
Compositional Construction and Reasoning Techniques for

Software

J.UCS Special Issue

Farhad Arbab
Center for Mathematics and Computer Science (CWI), Amsterdam

and
Leiden Institute of Advanced Computer Science, Leiden University

The Netherlands
farhad@cwi.nl

Joost N. Kok
Leiden Institute of Advanced Computer Science, Leiden University

The Netherlands
joost@liacs.nl

Complex software systems are intrinsically difficult to conceive, develop, deploy,
maintain, and evolve, especially in concurrent and distributed settings. Com-
positional techniques for construction and analysis of software, such as object-
oriented and component-based approaches, have shown to be effective tools for
breaking these complexities down to manageable sizes. The complexity of these
systems is confounded in contexts such as real-time and embedded systems,
where concurrency and distribution arise not merely due to performance con-
cerns, but rather reflect the inherent requirements and operating constraints of
application systems.

Interaction and coordination models that have been developed to tackle these
problems often lack the adequate sophistication to accommodate systems where
self-organization, emergent behavior, and evolution comprise their key concerns.
Approaches based on compositional techniques seem to offer promising exten-
sions to these models to meet the challenges of such increasingly important
emerging areas as ubiquitous computing, self-organizing self-managing systems,
service-oriented computing, and bio-informatics, where interaction, its composi-
tion, and its coordination play an explicit central role.

This special issue offers a collection of 6 contributions on both theoreti-
cal and systems aspects of compositional methods for construction of software.
These contributions cover a wide range of topics: identifying objects in non-
object-oriented specifications, characterization of multi-class grouping and en-
capsulation mechanisms in object oriented languages, dynamic composition of
.net-based services, using coordination models to add behavioral descriptions to

Journal of Universal Computer Science, vol. 11, no. 10 (2005), 1577-1579
submitted: 18/10/05, accepted: 25/10/05, appeared: 28/10/05 © J.UCS



component interfaces, modular verification, and probabilstic models for compo-
sitional component connectors.

By providing encapsulation, abstraction, and inheritance, the object oriented
paradigm offers many advantages for composition over plain procedural imper-
ative programming. Object oriented extensions have been introduced not only
to imperative programming languages (e.g., C/C++), but also to declarative
modeling and specification languages, such as VDM/VDM++ and Z/Object-Z.
A.M. Cruz, L.S. Barbosa, and J.N. Oliveira argue that because these exten-
sions are rather recent and users are more familiar with the older formalisms,
analogous to spaghetti code produced by those who write C programs in C++
or Java, often what can elegantly be modeled by state-less equations, ends up
specified as assignments to instance variables and the like. The lack of abstrac-
tion and encapsulation that objects provide, makes such specification not only
less comprehensible, but also less suitable for composition. In their paper “From
Algebras to Objects: Generation and Composition” they consider the criteria
under which a declarative specification in a language can be objectified in its ob-
ject oriented extension. They describe the objectification process and present a
tool that shows how a model in VDM-SL can be converted to VDM++ objects.

Software composition often involves groups of objects and/or classes that
somehow interact with one another, as opposed to single objects or classes. Dif-
ferent object oriented programming languages offer different facilities for group-
ing of logically related classes, for instance, packages, modules, namespaces, etc.
In their paper “Analyzing Module Diversity,” A. Bergel, S. Ducasse, and O.
Nierstrasz present a module calculus as a foundation for comparing and un-
derstanding the diversity of various grouping mechanisms available in different
languages. Using their calculus, they can capture the semantics of Java pack-
ages, C# namespaces, etc., in the same framework. This leads to a taxonomy for
classification of features of grouping mechanisms that clarifies their similarities
and distinctions.

F. Cao, B.R. Bryant, R.R. Raje, A.M. Olson, M. Auguston, W. Zhao, and
C.C. Burt address dynamic component composition in the context of Web Ser-
vices. In their paper “A Non-Invasive Approach to Assertive and Autonomous
Dynamic Component Composition in the Service-Oriented Paradigm” they de-
scribe two types of dynamic component composition and consider three case
studies to show their use.

Component composition requires knowledge of their interactive behavior,
above and beyond simple compatibility of the signatures in their interfaces. In
their paper “Coordinating Behavioral Descriptions of Components,” S. Amaro,
E. Pimentel, and A.M. Roldan investigate the use of coordination models and
languages as a framework for describing the behavior of components. They il-
lustrate the feasibility of their proposal using two substantially different coordi-

1578 Arbab F., Kok J.N.: Compositional Construction and Reasoning Techniques ...



nation models: Linda and Reo.
Formal methods for verification are indispensable in the development of re-

liable software systems. Specification of concurrent reactive systems typically
uses automata or temporal logic as its foundation. Automata based approaches
quickly lead to state explosion in large systems and using deductive methods to
verify complex software requires formulating it as a theorem, which is often not
easy to do. By abstraction and modularization, perhaps using domain-specific
approaches, compositional verification breaks down the complexity of reasoning
about the behavior of a complex system to manageable parts. In their earlier
work, M. Sirjani et al. have introduced Rebeca as an actor-based language in-
tended for bridging the gap between formal verification and real applications.
This language comes with its own model-checker, plus a tool that translates
Rebeca code into input for other existing model-checkers. In their current con-
tribution “Modular Verification of a Component-Based Actor Language,” M.
Sirjani, F.S. de Boer, and A. Movaghar extend the underlying theory of their
modular verification approach by introducing synchronous communication and
the notion of components in Rebeca.

Reo is a language for compositional construction of component connectors
and constraint automata have been proposed as an operational model for the
semantics of Reo circuits. In her paper “Probabilistic Models for Reo Connector
Circuits,” C. Baier introduces a probabilistic variant of constraint automata.
Probabilities and nondeterminism allow probabilistic constraint automata to
serve as a model for connectors that may lose or corrupt their data, or perform
randomized acts of coordination.

F. Arbab and J.N. Kok
Guest Editors
October 2005

1579Arbab F., Kok J.N.: Compositional Construction and Reasoning Techniques ...


