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Abstract: The splitting method was defined by the author in [Margenstern 2002a,
Margenstern 2002d]. It is at the basis of the notion of combinatoric tilings. As a con-
sequence of this notion, there is a recurrence sequence which allows us to compute
the number of tiles which are at a fixed distance from a given tile. A polynomial is
attached to the sequence as well as a language which can be used for implementing
cellular automata on the tiling.

The goal of this paper is to prove that the tiling of hyperbolic 4D space is combinatoric.
We give here the corresponding polynomial and, as the first consequence, the language
of the splitting is not regular, as it is the case in the tiling of hyperbolic 3D space by
rectangular dodecahedra which is also combinatoric.
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1 Introduction

Starting from a certain time, several papers appeared which, more or less,
claimed that they belong to a combinatoric approach to hyperbolic geometry.

This is also the goal of this paper which belongs to a rather long sequence
of papers by the same author, alone or with co-authors: [Chelghoum et al. 2003,
2004, Grigorieff et al. 2002, 2004, Herrmann et al. 2000, 2002, 2003, Iwamoto
et al., 2002, 2003, 2004, Margenstern 2000a,b, 2002a-d, 2003a-g, Margenstern
et al. 1999, 2000, 2001, 2002a-c, 2003a-c]. All these papers also belong to the
same line of works. Although the term of combinatoric tilings appears only on
recent papers of the author, all papers above quoted are within the scope of this
method. While most of the papers deal with tilings in the hyperbolic plane, a few
of them deal with tilings in the hyperbolic 3D space, see [Margenstern 2002a,
Margenstern et al. 2002b, Margenstern et al. 2002c, Margenstern et al. 2003c].
1 The present paper is an extended abstract of a full technical report published both

by the LITA, the University of Metz, France and by the CDMTCS, the University
of Auckland, New-Zealand, see [Margenstern 2003a].
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The goal of this paper is to prove that the tiling of IH4 which is built from
the 120-cell by recursive reflections in its hyper-faces and of the images in their
hyper-faces is combinatoric.

In principle, this property gives us tools in order to implement cellular au-
tomata in the 4D hyperbolic space. Due to the length of the proof that the
tiling is combinatoric, in this paper we do not give implementation details. We
just remind the guidelines of [Margenstern et al. 2003b] which are still valid in
this context. A fully detailed implementation as well as the important question
of implementation complexity require additional details which are not given in
this paper. Some of these properties are in [Margenstern 2003e], but this paper
also does not deal with this issue. A forthcoming paper will present be devoted
to such an implementation. This issue may be of interest for physics as, most
certainly, this is the case for 3D space, see [Margenstern et al. 2003c], but also
for other domains requiring 4D spaces.

Although the question is not fully addressed in this paper, the motivation of
the series of papers leading to it and including it is the implementation of cellular
automata in hyperbolic spaces. As such, due to the algorithmic considerations
of its point of view, the paper belongs to computer science.

In the second section, we recall the splitting method and we recall the defi-
nition of a combinatoric tiling. In the third section we briefly recall the notions
of hyperbolic geometric which are needed in order to understand the paper. We
also indicate how to deal with the hyperbolic 4D space. In the fourth section, as
a first step of the proof, we construct the splitting of the space which leads to
the tiling by following the traditional stages of construction of the 120-cell. In
the fifth section, we deal with the polynomial and the language of the splitting.
We also prove that this language is not regular, which gives us an additional
information.

2 The splitting method

2.1 The geometric side

The method is based on the notion of a basis of splitting which was intro-
duced in [Margenstern 2002d]. Such a basis consists of two finite families of
closed, simply connected sets of the considered geometric space X . The sets are
also supposed to be with a non-empty interior. The sets of the first family, say
S0, . . . , Sk are called regions and they are assumed to be unbounded. The sets
of the second family, say, P0, . . . , Ph are called the generating tiles and they
are bounded. Moreover, these two families of sets have the following properties:

(i) X splits into finitely many copies of S0,

(ii) any Si splits into one copy of some P�, the leading tile of Si, and
finitely many copies of Sj ’s,

1213Margenstern M.: The Tiling of the Hyperbolic 4D Space ...



where copy means an isometric image, and where, in condition (ii), the copies
may be of different Sj ’s, Si being possibly included.

As usual, it is assumed that the interiors of the copies of the P�’s and the
copies of the Sj ’s which are involved are pairwise disjoint.

From a basis of splitting of X , if any, we define a tree A which is associated
with the basis by induction. The root of the tree is the leading tile of S0. The
sons of the root are the leading tiles of the copies of the Sj ’s which enter the
splitting of S0 by condition (ii). Then, we apply this argument recursively on
the leading tiles of the regions already obtained, applying condition (ii) to the
copies of the Sj ’s.

This recursive process shows that A is an infinite tree with finite branching.
We call A the spanning tree of the splitting, where the splitting refers to
the basis of splitting S0, . . . , Sk, P0, . . . , Ph.

Definition − Say that a tiling of X is combinatoric if it has a basis of splitting
and if the spanning tree of the splitting yields exactly the restriction of the tiling
to S0, where S0 is the head of the basis.

An illustrative example is given by the splitting of IH2, the hyperbolic plane,
which generates the pentagrid, tiling {5, 4} in Schläfli notations, for instance,
see [Coxeter 1963, Sommerville 1958], i.e. five sides and an interior angle of

π

2
.

See figure 2, in section 3.
In this paper, the tiling which we consider has a single generating tile, i.e.

h = 0.

2.2 The algebraic side

The splitting method has also algebraic consequences. From [Margenstern 2002a],
we know that when a tiling is combinatoric, there is a polynomial which is at-
tached to the spanning tree of the splitting.

More precisely, we have the following result:

Lemma 1 − ([Margenstern 2002a]) Let T be a combinatoric tiling, and denote a
basis of splitting for T by S0, . . ., Sk with P0, . . . , Ph as its generating tiles. Let A
be the spanning tree of the splitting. Let M be the square matrix with coefficients
mij such that mij is the number of copies of Sj−1 which enter the splitting of
Si−1 in condition (ii) of the definition of a basis of splitting. Then the number of
nodes of A of the nth generation are given by the sum of the coefficients of the
first row of Mn. More generally, the number of nodes of the nth generation in
the tree which is constructed as A but which is rooted in a node being associated
to Si is the sum of the coefficients of the i+1th row of Mn.

This matrix is called the matrix of the splitting and we call polynomial
of the splitting the characteristic polynomial of this matrix, being possibly
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divided by the greatest power of X which it contains as a factor. Denote the
polynomial by P . From P , we easily infer a recurrence equation which allows us
to compute very easily the number un of nodes of the level n in A. This gives
us also the number of nodes of each kind at this level by the coefficients of Mn

on the first row: we use the same equation with different initial values. Sequence
{un}n∈IN is called the recurrent sequence of the splitting.

First, as in [Margenstern 2000a, 2002a], number the nodes of A level by level,
starting from the root and, on each level, from the left to the right. Second,
consider the recurrent sequence of the splitting, {un}n≥1: it is generated by the
polynomial of the splitting. As we shall see, it turns out that the polynomial has
a greatest real root β and that β > 1. Sequence {un}n≥1 is increasing. Now, it

is possible to represent any positive number n in the form n =
k∑

i=0

ai.ui, where

ai ∈ {0..b}, where b = �β�, see [Fraenkel 1985, Hollander 1998], for instance.
String ak . . . a0 is called a representation of n. In general, the representation
is not unique and it is made unique by an additional condition: we take the
representation which is maximal with respect to the lexicographic order on the
words on {0..b}. The set of these representations is called the language of the
splitting.

Although this notion was introduced in order to study tilings of hyperbolic
spaces, it may apply also in the euclidean case or other situations of unbounded
manifolds. The notion was successfully applied to various tilings of hyperbolic
spaces, mainly IH2 and IH3, the hyperbolic 3D space, see [Margenstern 2000a,
2002c,a, Margenster et al. 2002b,c, 2003c, Grigorieff et al. 2002, 2004].

The method also applies to IH4:

Theorem 1 − The tiling of IH4 which is built on the 120-cell by tessellation is
combinatoric. The polynomial of the splitting is:

PIH4 (X) = X4 − 116X3 + 366X2 − 116X + 1.

The language of the splitting which is associated to it is not regular.

We turn now to the proof of the theorem.

3 General tools

3.1 About hyperbolic geometry

We refer the reader to [Meschkowski 1964] for introductory material on hyper-
bolic geometry. In order to make the paper as self-contained as possible and also
to spare space for this paper, we shall use Poincaré’s disk model of the hyperbolic
plane, see figure 1, below, and its natural generalisations to higher dimensions.
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Figure 1. The Poincaré model of IH2

The open unit disk U of the euclidean plane constitutes the points of the
hyperbolic plane, IH2. The border of U , ∂U is called the set of points at infinity.
Lines are the trace in U of its diameters or the trace in U of circles which are
orthogonal to ∂U . The model has a very remarkable property, which it shares
with the half -plane model: hyperbolic angles between lines are the euclidean
angles between the corresponding circles.

P0

S2

S1

R3

R2

R1

3

2

1
4

5

Figure 2. The splitting of Q which is associated to the pentagrid. Notice the
construction of the spanning tree.

In order that the reader could be more familiarised to hyperbolic geometry
and in order to illustrate the splitting method by a concrete example, we give
in figure 2 the application of the method to the pentagrid which is the tiling
obtained by the tessellation of the rectangular regular pentagon.

In the situation which is illustrated by figure 2, notice that we have two
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regions in the basis of the splitting: S0 is Q and S1 is the region denoted by R3

in the figure.
The model is easily generalised to higher dimension: in [Margenstern et al.

2002b,c, 2003c], it is done for IH3, where the hyperbolic 3D space is the interior
of the unit ball of IR3. The planes are the trace in the ball of spheres which are
orthogonal to the unit sphere, diametral planes being considered as a limit case.
Lines are intersections of planes.

As a model of the hyperbolic 4D space, we take the interior of the unit ball of
IR4. Hyper-planes are the trace in the ball of hyper-spheres which are orthogonal
to the unit hyper-sphere, diametral hyper-planes being a limit case. Planes are
intersections of hyper-planes and lines are intersections of planes.

3.2 The fourth dimension

It is a lieu commun to say that it is very difficult to see objects in four dimen-
sions. However a lot of works are devoted to this subject, see [Coxeter 1963,
Sommerville 1958], for instance. For an introduction to the 120-cell and for re-
lated papers, we refer the reader to [Stillwell 2001].

In our study, we shall use the dimensional analogy between the 2D, 3D

and 4D spaces, already pointed out by Coxeter, see [Coxeter 1963] where the
limitations of the method are also discussed. Here, our analogy is grounded on
the fact that, in all cases, the topology of a hyperbolic space is locally the same
as the topology of the euclidean space in which a model of the hyperbolic space
is realised.

3.2.1 The incidence relations

Consequently, in order to find the incidence relations between objects of different
dimensions in IH2, IH3 and IH4, it is enough to look at the same relations for
the analogous objects of the euclidean spaces, respectively IE2, IE3 and IE4.

In IE4, there are sixteen hyper-cubes around the point (0, 0, 0, 0). They are

defined by the following formula:
3∏

i=0

(−1)εi .[0, 1], where εi ∈ {0, 1}, and with

the convention that (−1).[0,1] = [−1,0] and, of course, 1.[0,1] = [0,1]. We can
extend this formula by introducing an exponent to the interval which occurs in it.

The formula becomes now
3∏

i=0

(−1)εi .[0, 1]αi , with (−1)εi .[0, 1]0 = {0}, again by

convention. This allows us to obtain all elements of dimension 1, 2 and 3 which
pass through point (0, 0, 0, 0). Thus, we obtain the information for IH4 and for
the 120-cell see below in tables 1.

We invite the reader to apply the same arguments to IH3 and to IH2. He/she
will find the other information given by tables 1.
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These tables contain also the characteristic given by the Schläfli notation
of the tiling with the 120-cell: {5, 3, 3, 4}. This means that the 2D-faces are
pentagons, that any edge is shared by three of the 3D-faces dodecahedra and
that any vertex is shared by four of the 3D-faces.

0 1

1 4

2 4 2

0 1 2

1 6

2 12 4

3 8 4 2

0 1 2 3

1 8

2 12 6

3 32 12 4

4 16 8 4 2

0

1 2

0 1

1 3

2 3 2

0 1 2

1 4

2 6 3

3 4 3 2

Tables 1. The tables of incidence in IH2, IH3 and IH4 and then in the pentagon,
the dodecahedron and the 120-cell.

3.2.2 Schlegel diagrams

In this paper, we shall make use of another tool, a very old one, which is also
used in [Sommerville 1958]: Schlegel diagrams.

The Schlegel diagram of a figure F in a 3D space, either euclidean, elliptic or
hyperbolic, is the central projection of F on a plane, starting from a particularly
chosen point of the space. For more details on these diagrams, see for instance,
[Sommerville 1958, Epstein et al. 1992, Hilbert et al. 1990]. Such a representa-
tion takes place in the euclidean plane but, as already indicated, it can be used
for the study of 3D spaces, whatever the geometry is.

The same tool can be used for 4D space, either euclidean, elliptic or hyper-
bolic, as it is done in [Sommerville 1958]. Indeed, we make use of 3D projections
from which we take the Schlegel diagram.

Recall that in IH4, as in the other hyperbolic spaces, whatever the dimension
is, there are no similitude. Consequently, all 120-cells of IH4 are isometric. And
so, in this sense, there is a single 120-cell from the point of view of Schlegel
diagrams. A global view of the 120-cell does not allow us to grasp it from an
algorithmic point of view. On the opposite, local views are worth of interest,
later we call them maps. They will allow us to prove that the tiling which is
based on the tessellation of the 120-cell is combinatoric.
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Now, we fix some notations and conventions for an intensive use of this tool.
To that purpose, look at figure 3 which represents the hyper-face of the 0th

generation.
The dodecahedron is projected on a face F from a point A which has an

orthogonal projection on F and which is outside the dodecahedron. We look on
the diagram from the reflection of A in F .

1

2

3

4

5
6

7

89

10 11

Figure 3. The 0th generation

The figure represents a true Schlegel diagram of a dodecahedron. We num-
bered the sides of the dodecahedron from 0 up to 11. Face 0 does not appear
directly: it is the ’hidden face’ which is bordered by faces 1 up to 5.

Thanks to this numbering, we identify all the elements of the dodecahedron
by the numbers of the faces which share the element. Accordingly, edges are
identified by two numbers and vertices are identified by three numbers.

We shall also classify the faces in three rings. The outer ring contains faces
from 1 up to 5. The inner ring contains faces 6 up to 10. The last ring contains
face 11.

In many places, we shall call face 3 the feet of the dodecahedron, face 0, its
back, and face 11 its top.

3.2.3 Inside, outside and orthogonal completion

Consider a part M of IH4 and let H be a hyper-plane. The complement of H
in IH4 consists of two parts Hi and Ho which do not intersect and which are
open half-spaces of IH4. We put Hi = Hi ∪H, and Ho = Ho ∪H. If Hi ⊃ M ,
respectively Ho ⊃ M , we say that Hi, respectively Ho, is the inside of H with
respect to M . The complement in IH4 of the inside is the outside.

In the rest of the paper, the rôle of M will be played by the 120-cell, and
the rôle of H will be played by the hyper-plane generated by a hyper-face of the
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120-cell.
We shall also have to define these notions for regions R of IH4. We shall

consider regions which are the intersection of a finite sequence H1, . . . ,Hm of
half-spaces such that ∂Hi and ∂Hi+1 are orthogonal for i ∈ {1..m−1}, where
∂Hi is the hyper-plane which is the border of Hi. We also assume that for

i ∈ {2..m−1}, Hi+1 ⊇
i
∩

j=1
Hj . In this case, the rôle of M is played by the

intersection R of the Hi’s. The outside of R is the union of the outsides of the
∂Hi’s. Notice that for i ∈ {1..m}, the inside of ∂Hi is the same, whether we take

M as
i−1
∩

j=1
Hj or as

m
∩

j=1
Hj .

In particular, we shall apply this definitions to the basic region which we shall
study: the hyper-corner. It is defined by four dodecahedra which are pairwise
orthogonal, which have pairwise a common face and which share together a single
vertex.

Also we notice that the reflection in a hyper-plane P exchanges the two half-
spaces which it determines in the complement of P . And so, a reflection in a
hyper-face exchanges its inside and its outside. Next, consider two hyper-planes
P1 and P2 such that their insides and outsides are defined with respect to the
same set M . If P1 and P2 are perpendicular, the reflection in Pi transforms
points which lie in the inside, respectively the outside, of Pj into points which
lie also in the inside, respectively the outside, of Pj .

In the traditional construction of the 120-cell, as it is explained in [Som-
merville 1958], we often ’place’ dodecahedra on some of the free faces of the
currently constructed solid. What to place means in this context has to be ex-
plained.

Now, consider a region, as described above, and assume that Hi is generated
by a rectangular dodecahedron ∆i with ∆i ⊂ R. Consider another rectangular
dodecahedron D which shares a face F with ∆m. We say that D is obtained by
orthogonal completion with respect to R if D is orthogonal to ∆m and if D
is in R. Notice that there are exactly two dodecahedra D′ and D′′ which share
F and which are orthogonal to ∆m. The condition to be in the inside of R fixes
the choice between them. When the reference to R will be superfluous, we shall
say simply orthogonal completion.

4 The splitting

The traditional construction of the 120-cell can be seen as a process in which each
step consists in the construction of a hyper-plane Fi in such a way that when
the process is completed, we obtain a sequence of hyper-planes F1, . . . ,F120 such
that Fi is orthogonal to Fi+1 for i ∈ {0..119} and such that for a suitable choice
of the half-spaces determined by the Fi’s, the intersection of these half-spaces
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is exactly the 120-cell. The traditional construction splits the whole process in
nine stages.

In this paper, we shall perform the splitting at the same time as we con-
struct the hyper-faces of the 120-cell. The traditional construction proceeds in
a symmetrical way and mainly aims at counting the elements of the 120-cell:
its vertices, its edges, its faces and its dodecahedra. We have to visit again this
construction in order to identify each dodecahedron and to fix its respective po-
sitions with its neighbouring ones. To make this point clear, we start with a new
visit to the 3D case.

4.1 In lower dimensions

The right hand part of figure 4 illustrates the splitting of an octant in IH3 as
it is indicated in [Margenstern et al. 2002b,c, 2003c]. The left hand part of the
figure illustrates another splitting which is based on the construction of the
dodecahedron by generations, following the guidelines of the construction of the
120-cell. Indeed, the left hand splitting yields three octants and four half-octants
(eight-faced regions), while the right hand one yields five octants and no half-
octant.

8i

9i

9i

7

8

88

9
6

4
3

2

1

5
6

7
8

9

10

11
7

7

6a

9

7

99

9
9

9
8

72

4
5

6

1

3

Figure 4. In the left hand side: splitting the octant in IH3, generation after gen-
eration. The first generation is indicated by i, the second corresponds
to the inner ring and the third generation contains a single element:
the top of the initial dodecahedron. In bold symbols, we give the num-
bers of the faces.
In the right hand side: the splitting of the former papers.

We obtain the other regions for a basis of the splitting by shadowing succes-
sively one face of the outer ring on the figure of the left hand part of figure 4.
The reader may easily check that we obtain the matrix of the splitting which is
indicated by table 2.
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A simple computation which we checked with Maple8 shows us that the
polynomial of the new splitting is again polynomial PIH3 given in [Margenstern
et al. 2002c, 2003c]:

PIH3(X) = X3 − 9X2 + 9X − 1.

9 8 7 6

3 3 4 1 1

2 2 4 1 1

1 1 4 1 1

0 1 3 1 1

Table 2. The matrix of the splitting for the other splitting of the octant in IH3.

The same construction can be performed for the rectangular pentagonal grid
of IH2, we leave this to the reader.

Starting from this point, the term dodecahedron stands for rectangular regular
dodecahedron.

4.2 The first and the second generation.

4.2.1 The first generation.

The first region S0 of the basis of the splitting is a sixteenth of IH4, i.e. a hyper-
corner which we already defined as the intersection of the half-spaces which are
determined by four pairwise perpendicular hyper-planes.

We fix a 120-cell M0 at the extremal point O of S0, which belongs to all
the hyper-planes which generated S0. We notice that this hyper-corner can be
represented by the four dodecahedra of 120-cell M0 which meet at O. It is not
difficult to see that we can reconstruct the hyper-corner from M0, once we fix one
of its vertices: from incidence table 1, we know that precisely four dodecahedra
meet in the vertex and that they are pairwise perpendicular.

Let D0, D1, D2 and D3 be these four dodecahedra. Their respective positions
at their common vertex, one with respect to each other, are symmetric. Call D0

the bottom of M0, and D1, D2 and D3 its walls. The terms of bottom and of
walls could be exchanged. They are used in order to break the symmetry.

Next, we characterise the image of a shift of M0 along one of the edges being
issued from O.

Hyper-corner Lemma − Let four dodecahedra D0, D1, D2 and D3 share a
common vertex O and be pairwise perpendicular, sharing pairwise a common
face. Consider another vertex B, sharing an edge of these dodecahedra with O.
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Consider the three dodecahedra sharing OB, for instance, D1, D2 and D3. Con-
sider one of these dodecahedra, say D1. Let F and G be the two faces of D1

sharing OB. Then the image under the shift along OB of the 120-cell M con-
structed on D0, D1, D2 and D3 is the reflection of M in the image of D0 under
the same shift. In particular, we have that the image of D1 under the shift is its
reflection in H, where H is the third face of dodecahedron D1 which contains B.
As a consequence, this reflection is in the same hyper-plane as D1.

The result of the lemma is illustrated by figure 5, below. Face F of the lemma
is determined by OB and OC in the figure. Similarly, face G is determined by
OB and OD, and face H by BM and BN .

h

O

• •
•B

•�

C
•
N

�

D�
�G

M

Figure 5. Splitting the basic hyper-corner: first generation
Notice the various shifts being indicated by a coloured broken line.

Traditionally, one of the fourth dodecahedra which we introduced is called
the initial one and it defines the 0th generation. Here it is D1.

The first generation is obtained by the orthogonal completion of all the faces
of D1. Of course, the completion is relative to M0, but we may also see it, at
this stage, as being relative to the initial hyper-corner.

From the above lemma and coming back to definitions, we see that the do-
decahedra which are put on the faces of D1 by the orthogonal completion can
be obtained by successive shifts along the edges of D1.

From now on, we number the dodecahedra as it is indicated in the right
hand part of figure 4 and they will be denoted by Ei, with i ∈ {1..9} for the first
generation.
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Now, consider the splitting. Let us have a closer look at E1. As shift h along
OB is in the same 3D space as D2, we see that this hyper-plane is a wall for
h(M0) = M1. Similarly, D2 is also a wall for M1. Two other walls are deter-
mined by h(D0) which is E1 and by h(D1) which determines the same hyper-
plane as D1 because OB belongs to this hyper-plane. An analogous shift which
is indicated in figure 5 allows us to obtain M2 from M1.

Now, consider face G which is indicated in figure 5. It is identified with the
opposite face to it in face 10 of D1 thanks to the incidence table. Four dodeca-
hedra share this face. We already know two of them: E1 and E2. The others are
the reflections of them in the face, this can be checked on the hyper-cube, using
the argument of sub-section 3.2.1. Now, E1 defines a wall for E2, and it is easy
to see that the 120-cell obtained from M1 by the reflection in E2 is the same
as the one which is obtained from M2 by the reflection in E1. Accordingly, one
reflection must be prohibited while the other one must be enabled.

We indicate this choice by shadowing the image of G which lies in the repre-
sentation of E2 as it is indicated in figure 5. This is a shadowing which looks like
to the one which the author introduced in [Margenstern et al. 2002b], but which
is not obtained in the same way. Here we take advantage of the identification by
shadowing one representation of the face and by un-shadowing the other one.

What we discussed about face G and about the walls of M1 induces two
simple rules:

Shading Rules:
- If a face of a new generation is adjacent to a shaded face of the previous
generation, it must be shaded.
- When two identified faces appear at the same generation, one of them must
be shaded and the other one must remain un-shaded.

In these rules, generations are understood in the meaning given to this word
during the construction of the 120-cell.

The starting point in the application of these rules is that the walls and the
bottom of the initial 120-cell are considered as shaded: recall that the bottom is
also a wall in this regard.

As a result, the first generation gives us three new regions which can be
represented, respectively, by the bottom of the considered 120-cell. In the first
case, it is a dodecahedron with four shaded faces, in the second case, it is a
dodecahedron with five shaded faces and in the third case, it is a dodecahedron
with six shaded faces. Notice that this corresponds to the barred edges of the
bottom in the 3D situation. The contribution of the first generation to the
different types of regions is given in table 3.

At last, remark the analogy of situation between the 4D case and the 3D-
and 2D- cases. We already stressed it and the reader can check again the paral-
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lelism in the rôles played by the vertices, the lines and the faces in, respectively,
IH2, IH3 and IH4.

4.2.2 The second generation and the third generation.

Now, we turn to the second generation in the construction of the 120-cell which
consists of the dodecahedra which are obtained by the orthogonal completion of
the faces which are in the inner rings of the dodecahedra of the first generation.

Starting from this generation, we shall first establish a map of the identi-
fications between faces of the dodecahedra of the considered generation. Then,
taking advantage of these identifications, we shall proceed to the splitting for
this stage of the construction.
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Figure 6. The 2nd generation in the Schlegel diagram:
the colours represent corresponding faces, a face marked with a dot
occurs in another dodecahedron of the second generation
corresponding faces have the same number.

Above, figure 6 illustrates the map of the second generation. A close exami-
nation of the closest vertices of the first generation around a fixed vertex of D1,
see figure 5, shows that the three dodecahedra of the second generation which
are put on inner faces around a same vertex of D1 represent the same dodec-
ahedron. They are identified but we have to see them as different views of the
dodecahedron.
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In figure 6 we use an auxiliary numbering of the faces of the dodecahedra of
the second generation which are identified in order to establish an exact corre-
spondence between the identified elements.

These identification allow us to obtain the splitting of the second generation.
As a starting point, notice that E10 is obtained from E1 as this dodecahedron
was obtained from D1. Notice also that several views of the same dodecahedron
gives us additional information on the shadowing: what must be shaded in a
view must also be shaded in the others.
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Figure 7. Splitting the basic hyper-corner: second and third generation

Figure 7 should be considered dynamically, putting and shadowing the do-
decahedra one after another from E10 up to E29. The figure shows us a new type
of region with a bottom which has also six shaded faces but which is different
from the six-shaded faced dodecahedron of the first generation. In table 3, the
types of regions are numbered by the non-shaded faces. The 6-faced type of the
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first generation is called 6a and the 6-faced type given by the second one is called
6b. The contribution of the second generation is given in table 3.

The third generation is obtained by the orthogonal completion of the tops
of the dodecahedra of the first generation, see figure 7. The third generation
provides us with 6-faced regions of the type 6a, see table 3.

4.3 The fourth and fifth generations.

The fourth generation is obtained by the orthogonal completion of the inner
faces of the dodecahedra of the third generation. From the identifications, we
obtain that the dodecahedra of the fourth generation are identified by pairs:
the pairs belong to dodecahedra which are put on faces of dodecahedra of the
third generation which are ’symmetric’ in the sense of the Schlegel diagram, with
respect to an edge of D1, see figure 9. Also, from figure 6, we know that all the
faces of the dodecahedra of the second generation are now covered.
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Figure 8. The 4th generation in the Schlegel diagram:
the colours represent corresponding faces, a dotted face occurs in an-
other dodecahedron of the fourth generation
identified faces are numbered the same

As in the case of the second generation, we use an auxiliary numbering in
order to establish the map of figure 8 for the exact correspondence between the
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faces of the identified dodecahedra.
Applying again the same arguments as we did in the previous generations,

we now proceed to the splitting which is displayed in figure 9.
From the map, we see that the regions of the fourth generation have a bottom

with at least four shaded faces. Two new types of regions are given by the fourth
generation: 5-faced and 4-faced regions. The total contribution of the generation
is provided us by table 3.
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Figure 9. Splitting the basic hyper-corner: the walls for the fourth gener-
ation

The fifth generation gives us the same types of regions as the third generation
and it also contributes with the same number of copies of the regions as the third
generation.
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4.4 The sixth and seventh generations.

4.4.1 The sixth generation
This time, we perform the orthogonal completion of the inner faces of the do-
decahedra of the fifth generation. From the identified elements of the previous
generation, we get that here again, the dodecahedra are identified by groups of
three.

11

6

5
4

9 8
7

1
0

3 2

8

2
1

6

11
9

3

0
5

10
4

1

2

3

4

5
6

7

89

10 11

a

b

c

d

e

b

a

b

a

d

e

c

b

a

c
\d

dc

b′

a′
c

d e′

� �

� �

� �

�
� �

∆c

∆b∆a

Figure 10. The 6th generation in the Schlegel diagram:
superposition of two different zooms: a face marked with a dot
occurs in another dodecahedron of the sixth generation; identi-
fied faces are numbered the same
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Figure 10 represents two views of such a group of three identified dodecahe-
dra. One view shows the places of the dodecahedra of the sixth generation with
respect to the fifth and the fourth generations. A zoom on the new identified
dodecahedra is presented in the same figure in order to show the correspondence
between their faces.

From figure 10, we obtain that the regions which appear in the splitting for
this generation are based on a bottom with at most six un-shaded faces. A new
type of region is yielded by the sixth generation: it has a 3-faced bottom. See
the contribution of the generation on table 3.

Next, figure 11 shows us the splitting. As for figure 9, we have to see the
figure dynamically, putting the dodecahedra one after another, the three views
together and, at the same time, shadowing them one after another, taking into
account the three views. Notice that here also, the dodecahedra which are built
on the back of D1 are not represented, but they are taken into account.
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Figure 11. Splitting the basic hyper-corner: the walls being defined by the sixth
generation
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4.4.2 The seventh generation

For the seventh generation, we perform the orthogonal completion of the tops
of the dodecahedra of the fifth generation.

Figure 12 gives us the map of the situation. Notice that in this map, we
represent three dodecahedra of the seventh generation which are around the same
dodecahedronD of the sixth. However, in order to establish all the identifications,
the three views of D are represented in the figure: they constitute the ’inner ring’
of dodecahedra. From the map, we see that three faces of the seventh generation
are identified and that each one has two views on the map. And so, face 8 of
E105 is face 9 of E104, face 8 of E104 is face 9 of E103 and face 8 of E103 is face 9
of E105. This shows us that the tops of E103, E104 and E103 belong to the same
dodecahedron: the single dodecahedron of the eight generation.
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Figure 12. The 7th generation in the Schlegel diagram:
superposition of two different zooms: a face marked with a dot occurs
in another dodecahedron of the seventh generation;
corresponding elements are numbered the same in the sixth generation
only
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We can now proceed to the splitting as in the previous generations, see fig-
ure 13. From the map of figure 12, we know that the regions of the seventh
generation have a bottom which has at most six un-shaded faces. The seventh
generation introduces two new types of region: one with a 2-faced bottom and
the other one with a 3-faced one, see table 3.

We conclude this section with the splitting by noticing that the eight gener-
ation contributes with a single region which has a 0-faced bottom.

5 Matrix, polynomial and language

We gather the information being yielded by the previous sections in table 3.
This information concerns the splitting of S0 only. However, the same table

allows us to obtain the splitting of the other regions.
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Figure 13. Splitting the basic hyper-corner: the walls being defined by the seventh
generation

1232 Margenstern M.: The Tiling of the Hyperbolic 4D Space ...



9 8 7 6a 6b 5 4 3 2 1 0
I 5 0 3 1 0 0 0 0 0 0 0
II 1 9 9 0 1 0 0 0 0 0 0
III 0 0 0 12 0 0 0 0 0 0 0
IV 0 1 9 9 1 9 1 0 0 0 0
V 0 0 0 12 0 0 0 0 0 0 0
VI 0 0 0 0 1 9 9 1 0 0 0
VII 0 0 0 1 0 1 4 4 1 1 0
VIII 0 0 0 0 0 0 0 0 0 0 1

9 6 10 21 35 3 19 14 5 1 1 1

Table 3. The matrix of the splitting: counting the contribution of each genera-
tion for the splitting of a hyper-corner.

Indeed, the difference between the regions concerns the first generation only.
As the other generations are inside the intersection of the half-spaces being
determined by the hyper-faces of the first generation, they also contribute to the
splitting of the other regions, and with the same number of Si’s.

From this remark and from the information of the previous sections, we have
11 regions the splitting of which is given by the following table which consti-
tutes the matrix of the splitting. The regions are determined by the number of
shaded/un-shaded faces of their bottom, taking into account that there are two
non-isometric regions with a 6-faced bottom, as we already noticed: they are de-
noted by 6a and 6b in tables 3 and 4. We refer the reader to [Margenstern 2003a]
for a proof of this difference between the regions 6a and 6b.

9 6 10 21 35 3 19 14 5 1 1 1
8 5 10 21 35 3 19 14 5 1 1 1
7 4 10 21 35 3 19 14 5 1 1 1
6a 3 11 20 35 3 19 14 5 1 1 1
6b 2 12 20 35 3 19 14 5 1 1 1
5 2 11 20 35 3 19 14 5 1 1 1
4 2 10 20 35 3 19 14 5 1 1 1
3 1 11 19 35 3 19 14 5 1 1 1
2 1 10 19 35 3 19 14 5 1 1 1
1 1 10 18 35 3 19 14 5 1 1 1
0 1 10 18 34 3 19 14 5 1 1 1

Table 4. The matrix of the splitting.

The characteristic polynomial of the matrix of the splitting, as being com-
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puted by Maple8, is the following:

P0(X) = X11 − 116X10 + 366X9 − 116X8 + X7.

Accordingly, the polynomial of the splitting is:

P (X) = X4 − 116X3 + 366X2 − 116X + 1.

We notice that P is a reciprocal polynomial. From this, it is not difficult to
obtain an algebraic expression for its roots by using an auxiliary equation of the
second degree. This gives us:

X1 = 29 + 5
√

30 +
√

1590 + 290
√

30,

X2 = 29 + 5
√

30 −
√

1590 + 290
√

30,

X3 = 29 − 5
√

30 +
√

1590 − 290
√

30,

X4 = 29 − 5
√

30 −
√

1590 − 290
√

30.

whose approximate values are:

X1 = 112.7633976
X2 = 0.00886813

X3 = 2.880593478
X4 = 0.347150762

This computation of the roots shows us that the greatest root of the polyno-
mial is not a Pisot number. Also, clearly, as P (X) is irreducible, it is not divided
by a polynomial of the form Xk + Xk−1 + . . . + 1 and so, as it is proved by
theorem 8.1 of [Hollander 1998], the language of the splitting is not regular.

Now, if u(0) = 1, and if we assume u(−1) = 0, u(−2) = 0 and u(−3) = 0,
we get, successively:

1 2 3 4 5
116 13 090 1 476 100 166 450 115 18 769 479 064

which are the number of regions of, respectively, the first, the second, the third,
the fourth and the fifth level in the spanning tree of the splitting.

As it is indicated in [Margenstern 2003a], there are other ways to split the
regions with the same basis of splitting which also yields the same polynomial
for the splitting. From this property, it is not difficult to prove the following
consequence, see [Margenstern 2003a]:
Theorem 2 − There are continuously many spanning trees for the tiling being
defined by the tessellation of the 120-cell in IH4, all of them being defined by
the same basis of splitting. All of them also yield the same polynomial for the
splitting.

We find here for IH4 a property which we proved in IH2, with the pentagrid,
see [Margenstern 2000a].
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As a concluding remark, I indicate an alternative proof of the correctness of
the splitting. Considering the sixteen hyper-corners which constitute the whole
4D hyperbolic space, it is not difficult to see that the number wn of new 120-cells
which is obtained at generation n, by reflection on the hyper-faces of the 120-
cells of generation n−1, is given by the same induction sequence with appropriate
initial values. In [Margenstern 2003e], I indicate a way to obtain this sequence
as follows. Fix a 120-cell M0 of the tiling which will be considered as the origin
and to which we associate the identity on IH4. We consider the reflections in the
hyper-faces of M0 as generators of a group Γ of endomorphisms of IH4 which
leaves the tiling invariant. For any tile M, we consider the words on the alphabet
of the generators of Γ which corresponds to products of these generators which
allow to transform M0 into M. This can be also seen as a path in the tiling
which allows to go from M0 to M by moving from a tile to a neighbouring one.
Define the distance of M, denoted by d(M), as the shortest length of a word
which determines a path from M0 to M. In [Margenstern 2003e], I call pattern
of distances, the set of values d(MV )−d(M) when V runs over the neighbours
of M in the tiling. It is not difficult to see that there are finitely many patterns
of distances when M runs other all the tiling. In [Margenstern 2003e], I prove
that these patterns are characterised by their numbers of +1 and −1 and that
there are four of them. I also define an incidence matrix A for these patterns.
Taking into account the multiplicity which is induced by considering all the
reflections, I obtain a new matrix B with coefficients those of A weighted by
multiplicities. The characteristic polynomial of B is exactly P , and so I obtain
the same sequence {wn}n∈IN .

6 Conclusion

As a conclusion for this extended abstract, I would draw the attention of the
reader on the fact that a lot of properties of the tiling of IH4 by the 120-cell have
to be found.

The example of the language of the splitting is an important one. We know
that the language is not regular. It would be interesting to know whether it is
context-free or not. On the few data which I have at the present moment, see
an indication about them in [Margenstern 2003a], it seems to me that we may
conjecture that the language is also not context-free.

Another direction is the implementation of cellular automata which was done
in the case of IH3 in [Margenstern et al. 2002b,c, 2003c]. It seems that the same
technique could be applied here and that the same complexity result would be
obtained. Indeed, as it is indicated in [Margenstern et al. 2002b,c, 2003c], the
language of the splitting allows us to define a system of coordinates for the tiles
of the tiling. Considering the spanning tree, we number the tiles in a hyper-corner
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S0 starting from the root, level by level and, on each level, from the left to the
right. The coordinate of a tile is defined as the maximal greedy representation
of its number in the basis defined by sequence {u(n)}n∈IN . In order to define
coordinates for all the tiles of the tiling, we take sixteen hyper-corners at a vertex
of the tiling which we take as an origin and we associate two numbers to a tile:
the number of its hyper-corner and the number of the tile in the spanning tree
associated to this hyper-corner. Using local maps as in [Margenstern et al. 2003c]
and also [Margenstern 2003e], which indicate the relative positions of the tiles
using the numbering, we can extract the coordinates of the neighbours of a tile τ

from the coordinate of τ in its hyper-corner. Such an alorithm is the basis of any
implementation of cellular automata on a tiling and from what we just said, we
see that such an algorithm is feasible for the grid which we consider. Its time and
space complexity should be the same as in the 3D case, i.e. cubic and quadratic,
respectively, see [Margenstern et al. 2003c].

From the point of view of the combinatoricity of tilings, it would be interest-
ing to know whether the property also holds for the other tessellations of IH4:
there are still two of them, taking into account that the tiling of the 600-cell is
the dual of this one.

At last, we may conclude this section by indicating a kind of ’natural’ con-
clusion: there are no tessellation of the hyperbolic space IHn for n ≥ 5, see for
instance [Sommerville 1958] for a proof of this property. There are purely com-
binatoric properties which bar this possibility. Maybe this is also connected with
the properties of the language of the splitting?
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