigns values to the variables of the rebec,

– S is the statement to be executed next, and

– q denotes the unbounded FIFO queue containing asynchronous messages.

Next, we introduce a labelled transition relation which describes the behavior of a rebec
in isolation. The labels indicate the nature of the transition:

– the label τ indicates an internal computation step;

– a label m(v1, . . . , vn) indicates that the asynchronous message m(v1, . . . , vn) has
been broadcasted;
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– a label r.m(v1, . . . , vn) indicates that the asynchronous or synchronous message
m(v1, . . . , vn) has been sent to the rebec r (which is required to be different from
the executing rebec);

– a label r.m(v1, . . . , vn), where r denotes the executing rebec itself, indicates the
reception of the message m(v1, . . . , vn).

For notational convenience, the parameters of a message are dropped in the following
definitions when it does not cause loss of information, i.e., m(v1, . . . , vn) is denoted
simply by m.

Definition 4 Local transition for processing message queue.

When the point of control is at the end of a method, its execution is finished which is
denoted by nil. If there is a message at the top of the rebec’s queue it is popped and
the corresponding method is called for execution. The parameter values are substituted
before execution. It is worthwhile to observe here that we don’t have recursion in meth-
ods so we don’t need to worry about fresh local variables. The above is formalized by
the following transition:

〈r, σ, nil, q.m(v1, . . . , vn)〉 τ→ 〈r, σ′, S, q〉
where, given the method definition m(u1 : t1, . . . , un : tn) : S, σ′ = σ{v1/u1, . . . ,

vn/un} denotes the state resulting from assigning the values v1, . . . , vn to the formal
parameters u1, . . . , un. Note that σ{v/u} denotes the result of assigning the value v to
u in the state σ.

Definition 5 Local transition for assignment.

When the next statement to be executed is an assignment we have the following transi-
tion rule:

〈r, σ, x = e;S, q〉 τ→ 〈r, σ′, S, q〉,
where σ′ = σ{σ(e)/x} and σ(e) denotes the value of expression e in σ.

Definition 6 Local transitions for send.

When the next statement to be executed is a send statement we distinguish between
broadcast, sending to self, and sending to others :

1. 〈r, σ,m(e1, . . . , en);S, q〉 m(v̄)−→ 〈r, σ, S, q〉
where v̄ = (v1, . . . , vn), and vi = σ(ei).

2. 〈r, σ, x.m(e1, . . . , en);S, q〉 r′.m(v̄)−→ 〈r, σ, S, q〉
where σ(x) = r′, r �= r′, v̄ = (v1, . . . , vn), and vi = σ(ei).
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3. 〈r, σ, x.m(e1, . . . , en);S, q〉 τ−→ 〈r, σ, S, q.m(v1, . . . , vn)〉
where σ(x) = r, and vi = σ(ei).

The first case above describes the anonymous broadcast of an asynchronous mes-
sage. The second case describes sending a synchronous or asynchronous message to
another rebec. Finally, the last case describes sending of an asynchronous message to
the rebec itself. Note that we do not allow sending synchronous messages to self, which
will cause deadlock.

Definition 7 Local transitions for receive.

We distinguish between the reception of synchronous and asynchronous messages:

– The following transition describes the reception of an asynchronous message for
which the receiving rebec has a corresponding server:

〈r, σ, S, q〉 r.m−→ 〈r, σ, S, q.m〉

– We have the following transition which describes the reception of a synchronous
message:

〈r, σ, receive(m1, . . . ,mn);S, q〉 r.m(v̄)−→ 〈r, σ′, S, q〉
where, given the method definition m(u1, . . . , un), m ∈ {m1, . . . ,mn}, and v̄ =
(v1, . . . , vn), σ′ = σ{v1/u1, . . . , vn/un}.

Definition 8 Local transition for creation.

When the next statement to be executed is a creation statement we have the following
transition:

〈r, σ, x = new A();S, q〉 r′
→ 〈r, σ′, S, q〉 where σ′ = σ{r′/x}. Here r′ is chosen

arbitrarily. Freshness of r′ is ensured in the context of a component (described in the
next section).

Next we describe the semantics of a component which is specified by a set of rebecs.

Definition 9 Component configuration.

A component is a non-empty, finite set of rebecs the configuration of which is given by
C = {l1, . . . , ln} where li denotes the local configuration of rebec ri.

Components interact only by broadcasting anonymous messages. The set of public
methods of the rebecs inside a component define its (provided) interface. A message re-
ceived by a component is forwarded to one of its internal rebecs (non-deterministically
chosen). We formalize the externally observable behavior of a component by means
of a transition relation with labels !m and ?m which indicate sending and receiving
anonymous asynchronous message m, respectively. Communications between rebecs
of a component are hidden.
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Definition 10 Component transition for internal communication.

The following transition describes internal synchronous and asynchronous message
passing,

li
rj .m
→ l′i, lj

rj .m
→ l′j , i�=j

{l1,...,li,...,lj ,...,ln} τ→{l1,...,l′i,...,l
′
j ,...,ln}

Note that this rule describes sending a synchronous or an asynchronous message from
ri to rj (i �= j) (look at Definition 6.2)

Definition 11 Component transition for send.

The following rule describes broadcast of an anonymous asynchronous message gener-
ated by an internal rebec (look at Definition 6.1).

li
m→l′i

{l1,...,li,...,ln}!m→{l1,...,l′i,...,ln}

Definition 12 Component transition for receive.

The following rule describes the reception of an anonymous (asynchronous) message.

li
ri.m→ l′i, for some i∈{1,...,n}

{l1,...,li...,ln}?m→{l′1,...,l′i...,l′n}

Note that only one nondeterministically chosen rebec which provide a message
server receives the corresponding message, i.e., the message is added to its message
queue. For the other rebecs the message will simply be purged.

Definition 13 Component transition for creation.

The following rule describes the creation of an internal rebec.

li
r→l′i

{l1,...,li,...,ln} τ→{l1,...,l′i,...,ln,ln+1}

where ln+1 denotes the initial local configuration of the newly created rebec r which is
required not to exist in {l1, . . . , li, . . . , ln}, i.e., r �= ri, i ∈ {1, . . . , n}.

Definition 14 Component internal transition .

Finally, the following rule describes the internal interleaving execution of rebecs within
a component.
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li
τ→l′i

{l1,...,li,...,ln} τ→{l1,...,l′i,...,ln}

A global model simply consists of a set of components.

Definition 15 Global configuration.

A global configuration is a finite set of component configurations {C1, . . . , Cn}.
Next we define the global transition system which describes the behavior of a set of
components as a closed system.

Definition 16 Global transition for communication.

This transition describes the broadcasting mechanism of asynchronous anonymous mes-
sages.

Ci
!m→C′

i, Cj
?m→C′

j , i�=j

{C1,...,Ci,...,Cj ,...,Cn} τ→{C′
1,...,C′

i,...,C
′
j ,...,C′

n}

Note that an anonymous asynchronous message is broadcasted to all the other com-
ponents. This rule shows that when the message is sent it is put in the message queue
of the receiver.

Definition 17 Global internal transition .

All the other transitions of components are as internal computation steps in the global
configuration.

Ci
τ→C′

i

{C1,...,Ci,...,Cn} τ→{C1,...,C′
i,...,Cn}

The Bridge Controller: semantics. Here, we explain more about the Bridge Con-
troller example to show our modeling approach. The model begins by the execution
of the initial message service. By executing the initial message server of each train,
a ReachBridge message is sent to self, which in turn causes an Arrive message to be
sent to the train. Trains announce their arrival by broadcasting the anonymous message
Arrive(MyTrainNr) to the Controller component. To this message only the leftCon-
troller will react by broadcasting the YouMayPass(MyTrainNr) message after which
the leftController waits for the synchronous message passed. The message YouMay-
Pass(MyTrainNr) will be received by both trains, however only the train identified by
MyTrainNr will enter the bridge (according to the conditional statement in the YouMay-
Pass message server, the other train will do nothing). Passing the bridge is modeled
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by broadcasting the message Leave to the Controller component. To this message only
the rightController will react by sending the synchronous message passed to the left-
Controller which enables the leftController to receive new Arrive messages. Note that
thus no trains are allowed to enter the bridge (by executing GoOnTheBridge) while the
leftController is suspended.

5 Formal Verification

For formal verification of systems we need a behavioral model to explain the behavior of
the system, a property specification language to specify the required properties, and an
analysis method to check the properties against the behavior. Rebeca is our behavioral
model for modeling the system. Our specification language is temporal logic based on
the state variables of rebecs in the Rebeca code. For analyzing the model, we need
to model check an open system and we present our method for model checking such
systems. We integrate model checking and deduction in our approach.

Property specification language. We use temporal logic as our property specification
language. A temporal formula is constructed out of state formulas (assertions) to which
we apply boolean connectives and temporal operators. State formulas are propositions
defined over standard operations and relations over V ar, the set of state variables. We
naturally do not consider the message queue contents in our state formulas. So, the
properties are based on state variables of each rebec in the model.

Model checking open systems. Formal verification of properties for components, is a
problem of model checking of open systems. By an open system, we mean a system that
interacts with its environment and whose behavior depends on this interaction; unlike a
closed system, whose behavior is completely determined by the state of the system. The
crucial point in model checking an open system, which is usually referred to as module
checking, is modeling the environment. To model the nondeterminism, an environment
can be modeled as a general process with arbitrary behavior [16, 6].

For module checking components in extended Rebeca, we define a general environ-
ment. A component interacts with its environment by means of sending and receiving
asynchronous anonymous messages. Because of the asynchronous nature of the com-
munication mechanism, we only need to model the messages generated by the environ-
ment. Each message generated by the environment is put in the queue of an internal
rebec which the required service is provided by. If there is more than one rebec provid-
ing that service, one of them is nondeterministically chosen.

To model an environment which simulates all the possible behaviors of a real envi-
ronment, we need to consider an environment nondeterministically sending unbounded
number of messages (Definition 18). It is clear that model checking will be impossi-
ble in this case. To overcome this problem, we use an abstraction technique. Instead of
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putting incoming messages in the queues of rebecs, they may be assumed as a constant
(although unbounded) set of requests to be processed at any time, in a fair interleaving
with the processing of the requests in the queue (Definition 19). This way of modeling
the environment, generates a closed model which simulates the model resulting from a
general environment which nondeterministically sends unbounded number of messages
(Theorem 24-1).

We will proceed by a formal definition of a general environment for Rebeca compo-
nents. Then we show that the component’s behavior in this general environment, weakly
simulates the behavior of the component being concurrently executed with any arbitrary
component (Theorem 24-2). So, we can use model checking to prove certain properties
for a component interacting with a general environment, and then deduce that these
properties are preserved for that component in any environment (Theorem 23). Before
showing the weak simulation, we use our abstraction technique to overcome the un-
boundedness problem of queues in a general environment, and make model checking
feasible. We also use common data abstraction techniques on parameters of incoming
messages, to make the number of messages bounded.

Definition 18 Environment of a component.

For each component C, containing only rebecs in their initial states (note that this im-
plies that the queues are empty), we define a component EC as a general environment
for C, where EC nondeterministically broadcasts all the provided messages of C.

The global configuration made by C and EC is a closed model which we denote it as
M , i.e., M = {C,EC}. The interface and body of component EC can automatically be
derived from the interface of C. The required messages of EC are all the provided mes-
sages of C, EC has no provided message and no instance variable. For each provided
messages mC of C, there is a rebec in EC , which has one method named active in its
body. This method sends two messages: first mC to C, and second an active message
to itself. Sending the active message to itself makes an infinite loop for sending the mC

to C. According to the broadcast mechanism, the environment component EC also re-
ceives all the messages from component C. As there are no provided messages in EC ,
they are all purged.

The Bridge Controller: The controller as a component, and its environment. In
Figure 2, we have two rebecs theLeftCtrl and theRightCtrl as a component. For mod-
ule checking this component we abstract the model from other rebecs, and model an
arbitrary environment for the controller component. This environment is constructed
according to the provided messages of the component. The Rebeca code for this com-
ponent and its environment is shown in Figure 3. The provided messages of the two
rebecs, theLeftCtrl and theRightCtrl, are the messages Arrive and Leave. The reactive
classes which build the environment are made based on these messages. These reactive
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reactiveclass leftController() { reactiveclass ctrlEnvArrive() {
knownobjects {} knownobjects {}
provided { Arrive } provided {}
required { YouMayPass } required { Arrive }
statevars { int trainsin } statevars {}
msgsrv initial() { msgsrv initial(int MyTrainNr) {
trainsin = 0; self.active();

} }
msgsrv Arrive (int TrainNr) {
YouMayPass(TrainNr); msgsrv active() {
trainsin = trainsin + 1; Arrive(1);
receive(passed); Arrive(2);

} self.active();
msgsrv passed(); }

} }
reactiveclass ctrlEnvLeave() {

knownobjects {}
provided {}
required { Leave }

reactiveclass rightController() { statevars {}
knownobjects { leftController left; } msgsrv initial(int MyTrainNr) {
provided { Leave; } self.active();
required {} }
statevars { int trainsout; } msgsrv active() {
msgsrv initial() { Leave();
trainsout = 0; self.active();

} }
}

msgsrv Leave() { main{
trainsout = trainsout + 1; ctrlEnvArrive EnvArrive;
left.passed(); ctrlEnvLeave EnvLeave;

leftController theLeftCtrl();
} rightController theRightCtrl

(theLeftCtrl;);
components:

} {EnvArrive,EnvLeave};
{theLeftCtrl, theRightCtrl};

}

Figure 3: The controller and its environment

classes have no known objects, no state variables, and no provided messages; each of
them has only one required message, Arrive and Leave. The Arrive message has a pa-
rameter which has to be considered. An equivalent way is to have one reactive class for
each different value of the parameter.

In modeling the environment as a component, we use the existing data abstraction
techniques for the parameters of incoming messages to reduce the number of messages
to a finite set, but still the number of sent messages can be unbounded. Given this
assumption, we proceed to the next definition.

Definition 19 Queue abstraction.

In the model M = {C,EC}, instead of putting all the messages coming from EC in the
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message queues of rebecs in C, we assume each external message to be always present,
and model it by a transition of C. More specifically, for each external message m we
introduce the following local transition:

〈r, σ,nil , q〉 τ−→ 〈r, σ, S, q〉 (1)

where S is the handler of m. Consequently, when the statement to be executed is nil, we
can take a message from top of the queue, like in Definition 4, or execute the message
server of an external message, which is caused by the above transition. In this way, the
queues of the component C only contain internal messages and we obtain a finite model
in case C only generates a finite number of internal messages. We denote this behav-
ioral abstraction of C by the transition relation →a: the local behavior of the rebecs is
described by the local transitions with the above local transition for receiving external
messages; furthermore at the component level we restrict to the component transitions
for sending anonymous (asynchronous) messages and the transitions describing internal
computation steps. In other words, we do not have component transitions for receiving
anonymous (asynchronous) messages since they are modeled by the above local tran-
sition. Furthermore, the component transition for sending anonymous (asynchronous)
messages also generates only the silent τ -action.

Let Σ(M), for M = {C,EC}, be the transition system of M = {C,EC} generated
by the transition relation

τ→ from the initial set of components {C,EC}. By Σ(C) we
denote the transition system generated by the transition relation →a from the initial
state {C}.

Next we will describe a proof method for establishing LTL properties without the
next operator (LTL-X) and CTL properties without the next operator and existential
path quantifiers (ACTL-X).

Definition 20 Satisfaction relation.

1. A computation of a transition system Σ is a maximal execution path, beginning at
an initial state. Given an LTL formula φ, we say that Σ |= φ iff φ holds for all the
computations of Σ ([18]).

2. Given a CTL formula φ, we say that Σ |= φ iff φ holds in the initial state of the
transition system Σ ([9]).

Definition 21 Proof method.

Here, we want to prove that if a component C, satisfies a property φ, then φ is satisfied
by any model containing the component C. Then, we are able to model check C to see
whether Σ(C) |= φ, and if this is true we conclude that C can be plugged in any model
and still satisfies φ (for certain properties φ).
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The correctness of this proof method follows from the following implication:
Σ(C) |= φ implies Σ(M ′) |= φ, for any model M ′ containing C (where Σ(M ′)
denotes the transition system of M ′).
This implication in turn follows from the following two implications:

1. Σ(C) |= φ ⇒ Σ(M) |= φ, for M = {C,EC}, and

2. Σ(M) |= φ ⇒ Σ(M ′) |= φ, for an arbitrary model M ′ containing C.

Both implications follow from following definition of weak simulation and the cor-
responding property preservation theorem and is proved to be valid by Theorem 24.

Definition 22 Weak Simulation.

Consider two transition systems Σ1 = (S1, T1, I1) and Σ2 = (S2, T2, I2), where Si is
the set of states for Σi, Ti ⊆ Si × Si is the transition relation, and Ii is the set of initial
states for Σi.

We define Σ1 �R Σ2 (Σ1 weakly R-simulates Σ2) if R ⊆ S1 × S2 is a relation
between Σ1 and Σ2 such that for all s1 ∈ S1 and s2 ∈ S2, if R(s1, s2) then for every
transition T2(s2, s

′
2) either R(s1, s

′
2) (stuttering) or there exists a state s′1 ∈ S1 such

that R(s′1, s
′
2) and T1(s1, s

′
1).

The transition system Σ1 weakly simulates Σ2 (denoted by Σ1 � Σ2) if Σ1 �R

Σ2, for some relation R, and for every initial state s2 ∈ I2 there exists an initial state
s1 ∈ I1 with R(s1, s2).

Theorem 23 Property preservation.

If the transition system Σ1 weakly simulates Σ2, then for every ACTL or LTL formula
φ without the next operator (with atomic propositions on variables in M1), Σ1 |= φ

implies Σ2 |= φ ([9]).

We have the following weak simulation relations.

Theorem 24 Capturing queue abstraction and component composition.

Queue abstraction and component composition are captured by weak simulation. Let
M = {C,EC} and M ′ be an arbitrary model containing C.

1. Queue abstraction: Σ(C) � Σ(M).

2. Component composition: Σ(M) � Σ(M ′).
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Proof.

1. We can prove that Σ(C) weakly R-simulates Σ(M), M = {C,EC}, by defining
R(sC , sM ) if the set of local configurations of the rebecs in sC consists of the local
configurations of those rebecs in sM which belong to the component C with their
queues projected unto the internal messages only.

We need to show that for all sC ∈ SC and sM ∈ SM , if R(sC , sM ) then for
every transition TM (sM , s′M ) either R(sC , s′M ) or there exists a state s′C ∈ SC

such that R(s′C , s′M ) and TC(sC , s′C). All the transitions in TM can be of two types
according to the Definitions 16 and 17. For all the communication transitions in TM

(Definition 16), which are caused by sending (external) messages from EC to C,
there is a silent transition in TC described in the queue abstraction definition (local
transition (1) in Definition 19). For every transition in TM which is corresponding
to the message server that is nondeterministically chosen to be executed, there is a
corresponding transition in TC . So, we will have TC(sC , s′C) and R(s′C , s′M ). It can
be seen that although the queue abstraction technique seems to be straight forward,
it does not simply work in any kind of setting. Note that in our setting for a message
broadcasted to a component, an asynchronous message is sent to one of its rebecs
(non-deterministically chosen) which provides the service. For example, the design
decision of internally broadcasting the messages coming from other components
breaks the theorem. In that setting, all the internal rebecs which provide the message
server have to reply to an external message. In M the message is put in the queues
of all the rebecs providing the message and can be taken and served in any time
afterwards, but in C all the rebecs have to execute the corresponding message server
before going ahead. Hence, the behavior of C is no more an over-approximation of
the behavior of M and the weak simulation relation does not hold.

Another design decision is regarding to the initial state. The queue abstraction tech-
nique does not hold if we assume the initial state as the state with all the initial
messages put in the queues. That is why we assume the queues to be empty and for
each rebec the statement to be executed is the first statement of the initial message
server.

The messages which are sent out by C are handled in the same way in both models
(they are purged) and cause similar transitions in both transition systems. For all the
internal transitions in TM (Definition 17) the condition holds because of the similar
local configuration and internal messages in the queues according to the definition
of R.

2. Furthermore, we can prove that Σ(M) weakly R′-simulates Σ(M ′), where M ′

is any model containing C, by simply defining R′(sM , sM ′) if the set of local
configurations of the rebecs belonging to the component C in sM and sM ′ coincide.

Here, the set of external messages which are sent to C in M ′ is a subset of exter-
nal messages which are sent to it in M . So, for all the transitions T ′

M (sM ′ , s′M ′)
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caused by sending an external message to C there is a transition TM (sM , s′M )
where R(s′M , s′M ′). Also, the other transitions corresponding to C are the same,
as the set of local configurations of the rebecs belonging to the component C in s

and s′ coincide. And, all the transitions which cause changes in components other
than C in M ′, are the stuttering steps in our weak simulation relation, as R′(s, s′)
is simply defined by the correspondence of the set of local configurations of the
rebecs belonging to the component C in s and s′. �

Next, we shall explain how to model check the transition system Σ(C). In model
checking the asynchronous kernel of Rebeca, we gained a significant state reduction due
to the asynchronous nature of communication and computation which allows to model
the execution of a method as an atomic operation. In the presence of the synchronous
communication mechanism this is no longer possible because of the additional syn-
chronization between sender and receiver which requires the introduction of new states.
However, this extension is bounded by the number of synchronous messages and re-
becs, and as an internal behavior of a component, it is resolved by model checking,
without any effects on Theorem 24.

The Bridge Controller: verifying the properties. Consider our running example, the
Bridge Controller of Figure 2. A safety property of the model is verified using our tool,
Rebeca Verifier [22]. Rebeca Verifier enables us to enter our model as Rebeca code, and
enter the properties as LTL formulas based on variables in the Rebeca code. The model
and the properties are then translated to the modeling and specification languages of
the back-end model checker, Spin [3]. In this example we explain how we can check
the mutual exclusion property, which is at any moment only one train should be on the
bridge. This property can be specified using the state variable OnTheBridge of the trains.
The LTL formula for checking this property is the followings (� denotes always):

Mutual exclusion:
�!(train1.OnTheBridge && train2.OnTheBridge)
To show our module checking approach and the abstraction techniques discussed,

we consider the controller as an open component C. Our purpose is to check its proper-
ties in all the possible conditions, i.e., in a general environment. A general environment
can be considered as an environment sending to the controller component, all of its pro-
vided messages in a nondeterministic way, what we called EC . The provided messages
are Arrive serviced by leftController and Leave serviced by rightController. Rebeca
Verifier supports module checking by automatically composing the open component
with its environment and reduce the problem to a model checking problem. The tool
also apply the abstraction automatically and model checks the abstracted model Ca in-
stead of {C,EC}. Here, it means that in those states where the statement to be executed
is nil, we can take a message from top of the queue to execute it, or execute one of the
two provided message servers, Arrive and Leave, which are not put in the queue but are
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placed in a constant set and is considered to be always enabled.
In module checking the controller component, we remove all other rebecs including

their state variables and queues (see Figure 3). So, we cannot reach OnTheBridge vari-
ables of trains to check the properties. In this case, state variables trainsin of theLeftCtrl
and trainsout of the theRightCtrl are used to check the mutual exclusion property which
is restated as: � (theLeftCtrl.trainsin − theRightCtrl.trainsout ≤ 1). Model
checking proved that this property holds, and based on our theory established in Sec-
tion 5, we conclude that this property holds for any model consisting of the controller
component and any arbitrary component.

6 Conclusion and Future Work

It is shown that using Rebeca, as an actor-based language, is natural and efficient in
modeling concurrent and distributed systems which their communication paradigm is
only asynchronous, but, as expected, modeling synchrony introduces complexity in the
model. This paper is an extension of [24], in which we have proposed extended Rebeca.
In extended Rebeca the modeling power of the asynchronous and message-driven com-
putational model of Rebeca is enriched by introducing a rendezvous-like synchronous
message passing.

One of the most important motivations in using Rebeca is the support for formal
analysis, including abstraction and compositional verification approaches [21, 22] and
also optimization techniques in model checking Rebeca codes [14, 15], which are all
based on the computational model of Rebeca. Components are added to extended Re-
beca to encapsulate the reactive objects which communicate by synchronous messages.
Hence, in a higher level of abstraction, where instead of reactive objects we take compo-
nents as modules, the compositional verification and abstraction techniques can still be
applied. Extended Rebeca provides us a language capable of modeling globally asyn-
chronous and locally synchronous systems and supported by a modular verification
approach. Application of partial order reduction and symmetry techniques in model
checking extended Rebeca is not yet studied.

Our research group in Tehran and Sharif universities is working on the real world
case studies and Rebeca Verifier tool. Extended Rebeca and the compositional verifi-
cation approach are used in verifying IEEE 802.1D [12]. A project in using extended
Rebeca for hardware/software co-verification is in its early stages and small case stud-
ies are modeled and model checked. The next step in our tool development project will
involve the extension to components and providing the fully automated module check-
ing technique for extended Rebeca. For more details and further information refer to
our home page [2].
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