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Abstract: Component-based Software Development is an emerging discipline in the
field of Software Engineering. In this context, coordination languages may be used
to specify the interactive behavior of software components. Our proposal is oriented
towards defining a framework for describing the behavior of components in terms of
coordination models. In particular, we define a way to complement interface descrip-
tion languages in order to describe components such that the information about the
services provided by a component can be extended with details on how these services
should be used. We illustrate our approach by applying the proposed framework to
two substantially different coordination models: Linda and Reo; the former represent-
ing the family of data-oriented coordination models, and the latter a new channel-based
model. Although we consider both models to show the feasibility of our proposal we
hope this study help us to define an interaction description language based on Reo for
component coordination, as has already been done in the context of Linda.
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1 Introduction

Component-Based Software Engineering (CBSE) is an emerging discipline in the
field of Software Engineering. In spite of its relative newness, a lot of attention
has being devoted to CBSE both in the academic and in the industrial world. The
reason for this growing interest is the need for systematically developing open
systems and “plug-and-play” reusable applications, which has led to the concept
of “commercial off-the-shelf” (COTS) components. The first component-oriented
platforms were CORBA and DCE, developed by OSF (Open Software Founda-
tion) and OMG (Object Management Group). Several other platforms have been
developed subsequently, such as COM/DCOM where components may have sev-
eral interfaces, each one describing the signature of the supported operations;
CCM (CORBA Components Model) also contemplates that components may
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describe not only the services they support, but also the interfaces they require
from others components during their execution; EJB, and the recent .NET.

Available component-oriented platforms address software interoperability by
using Interface Description Languages (IDLs). An interface is described as a
service abstraction which defines the operations that the service supports, inde-
pendently of any particular implementation. Interfaces can be described using
many different notations, depending on the information that the designer wants
to include, and the level of detail of the specification. Traditional IDLs are em-
ployed to describe the services that a component offers, rather than the services
the component needs (from other components) or the relative order in which
the component methods are to be invoked. IDL interfaces highlight signature
mismatches between components with the aim of adapting or wrapping them
in order to overcome such differences. However, even if all signature problems
may be overcome, there is no guarantee that the components will suitably in-
teroperate. Indeed, mismatches may also occur at the protocol level, because of
the ordering of exchanged messages and of blocking conditions, that is, because
of variances in the different component behaviours. In general, the use of IDL
descriptions during run-time is quite limited. They are mainly used to discover
services and to dynamically build service calls. However, there are no mecha-
nisms currently in place to deal with automatic compatibility checks or dynamic
component adaption which are among the most commonly required facilities
for building component-based applications in open and independently extensive
systems.

The objective of this work is to explore the capability of coordination mod-
els for specifying the interaction behavior of software components. Indeed, our
aim is to propose these models as a means of complementing current interface
description languages in a similar way as behavioral types [Magee et al. 99] or
role-based representations [Canal 01, Canal et al. 01]. In order to evaluate the
advantages and drawbacks of our approach we consider two well known coor-
dination models to illustrate their possibilities for composing software. Taking
into account traditional classification of data-oriented and control-oriented co-
ordination languages, we have chosen a very representative model of the first
group (Linda) and a modern evolution of the second one (Reo).

Linda [Carriero and Gelernter 89] is one of the most representative coordi-
nation languages, originally presented as a set of inter-agent communication
primitives which can be added to virtually any programming language. Linda’s
communication primitives allow processes to add, delete and test for the pre-
sence/absence of tuples in a shared tuple space. Tuple Space is a multiset of data
(tuples), shared by concurrently running processes. Delete and test operations
are blocking and follow an associative naming scheme that operates like select
in relational databases. Reo [Arbab 04] is a channel-based coordination model
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which enforces the use of connectors for the coordination of concurrent processes
or component instances in a component-based system. Channels are the basic
connectors from which more complex connectors can be constructed through
composition. The channel composition mechanism in addition to the great di-
versity of channel types (with a well defined behavior) allows the construction of
many different connectors, where each connector imposes a specific coordination
pattern.

Our approach is based on proposing a generic specification language based
on process algebras, which can be instantiated by different coordination models.
In particular we propose a CCS-like notation (possibly) parameterized with the
communication medium (e.g. tuple spaces or channels). To illustrate how this
language can be used to specify the interaction exhibited by components, we
instantiate it to Linda and Reo respectively, showing their application by means
of an example.

The expressive power of both models (Linda and Reo) has been indepen-
dently studied using different approaches. A very complete study on the expres-
sive power of Linda was carried out by Brogi and Jacquet in [Brogi et al. 01,
Brogi and Jacquet 98]. On the other hand, when Reo was introduced, Arbab
[Arbab 04] provided a number of examples to show the expressive power of his
proposal, simulating in a simple and elegant way different communication mech-
anisms.

The rest of the paper is organized as follows. In Section 2 we outline some
issues related to component interoperability and an illustrative example is pre-
sented. Section 3 is devoted to introducing both interaction models, their se-
mantics and the corresponding calculi used to encapsulate both models. A case
study is presented in section 4 together with a comparative analysis of the ex-
pressiveness of both models. Finally, we present some conclusions and ideas for
future work.

2 Interoperability of components

In the process of application assembly, one of the key issues is interoperability.
Syntactic interoperability is well defined and understood by commercial com-
ponents models and platforms. They allow the interoperation of heterogeneous
components based on syntactic agreements. This is possible because of the in-
terface definitions generated by the use of interface description languages (IDL).

However this sort of interoperability is not enough in large systems, where
knowledge of the services offered by components, and in some cases the services
required from other components in run-time, is not enough to guarantee that
they will suitably interoperate. In fact, two more levels of interoperability can
be identified: the semantic level and the protocol level [Vallecillo et al. 03]. In
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any case, it is necessary to consider compatibility and substitutability checks.
Compatibility can be described as the ability of two components to work together
properly if connected; substitutability refers to the possibility of one component
being replaced by another one. At protocol level the notion of compatibility
among components implies the need to take into account: (a) their blocking
conditions, and (b) the order in which components expect their services to be
required. This is necessary to solve coordination and synchronization problems,
to ensure that the restrictions imposed on the components interactions when
communicating are preserved, and their communication is deadlock free. On the
other hand in order to check substitutability, that is, to test if component A
can be replaced by component B, we need to check that both components are
consistent with respect to the relative order among the incoming and outgoing
messages. Moreover, we need to verify that all messages accepted by A are also
accepted by B, and that B’s outgoing messages are a subset of A’s outgoing
messages.

In order to solve the interoperability problems mentioned we propose the use
of coordination models to enhance component interfaces with a description of
an abstract component interaction protocol. We suggest the use of Linda and
Reo as mechanisms for describing the abstract interaction protocol of software
components. Intuitively, when using the Linda-based model for checking com-
patibility and substitutability the state of the tuple space must be considered,
whereas using the model based on Reo will depend on the connector considered.

We are interested in addressing the following major points:

1. how components can be provided with an interface useful for solving protocol
interoperability problems,

2. how components specified using the calculus based on coordination models
can be assembled together and what the impact of the composition is on the
overall behavior,

3. how checking for compatibility and substitutability on the components in an
assembled system can be done dynamically.

In order to illustrate our proposal, let us describe a simplified version of a
real patient monitoring system. It was first introduced by Papadopoulos and
Arbab [Papadopoulos and Arbab 98] to show the potential there is for control-
ling coordination languages in order to express dynamically reconfigurable soft-
ware architectures. The basic scenario involves a number of monitors and nurses.
There is one monitor for each patient, recording readings of the patient’s state
of health, in response to a request received. In addition, a monitor can also send
data in the case of exceptional situations. A nurse is responsible for periodi-
cally checking the patient’s state of health by asking the corresponding monitor
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for readings; furthermore a nurse should respond to receiving exceptional data
readings.

As we can see in the interface below, a monitor offers one method that al-
lows the user to request the periodical readings. The nurse interface defines two
methods to be invoked by the environment. Method normal implements the
main service offered by the process, it receives readings of the patient’s state of
health on the parameter normalState and processes them. On the other hand
the method signal allows the nurse to treat emergency cases, which are captured
on the emergencyState parameter.

interface Monitor {

void request();

}

interface Nurse {

void signal ([in]Data emergencyState);

void normal ([in] Data normalState);

}

From these interfaces it is very difficult to discern the way in which a monitor
and a nurse will behave if they are integrated in a software application. Nothing
is said concerning their interactions and the rules governing them. In fact, this
interface says nothing about the possibility of a monitor sending emergency
signals. Moreover the fact that the monitor will deliver the emergency signals is
not specified and no information is given about the nurse’s obligation to firstly
deal with on emergency situation. In the next section we will concentrate on
how to add protocol information to the description of the interfaces using the
two different alternatives we are analyzing: Linda and Reo. In particular how an
emergency signal must be captured with a higher priority than a normal reading.
The simplicity of the selected example is related with the idea of showing the
problems suggested in such a simple way and the fundamental differences in the
solutions presented.

3 Interaction models based on Coordination models

From an architectural point of view application construction is seen as a fun-
damentally compositional activity, in which existing elements are used. That
is, systems consist of a collection of components, interconnected in some way.
In this environment process algebras are the formalism frequently used for de-
scribing concurrent systems. Given their expressivity and characteristics they
are widely accepted as a method for describing and analyzing software systems,
as a combination of components. In this context a process is an entity capable
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of performing some internal actions and interacting with other processes in its
environment. Interactions are primitive synchronization actions that may cause
data exchanges between processes influencing their behaviors. A process algebra
focuses on the specification and manipulation of process terms as induced by a
collection of operator symbols. Most process algebras contain in their syntaxis
a set of process names, a set of channel or event names used for the synchro-
nization and communication between processes, constants for representing the
inactive processes, internal actions and a set of data names transmitted. They
also contain basic operators to build finite processes, communication operators
to express concurrency and some notion of recursion to capture infinite behavior.
The meaning of the processes generated which combine these elements is estab-
lished by an operational semantics given by a transition system which associates
processes with behavior.

On the other hand in the context of software architectures the fundamental
concepts are components, connectors and configurations. However, other for-
malisms for their specification and analysis are coordination models and lan-
guages. Indeed configuration of architectural descriptions and coordination are
very closely linked concepts. They both view systems as being comprised of com-
ponents and interconnections and support the construction of complex entities as
well as the composition of more elementary ones. Finally they both understand
changing the state of a system is an activity performed at the level of component
interconnection rather than within the purely internal computational function-
ality of a particular component.

In order to accomplish our aim of defining a way to complement interface
description languages in order to describe components, we suggest combining the
advantages provided by process algebras with those offered by coordination mod-
els in the definition of a framework for describing and composing components.
To do this we propose complementing current interface description languages by
adding the specification of components behavior in terms of a CCS-like notation,
where primitive actions correspond to a coordination model and the synchroniza-
tion rules depend on the communication framework. For instance, in the case of
Linda, primitives like rd, in, and out must be considered, whereas in Reo other
actions are taken into account (write, take and read). In the same sense while in
Linda the synchronization is based on a tuple space, in Reo the communication
is effected through channels. This must be reflected by the operational semantics
of the corresponding process calculus thus introducing the convenient transition
rules.

In the context of coordination models we can identify data-driven languages
and control oriented ones. One of the most representative data-oriented coor-
dination models is Linda, which is based on a set of communication primitives
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accessing to a shared tuple space. On the other hand, a new channel-based lan-
guage, based on composition of communication channels, is being consolidated.
Reo [Arbab 04] can be considered a sophisticated evolution of a control-oriented
coordination model. In spite of the different abstraction level exhibited by both
models, we will compare both of them in order to show the very high expressive
power provided by Reo for simulating different communication protocols.

3.1 The Linda-based interaction model

The main feature of these coordination models is that the state of the com-
putation at any time is defined in terms of both values of the data received
or sent and the actual configuration of the coordinated components. Following
[Busi et al. 00], we propose the language L containing the communication primi-
tives of Linda. These primitives permit us to add a tuple (out), to remove a tuple
(in), and to test for the presence of a tuple (rd) in the shared dataspace. As the
only medium for synchronization and communication between processes is the
shared dataspace there are no channel names. The language L also includes the
standard prefix, choice and parallel composition operators in the style of CCS.

The syntax of L is formally defined as follows:

P ::= 0L | A.P | P + P | P ‖ P | recX.P

A ::= rd(t) | in(t) | out(t)

where 0L denotes the empty process and t denotes a tuple.
The operational semantics of L can be modelled by a labelled transition

system defined by the rules of Table 1. Notice that the configurations of the
transition system extend the syntax of agents by allowing parallel composition of
tuples. Formally, the transition system of Table 1 refers to the extended language
L′ defined as:

P ′ ::= P | P ′ ||L 〈t〉

Rule (1)L states that the output operation consists of an internal move which
creates the tuple 〈t〉. Rule (2)L shows that a tuple 〈t〉 is ready to offer itself
to the environment by performing an action labelled t. Rules (3)L and (4)L
describe the behavior of the prefixes in(t) and rd(t) whose labels are t, and t,
respectively. Rule (5)L is the standard rule for choice composition. Rule (6)L is
the standard rule for the synchronization between the complementary actions t

and t. It models the effective execution of an in(t) operation. Rule (7)L defines
the synchronization between two processes performing a transition labelled t

and t, respectively. Notice that the process performing t is left unchanged, since
the read operation rd(t) does not modify the dataspace. The rule (8)L models
the behavior of the parallel operator. We also consider the transition system
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(1)L out(t).P τ−→ 〈t〉 ‖L P (5)L
P

α−→ P ′

P +L Q
α−→ P ′

(2)L 〈t〉 t−→ 0 (6)L
P

t−→ P ′ Q
t−→ Q′

P ‖L Q
τ−→ P ′ ‖L Q′

(3)L in(t).P t−→ P (7)L
P

t−→ P ′ Q
t−→

P ‖L Q
τ−→ P ′ ‖L Q

(4)L rd(t).P
t−→ P (8)L

P
α−→ P ′

P ‖L Q
α−→ P ′ ‖L Q

Table 1: Transition system for L.

closed under the usual structural axioms for parallel and choice operators. There
are no rules for recursion since its semantics are defined by structural axiom
recX.P ≡ P [recX.P/X ] which applies an unfolding step to a recursively defined
process.

The rules of Table 1 are used to define the set of derivations for a Linda sys-
tem. We consider the output action τ as observable transitions. Notice that the
above operational characterization of L employs the so-called ordered semantics
of the output operation. Namely, when a sequence of outputs is executed, the
tuples are rendered in the same order as they are emitted. It is also worth noting
that the store can also be seen as a process which is the parallel composition of
a number of tuples.

3.2 The Reo-based interaction model

When using channel-based coordination models the framework evolves by means
of performing communication actions over input or output ends of channels
to which the coordinated components are connected. In the case of Reo, the
communication actions are performed over the input/output ends of a connector,
then the interaction model will be parameterized with respect to the connector
being considered.

Reo [Arbab 04] is a channel-based coordination model which enforces the
use of connectors for the coordination of concurrent processes or component ins-
tances in a component-based system. Channels are the basic connectors from
which more complex ones can be constructed through composition. The chan-
nel composition mechanism in addition to the great diversity of channel types
with different semantics from the traditional ones, allows us the construction of
many different connectors imposing very interesting coordination patterns. In
this context communication among component instances takes place exclusively
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by means of input and output actions over connector ends, acting as connection
points. In [Arbab and Rutten 03] a coinductive calculus based on timed data
streams (TDS) for defining the semantics of Reo connectors was presented. The
operational model for the behavior of Reo connectors, based on Constraint Au-
tomata introduced by Arbab et. al in [Arbab et. al. 04] can be used as a semantic
model to describe the TDS language induced by Reo connectors networks .

For the specification of component interaction protocols we define a process
algebra R based on the communication primitives of Reo. We consider a set I of
input ends, a set O of output ends, and the basic actions to insert an item in a
connector (write), to remove an item from the connector (take) and to capture
an item without removing it (read). Agents in R are constructed by means of
the prefix operator, the nondeterministic choice and the parallel composition.
Formally, the syntax of R is defined as follows:

P ::= 0R | A.P | P + P | P ‖ P | recX.P

A ::= wr(c, v) | tk(c, [v ]) | rd(c, [v ])

where 0R denotes the empty process and c ∈ I ∪ O denotes an input or output
end of a connector. The prefixes wr, tk and rd are shorthand for the basic
operations write, take and read respectively. Note that in output operations the
variable is optional, if it is not specified the operation succeeds when any data
item is available for taking (or reading) and it is removed through the specified
connector end. To make the representation of a system in R we can think of
specifying each component by an R-agent and then do a parallel composition of
their specifications in the presence of a suitable connector.

In Reo communication is possible only in the presence of a connector, and
then in order to define the operational semantics of R we must consider the
semantics of the selected connector. We consider a connector C defined by a tuple
〈IC,OC, ΣC, �−→C〉, where IC and OC represent the input ends set and output
ends set of connector C, respectively, ΣC is the set of states, that is the possible
configurations of the connector, and �−→C⊆ (ΣC×MAct)×MAct×(ΣC×MAct)
represents the labelled transition relation defining the connector behavior. MAct

denotes the multiset of communication actions.
When (〈C, act〉, act1, 〈C′, act2〉) ∈�−→C we will write

〈C, act〉 act1�−→C 〈C′, act2〉

with the following intuitive interpretation: act denotes the set of actions which
when applied in parallel over the ends of the connector may result in its evolu-
tion, eventually producing a change of state. The set act1 denotes the actions
actually applied, and act2 represents pending actions at any end of the con-
nector. Pending actions are actions write or take which, in the presence of a
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(1)R act · P act−→ P

(2)R
P1

act−→ P ′
1

P1 + P2
act−→ P ′

1

(3)R
P1

act−→ P ′
1

P1 ‖ P2
act−→ P ′

1 ‖ P2

(4)R
P1

act1−→ P ′
1 P2

act2−→ P ′
2

P1 ‖ P2
act1

U
act2−→ P ′

1 ‖ P ′
2

(5)R
P

act−→ P ′ 〈C, act〉 act�C 〈C′, ∅〉
〈P, C〉 −→C 〈P ′, C′〉

(6)R
P1

act1−→ P ′
1 P2

act2−→ P ′
2 〈C, act〉 act1�C 〈C′, act2〉

〈P1 ‖ P2, C〉 −→C 〈P ′
1 ‖ P2, C′〉

Table 2: Transition System for R

synchronous behavior, remain pending when applied in parallel with read ac-
tions. These multisets must respond to the relation act = act1

⊎
act2.

When it is clear from the context, we omit the subindex C when referring to
the sets I, O,Σ. The rules giving the connector behavior will be generated from
its corresponding constraint automata.

The operational semantics of R depends on the connector considered. For-
mally, given a connector C with a behavior defined via a labelled transition
relation α�−→C, we define the transition system 〈R, C,−→C〉, where R is the set
of programs described in the process algebra, C is the considered connector and
−→C⊆ (R×C)× (R×C) the transition relation defined by rules (5)R and (6)R
of table 2. Note that the definition of −→C depends on the auxiliary labelled
transition system 〈R, Act,−→〉 where −→⊆ R× Act ×R is the transition rela-

tion defined by rules (1)R to (4)R. The transition
act�C represents the derivation

act1�−→C
act2�−→C ... actn�−→C , where act =

⊎
i acti. We also consider both systems to be

closed with respect to the structural axioms for choice and parallel operators.
There are no rules for recursion, its semantics is defined by the structural axiom
recX.P ≡ P [recX.P/X ].

The rules giving the connector behavior will be generated from its correspon-
ding constraint automata, using the following algorithm: let C be a connector
defined by the sets I and O of input ends and output ends respectively, and its
constraint automata CAC given by:

CAC ≡ (QC,NC,→C, QoC)

1685Amaro S., Pimentel E., Roldan A.M.: Coordinating Behavioral Descriptions ...



where NC = I ∪ O. We associate a name Cq to every q ∈ QC to indicate the
connector C is in a state q. As the automata transitions are labelled with the
maximum number of nodes over which data can flow simultaneously, we can
identify from them the input ends and output ends of the connector over which
input or output operations occurring synchronously produce a state change.
The symbol |= represents the satisfaction relation resulting from interpreting
data constraints over data assignments. Now, the transitions can be generated
as follows:

1. For each transition (q
N,g−→C p) ∈→C, a transition in �−→ is generated as

follows:

〈Cq, actδ〉 actδ�−→C 〈Cp, ∅〉

where δ is any data assignment function such that δ |= g, y actδ is defined
as (actwr)δ ∪ (acttk)δ, where:

(actwr)δ = {wr(I, δ(I)) : I ∈ I ∩ N}
(acttk)δ = {tk(O, δ(O)) : O ∈ O ∩ N}

2. for each transition rule 〈Cq, act〉 act�−→C 〈Cp, ∅〉 generated in (i), suppose act =
acttk∪̇actwr, the disjunt union of the tk actions and the wr actions that can
be applied over the connector ends. For each act

′ ⊆ acttk, we construct
actrd = {rd(O, t) : tk(O, t) ∈ act

′} and generate a rule 〈Cq, (act − act
′) ∪

actrd〉 actrd�−→C 〈Cq, act − act
′〉

We need to consider the rd operation particularly because of its non de-
structive condition. The last rule considers the situation in which at least one
rd operation is applied synchronously with other communication operations. In
this case only rd operations succeed, the other communication actions (wr and
tk) remain pending over the corresponding ends until the environment provides
the necessary conditions for them to proceed, by the application of some other
rule.

In the process of composing components specified in R, the connector con-
strains the behavior of the overall system, imposing its own behavior. This leads
to a level of composition flexibility which is highly desirable in component based
systems. Due to the great diversity of communication patterns possible in Reo,
this model, in contrast with the one based on Linda, makes the production of
different systems composed out of the same set of components possible, by the
use of different connectors with a well defined semantic.
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4 Specifying components protocols

As we have already mentioned, it is very difficult to know the behavior of a
component just from its interface. Thus, this sort of specification has proved to
be inadequate in many situations. Therefore, more complete specifications are
needed. One way of fulfilling this need is by providing “behavioral” specifications
of the components. In this sense, we propose the use of the process algebras
defined previously for the specification of dynamic and evolving systems.

The following protocol intends to model the interaction between a nurse and
a monitor, such as was introduced in Section 3.1 using the calculus L based on
Linda.

Firstly, we show the protocol describing the behavior of a monitor, (Monitor).
A monitor is periodically requested to send the readings of the state of health
of its corresponding patient, and to respond accordingly. It is possible that it
detects emergency situations in the patient, sending this (emergency) signal to
be captured by a nurse.

Monitor =

out(signal,emergencyState).Monitor

+

in(request).

(out(normal,normalState).Monitor

+

out(signal,emergencyState).out(normal,normalState).Monitor

)

On the other hand, a nurse (Nurse) must check the patient’s state. Thus he/she
could request from the monitor new readings about patient’s state of health. But
it is important to notice that any emergency warning must be attended to first.

Nurse =

in(signal,emergencyState).Monitor

+

nrd(signal,emergencyState).out(request).

(in(normal,normalState).Nurse

+

in(signal,emergencyState).in(normal,normalState).Nurse

)

It is worth noting that the protocol specified by Nurse and Monitor only deals
with behavioral descriptions, whereas computational details are abstracted from.
For instance, no information is given about how the nurse should proceed when
an emergency is detected. Note also as the sum operator is understood in the
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classical way, priority in attending emergency cases is not ensured.

Now we will show the use of R for specifying interaction protocols over the
same example. A monitor receives a request for its data registers on the patient
health state readings. Eventually the monitor may detect abnormal situations
and in this case it has to send an emergency warning signal. Emergency situations
have priority for being attended. We can specify the monitor behavior as follows:

MONITOR =

tk(requestIn).

(MONITOR1

+

wr(signalOut,<emergencyState>).MONITOR1

)

+

wr(signalOut,<emergencyState>).MONITOR

MONITOR1 =

wr(normalOut,<normalState>).MONITOR

The monitor only needs to receive a piece of data in the connection point
requestIn, and this action is interpreted as a request for information.

The nurse is responsible for checking the patients state of health. He or she
requests a monitor for their data registers writing a token in the connection
point associated to this action. A nurse must also attend to any warning signals,
which must be attended to first. The nurse behavior can be defined as follows:

NURSE =

wr(requetOut,token).NURSE1

+

tk(signalIn,<emergencyState>).NURSE

NURSE1 =

tk(normalIn,<normalState>).NURSE

+

tk(signalIn,<emergencyState>).tk(normalIn,<normalState>).NURSE

Note that in the specification neither the monitor, nor the nurse, ensures
the priority in attending to emergency cases, because of the non deterministic
choice between attending to the periodical readings and attending to the emer-
gency readings. In this scenario it seems clear that the expected behavior of the
composition of a nurse and a monitor is achieved only when selecting a connector
which enforces the required priorities.
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NOut
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ROut

Figure 1: CMN Connector

With this aim in mind we selected the connector CMN shown in Figure 1.
The connector is defined by the tuple

〈{RIn, SIn, NIn}, {ROut, SOut, NOut}, ΣCMN, �−→CMN 〉

In Table 3 we give the transitions in the labelled transition relation which
defines its behavior. Since this connector presents many possible states and so
many transitions, we give only those related to the blocking situation.

This connector imposes certain restrictions over its connection points which
seems appropriate for solving our priority problems. The expected behavior is
imposed by the effect of the two valve connectors (see [Arbab 04]) present in
the configuration of the connector, and the channels of type syncSpout and
syncDrain which are connected to the valve control connection points. From
the analysis of its transition relation, we conclude that it presents the necessary
behavior. In fact, it shows an asynchronous behavior, which in some cases is dis-
able by means of an input operation over the input end SIn —rules (2), (3), (4)
and (6)—, leaving the connector in a state in which it remains blocked until an
output operation is applied over the output end SOut —rules (7), (9), (11) and
(12). Indeed, though blocked it is possible to apply input and output operations
when it is for example in state CMN2 (blocked but with a data item present in
the buffer associated with ROut), or in state CMN4 (blocked but with a d ata
item present in the buffer associated with ROut, and a data item present in the
buffer associated with NIn). When composing a nurse component and a monitor
component via the connector CMN, the effect is achieved regarding the input
and output ports for emergency signals, which are connected to the connection
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(1) 〈CMN 0, {wr(RIn, t)}〉 {wr(RIn,t)}�−→CMN 〈CMN 1, ∅〉
(2) 〈CMN 0, {wr(SIn, t)}〉 {wr(SIn,t)}�−→CMN 〈CMN 3, ∅〉
(3) 〈CMN 1, {wr(SIn, t)}〉 {wr(SIn,t)}�−→CMN 〈CMN 2, ∅〉
(4) 〈CMN 6, {wr(SIn, t)}〉 {wr(SIn,t)}�−→CMN 〈CMN 4, ∅〉
(5) 〈CMN 2, {wr(NIn, t)}〉 {wr(NIn,t)}�−→CMN 〈CMN 4, ∅〉
(6) 〈CMN 7, {wr(SIn, t)}〉 {wr(SIn,t)}�−→CMN 〈CMN 5, ∅〉
(7) 〈CMN 2, {tk(SOut, t)}〉 {tk(SOut,t)}�−→CMN 〈CMN 1, ∅〉
(8) 〈CMN 2, {tk(ROut, t)}〉 {tk(ROut,t)}�−→CMN 〈CMN 3, ∅〉
(9) 〈CMN 3, {tk(SOut, t)}〉 {tk(SOut,t)}�−→CMN 〈CMN 0, ∅〉

(10) 〈CMN 4, {tk(ROut, t)}〉 {tk(ROut,t)}�−→CMN 〈CMN 5, ∅〉
(11) 〈CMN 4, {tk(SOut, t)}〉 {tk(SOut,t)}�−→CMN 〈CMN 6, ∅〉
(12) 〈CMN 5, {tk(SOut, t)}〉 {tk(SOut,t)}�−→CMN 〈CMN 7, ∅〉

Table 3: Behavioral Transitions for CMN

points Sin and Sout respectively.

Component interaction protocols are specified to describe the behavior of
given component interfaces. In general, there are no precise guidelines about
what should and should not be included in a protocol specification. It will de-
pend, of course, on the level of abstraction or details required. So, we consider
in L that each method of the interface can be translated to a special tuple which
contains the signature of the method (selector and arguments). On the other
hand, because of in Reo communication is only possible by means of input and
output operations over connector ends (connection points) we must take them
into account when specifying protocols. Thus, we associate an input end with
each method representing a service offered by the component, and we consider
an output end for each service required by the component. In the case where the
method has no arguments we do not consider any object in the input operation.
However, for the output operation a token is needed, just as a signal for the
requested service.

5 Concluding remarks

In Component-based Software Development the integration of possibly heteroge-
neous and distributed components together to form a single application require
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mechanisms for controlling and managing the interactions among the active enti-
ties. With the increasing use of distributed systems and COTS, interoperability
is a major issue to consider.

To overcome the limitations of commercial component models and platforms
with respect to interoperability at protocol level, several proposals have been
put forward in order to enhance component interfaces [Leavens et al. 00]. For
instance, Doug Lea [Lea 95] proposes in 1995 an extension of the CORBA IDL
called PSL to describe the protocols associated with component’s methods. This
approach is based on logical and temporal rules relating situations, describing
potential states with respect to the roles of components, attributes and events.
Although it is a very expressive approach, it does not take into account the
services a component may need from other components, nor is it supported by
proving tools. Later, Yellin and Strom [Yellin and Strom 97] formalize a more
general approach for describing component service protocols using finite state
machines that describe the services offered and components required. However,
it does not support multi-party interactions and the simplicity that allows the
easy checking also makes it too rigid and unexpressive for general usage in open
and distributed environments. Similarly, Jun Han [Han 99] proposes an exten-
sion to IDLs that includes semantic information using a non standard notation.
The behavior of the components is described in terms of constraints that are
expressed in a subset of temporal logic. They are somehow similar approaches,
although none of them is associated to any commercial component platform
like CORBA or EJB, nor are any supported by standard tools. Bastide et al.
[Bastide and Palanque 99] use Petri nets to describe the behavior of compo-
nents in CORBA, but this approach inherits some of the limitations imposed
by the Petri nets notation: the lack of the modularity and scalability of the
specifications. On the other hand, Shaw and Garlan [Shaw and Garlan 96] pro-
posed the use of components specified by players indicating the nature of the
expected interactions, and connectors specified by roles which will be associated
to component players. Although this proposal is intended as a design tool for
the construction of executable configurations based on components and expert
connections, it has a fixed set of connector types, so limiting the types of possible
interactions; and it has no support for composite connectors.

The main objective of this paper was to define a framework for describing
the behavior of components in terms of coordination models. In this sense, the
basic idea is based on extending interface description languages with an explicit
description of the interactive behavior of a component. To do this, we consider
two formal methods, Reo and Linda. We argue that both models of coordination
are mature enough to be used in the design and validation of components of
large distributed systems, and the use of such methods will lead to the better
design of components and component-based applications in open systems.
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Although Linda and Reo were defined with a different purpose (i.e. coordi-
nation), by applying the previously explained approach they can also be used to
specify the interaction behavior of software components. The information pro-
vided by this kind of protocols (either specified in Linda or Reo) may be useful
for analyzing a number of properties like compatibility [Brogi et al. 02] (when
two components can interact without deadlocking) or substitutability (when a
component can be substituted by another one, preserving its “safe” behavior in
the system).

From the specifications based on Linda and Reo introduced in section 4
we can observe that they are apparently similar with respect to expressivity.
Furthermore, if we analyze the two versions of processes Monitor and Nurse

described, we have no arguments to state that one approach is better than the
other one. However the Linda based specification does not ensure the priority
of the treatment of emergency signals, sometimes these signals are postponed
temporarily (note that sum is defined in the classical way); this situation can be
solved only by increasing the complexity embedded in the interaction protocol
considerably. On the contrary in Reo it is not necessary to modify the specifi-
cation; the solution of this problem (i.e. the complexity added by the treatment
of the emergency signal) is transferred to the connector, maintaining a simple
and elegant specification. A more detailed comparison between both models is
discussed in [Amaro et al. 04].

These coordination models present very different abstraction levels: Linda is
based on a set of communication primitives accessing to a shared tuple space,
whereas Reo is also defined in terms of communications primitives, but acting on
connectors which are constructed as a combination of different kinds of channels.
In fact, the need to increase the complexity of the specification in Linda in order
to manage certain constraints suggests that Reo is strictly more expressive than
Linda in the presence of connectors imposing special communication patterns.
Moreover, although the most of the connectors in Reo can be constructed by
the composition of channels from a set of basic ones, there are no restrictions
on channel types and behaviors. Indeed users can provide new types of channels
with special behaviors.

Our future work will be devoted to carrying out a more exhaustive analy-
sis of more complex connectors and different extensions of Linda, like MARS
[Cabri et al. 00] and TuCSoN [Omicini and Zambonelli 98], where some of its
expressiveness deficiencies are dealt with. We are currently exploiting the capa-
bilities of Reo for the definition of compatibility and substitutability relations
on our proposal oriented to the semiautomated checking of the aforementioned
properties on an assembled system. We are interested in controlling these prop-
erties in an assembled system dynamically.
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