
Symbolic Approach to the Analysis of Security Protocols

Stéphane Lafrance
(École Polytechnique de Montréal, Canada

stephane.lafrance@polymtl.ca)

Abstract: The specification and validation of security protocols often requires view-
ing function calls – like encryption/decryption and the generation of fake messages –
explicitly as actions within the process semantics. Following this approach, this paper
introduces a symbolic framework based on value-passing processes able to handle sym-
bolic values like fresh nonces, fresh keys, fake addresses and fake messages. The main
idea in our approach is to assign to each value-passing process a formula describing
the symbolic values conveyed by its semantics. In such symbolic processes, called con-
strained processes, the formulas are drawn from a logic based on a message algebra
equipped with encryption, signature and hashing primitives. The symbolic operational
semantics of a constrained process is then established through semantic rules updating
formulas by adding restrictions over the symbolic values, as required for the process
to evolve. We then prove that the logic required from the semantic rules is decidable.
We also define a bisimulation equivalence between constrained processes; this amounts
to a generalisation of the standard bisimulation equivalence between (non-symbolic)
value-passing processes. Finally, we provide a complete symbolic bisimulation method
for constructing the bisimulation between constrained processes.

Key Words: symbolic, bisimulation, protocols, non-interference, process algebra,
equivalence-checking, formal methods.

Category: C.2.2, C.2.4

1 Introduction

The sudden expansion of electronic commerce has introduced an urgent need to
establish strong security policies for the design of security protocols. The formal
validation of security protocols has since become one of the primary tasks in
computer science. In recent years, equivalence-checking has proved to be useful
for the verification of security protocols [1, 4, 6, 19]. The main idea behind this
approach of formal verification is to verify a security property by testing whether
a process (specifying a protocol) is bisimilar to its intended behaviour. The suc-
cess of these methods relies on two facts: 1) process algebras are suitable for
the specification of such protocols, including cryptographic protocols; 2) bisim-
ulation offers an expressive semantics to process calculi. Many other methods
inspired by a wide range of approaches have been proposed in the literature to
analyse security protocols, but very few offer the possibility to explicitly analyse
function calls used, for example, in encrypting, decrypting, signing and hashing.
In cryptographic based process calculi like Abadi & Gordon’s spi-calculus [2]
and Focardi & Martinelli’s CryptoSPA [11], encryption and decryption manipu-
lations are done in a parallel inference system, and therefore they are not directly

Journal of Universal Computer Science, vol. 10, no. 9 (2004), 1156-1198
submitted: 16/9/03, accepted: 2/4/04, appeared: 28/9/04 © J.UCS

observable from the process semantics. For instance, a principal sending a mes-
sage m encrypted with a key k is modeled as an output action “c({m}k)” (where
{m}k stands for the message m encrypted by k) whenever {m}k can be inferred
from the principal’s current knowledge.

However, information flow properties (e.g. non-interference [10] and admis-
sible interference [18]) usually require such manipulations to be observable. For
that purpose, we work within the framework of an extension of value-passing
CCS [16], called Security Protocols Process Algebra (SPPA) [14], in which func-
tion calls made by principals are explicitly modeled as actions. For instance, a
principal sending a message m encrypted with a key k is modeled as the action
“encid” (where id is an identifier for the principal encrypting the message) fol-
lowed by the output action “c({m}k)”. Moreover, the specification of intruders
in SPPA allows us to analyse the effects on the information flow of a protocol of
an intruder generating fake messages and fake addresses. In addition, compared
with a process calculus using an inference system for encryption manipulations,
SPPA is more suited for analysing restricted attacks based on the repetition of
the same attempt. For instance, distributed denial of service attacks have been
specified in SPPA [14]. In order to deal with the notion of fake message, around
which most attacks are built, we need to extend SPPA in order to specify func-
tions generating random values. But the introduction of such generating function
calls as actions requires interpreting their output as symbolic values. Thus, we
need to consider symbolic value-passing processes along with a symbolic opera-
tional semantics able to handle symbolic variables without a specific value but
satisfying certain constraints.

This paper introduces a symbolic framework for the specification of security
protocols which is based on the novel concept of constrained process . A con-
strained process is a pair composed of a value-passing process (SPPA process
with, possibly, free variables standing for symbolic values) and a formula ex-
pressing a statement about symbolic values. The formula pertains to a message
logic whose terms are taken from a message algebra relying on atomic sets of
numbers and identifiers (addresses), and cryptographic primitives (encryption,
signing and hashing operators). Therefore, the purpose of a formula within a
constrained process is to bind the free variables occurring in the course of pro-
cess execution. For instance, to a process generating a fresh key for a protocol
run and allocating this key to some free variable x, we assign the formula which
states that x stands for a key. The operational semantics of constrained pro-
cesses is thus achieved from the process behaviour, subject to the restrictions
imposed by its formula. Hence, a process whose definition requires the execu-
tion of an action and evolution into another process will only occur if the whole
transition satisfies the formula enforced at this point. Roughly speaking, the
formula within a constrained process stands for the set of messages that can be

1157Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

assigned to its free variables; this set of possible values evolves, along with the
process, by either adding new free variables or restricting (or binding) the ones
already present. In one of the main results of this paper, we prove the decidabil-
ity of every formula derivable from the process algebra’s operational semantics.
Moreover, we feel that our symbolic framework can be applied to any other pro-
cess algebra, from value-passing CCS to more expressive process algebras like
Milner’s π-calculus [17] and Abadi & Gordon’s spi-calculus [2].

The use of value-passing processes over infinite messages-domain leads to non
finite-branching transition graphs on which trace equivalence and bisimulation
equivalence fail to be decidable. An attractive solution to this challenge was pro-
posed by Hennessy-Lin [12] who defined a notion of symbolic bisimulation. It is
primary based on a symbolic semantics which may express value-passing CCS
processes in terms of finite symbolic transition graphs instead of possibly infinite
ones. The main idea behind Hennessy-Lin’s approach is to assign to every action
(transition) a formula describing the symbolic values (free variables) used in the
action. Within this framework, they introduce two generalisations of Milner’s
strong bisimulation equivalence for value-passing processes called early and late
bisimulation. Although our paper aims at a similar goal, we introduce a sym-
bolic semantics in which the description of symbolic values is done within the
processes (states) instead of within the transitions. In fact, our symbolic transi-
tion graphs could be directly obtained from their symbolic transition graphs (by
considering every path). Moreover, our approach, compared to Hennessy-Lin’s,
takes advantage of an expressive message logic capable of stating cryptographic
relations. For instance, we can bind free variables x1, x2, x3 through the formula
(x1 == {x2}x3) ∧ K(x3) which states that x1 stands for x2 encrypted with the
key x3. In addition, we feel that the concept of constrained process is more suited
for security protocol analysis than Hennessy-Lin’s symbolic transition graph: a
constrained process allows us to get a quick view of the symbolic values at a given
state of the protocol, rather than retrieving successively every path leading to
this state.

This paper is organised as follows. In section 2, we introduce a logic for cryp-
tographic messages. In section 3, we present the SPPA process algebra and we
describe a symbolic semantics for constrained processes. In section 4, we intro-
duce a bisimulation equivalence relation for constrained processes, for which we
give, in section 5, a sound and complete proof method called symbolic bisimu-
lation. In section 6, we offer a brief overview on the application of our symbolic
framework to security protocols analysis. We conclude this paper with a short
talk on related work and on our future work.

1158 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

2 Message Specification

2.1 Message Algebra

We consider the following message algebra which relies on disjoint syntactic
categories of numbers, principal identifiers and variables respectively ranging
over sets N , I and V . The set T of terms is constructed as follows:

t ::= n (number) | id (identifier) | x (variable) | (t, t) (pair)
| {t}t (encryption) | [t]t (signature) | h(t) (hashing).

It is important to note that we only consider finite terms. For any term t,
we denote fv(t) the set of variables occurring in t and we say that t is a
message whenever it contains no variable. The set of all messages is denoted
by M. Furthermore, given a valuation � : V → M and a term t such that
fv(t) = {x1, . . . , xn}, �(t) stands for the message t[�(x1)/x1] . . . [�(xn)/xn] i.e.,
the message obtained from t by substituting each variable xi with its valuation
�(xi) (i = 1, . . . , n). Note that if a variable is substituted more than once in
the expression t[�(x1/x1] . . . [�(xn)/xn], then the lefter-most substitution always
prevails.

For the sake of clarity, we will discriminate a subset K ⊆ M of messages that
may be used as encryption keys. Note that the definition of the set K usually
depends on the cryptosystem used by the protocol. For instance, in the case of a
symmetric block-cypher algorithm, we have K = {v ∈ N | length of v = N} for
some N ∈ IN; or, more generally, we may have K = N ∪

⋃
m≥1{hm(n) | n ∈ N}

where we write hm(n) instead of h(. . . h(n) . . .) (m times). However, for simplicity
purposes, this paper simply uses the set K = N . Moreover, in order to deal with
public-key encryption, we use an idempotent operator [−]−1 : K → K such that
a−1 denotes the private decryption key corresponding to the public encryption
key a, or vice versa. For symmetric encryption, let a−1 = a. Moreover, one
assumes perfect encryption and hashing.

2.2 A Logic for Messages

In the following, we consider the logic based on the terms of our message algebra
and the following predicates :

P ::= t == t (term equation) | M(t) (message predicate)
| N (t) (number predicate) | I(t) (identifier predicate)
| K(t) (key predicate).

The formulas of our logic are then obtained as follows:

φ ::= 0 | 1 | P | φ ∧ φ | ∃x φ .

1159Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

The set of φ’s free variables is denoted by fv(φ) and φ is said to be closed
whenever fv(φ) = ∅. The satisfaction of a closed formula φ, denoted by |= φ, is
defined recursively as follows:

– |= 1 and �|= 0

– |= a == b iff messages a and b are syntactically identical i.e.,

• |= n == n for every n ∈ N ,

• |= id == id for every id ∈ I,

• |= (a1, a2) == (b1, b2) iff |= a1 == b1 ∧ a2 == b2,

• |= {a2}a1 == {b2}b1 iff |= a1 == b1 ∧ a2 == b2,

• |= [a2]a1 == [b2]b1 iff |= a1 == b1 ∧ a2 == b2, and

• |= h(a) == h(b) iff |= a == b;

– |= M(a) for every message a ∈ M;

– |= N (a) iff a ∈ N ;

– |= I(a) iff a ∈ I;

– |= K(a) iff a ∈ K;

– |= φ ∧ φ′ iff |= φ and |= φ′;

– |= ∃x φ iff |= φ[a/x] for some a ∈ M.

(Notation φ[a/x] stands for the substitution of every free occurrence of variable
x in φ, by message a.) We assume that each predicate is decidable i.e., the
satisfiability problems |= N (a), |= I(a) and |= K(a) are decidable for any a ∈ M,
and they are never satisfied whenever a is a non-atomic message (recall that we
assumed earlier that K = N). For instance, �|= I(h(a)) and �|= N ({a}b) for any
a, b ∈ M. Moreover, we recall that I and N are disjoint sets.

Given a valuation � : V → M, the satisfaction of a formula φ by �, denoted
by � |= φ, is defined as follows:

� |= φ iff |= �(φ).

Example 1. Formula

φ ::= ∃x1∃x2 (x == (x1, x2) ∧ K(x1) ∧ M(x2))

with fv(φ) = {x} states that variable x must be a couple composed of a key and
a message. Hence, if �1(x) = (k, a), for some k ∈ K and a ∈ M, then we see that
�1 |= φ. However, if �2(x) = (a, a), then �2 �|= φ unless a ∈ K.

1160 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Two formulas φ and φ′ are said to be equivalent – which is denoted by φ⇔ φ′

– whenever
� |= φ iff � |= φ′

for every valuation �. In particular, a formula φ is equivalent to 0 – which is
denoted by φ ⇔ 0 – whenever � �|= φ for every valuation �. We also consider the
equivalence relation φ V⇔ φ′ defined as follows:

φ
V⇔ φ′ iff (φ ⇔ φ′ and fv(φ) = fv(φ′)).

The equivalence class of some formula φ under V⇔ is defined by [[φ]] = {φ′ | φ V⇔ φ′}.

2.3 Decidability

We can prove that every (closed) formula from our logic is decidable. This result
follows from the fact that our logic for messages is restricted to conjunction
and existential operators. Hence, the decidability of a formula boils down to the
satisfaction of a number of predicates and equations, which we assume to be
decidable.

Theorem 1. Every formula is decidable.

Proof of Theorem 1 is given in Appendix A.

2.4 Functions

We consider a finite set F of functions mapping messages to new messages
constructed from the grammar rules above. Each function f(x1, . . . , xn) has a
characterisation formula from our logic, denoted by φf(x1,...,xn) or simply φf ,
which is satisfied only by messages within its domain, and such that fv(φf) =
{x1, . . . , xn}. Therefore, |= φf [a1/x1] . . . [an/xn] if and only if f(a1, . . . , an) is de-
fined. We often write φf (a1, . . . , an) instead of φf [a1/x1] . . . [an/xn], or simply
φf (a) where a = (a1, . . . , an). In addition, we consider the notion of generating
functions , extremely useful for the specification of security protocols requiring
fresh nonces, fresh keys and random numbers, and for the specification of in-
truders generating fake addresses and fake messages. Generating functions are
functions which may generate symbolic values without any input. Each generat-
ing function new ∈ F (often denoted by new(−)) is assigned to a formula φnew ,
also called characterisation formula, which is satisfied only by messages within
its range. We usually consider the following functions:

• pair(x1, x2) = (x1, x2) with φpair(x1,x2) ::= M(x1) ∧M(x2);
• enc(x1, x2) = {x2}x1 with φenc(x1,x2) ::= K(x1) ∧M(x2);
• hash(x) = h(x) with φhash(x) ::= M(x);
• sign(x1, x2) = [x2]x1 with φsign(x1,x2) ::= K(x1) ∧M(x2);
• newMessage(−) with φnewMessage ::= M(x);
• newNumber(−) with φnewNumber ::= N (x);

1161Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

• newId(−) with φnewId ::= I(x);
• newKey(−) with φnewKey ::= K(x).

3 Security Protocol Process Algebra

Our first step toward validation of security protocols is to find a language which
may express both the protocols and the security policies we want to enforce.
Process algebra has been used for some years to specify protocols as a cluster of
concurrent processes, representing principals participating in the protocol, which
are able to communicate in order to exchange data. Process algebras CSP [13]
and CCS [16] have been extensively used with this objective [15, 20]. In this sec-
tion, we introduce a generic symbolic framework which we feel could be applied
to numerous process algebras. Given a process algebra, we proceed by extending
its syntax in order to view generating function calls “let x = new(−) in . . .” as
prefixes. Messages generated in this way are explicitly typed with the characteri-
sation formula φnew . For simplicity, our symbolic framework follows the Security
Protocols Process Algebra (SPPA) [14], an extension of value-passing CCS in
which local function calls are viewed as visible actions. Up to these extensions
tailored just to fit to the ideas presented here, SPPA is very similar to SPA
presented by Focardi & Gorrieri [7]. SPPA’s syntax follows Abadi & Gordon’s
Spi-Calculus [2], but without scope extrusion and replication, and the input and
output prefixes do not carry channels. Also, the purpose here is not to introduce
a new process algebra but just to define a generic process algebraic symbolic
framework as well-suited as possible to analyse cryptographic protocols.

3.1 Syntax of SPPA

First, we consider a finite set C of public channels . Public channels are used to
specify message exchanges between principals (commonly, there is one channel
for every step of a protocol run). We assume that public channels have no specific
domains: any message can be sent or received over them.

The agents of SPPA are constructed from the following grammar:

S ::= 0 (nil) | let x = f(t) in S (function call)
| c(t).S (output) | let (x, y) = t in S (pair splitting)
| c(x).S (input) | case t of {x}t′ in S (decryption)
| [t = t′] S (match) | case t of [t′′]t′ in S (signature verification)
| S + S (sum) | S|S (parallel composition)
| S\L (restriction) | S/O (observation)

where L is a set and O is a partial mapping (both to be clarified in Section 3.2).
Whenever f is a generating function, we usually write let x = f(−) in S.

1162 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

In order to prevent name clashes for variables (e.g. to prevent the sum or
parallel composition of agents having free variables in common), we assume
that a variable is never used twice to define agents (renaming variables when
necessary). Given an agent S, we define its set of free variables , denoted by fv(S),
as the set of variables x appearing in S which are not in the scope of an input
prefix c(x), a pair splitting let (x, y) = t in, a function call let x = f(t) in, or
a decryption case {t′}t of {x}t in; otherwise the variable x is said to be bound .
Given a free variable x ∈ fv(S) and a term t, we consider the substitution
operator S[t/x] where every free occurrence of x in S is set to t. A closed agent
is an agent S such that fv(S) = ∅.

A SPPA principal is a couple (S, id) where S is an agent and id ∈ I. The
purpose of this notation is to relate an SPPA agent S and its sub-agents, to their
unique owner (principal) via its identifier id. When no confusion is possible, we
often use A as a reference to the principal (SA, idA) where SA is the initial
agent of A i.e., the agent specifying the entire behaviour of the principal A
within the protocol. Moreover, we commonly make use of the identifier idA as a
message containing its address, while we simply use A to refer to the principal’s
entity (i.e. the party involved with the protocol). For simplicity, given A1 ::=
(S1, id) and A2 ::= (S2, id) (they must have the same identifier) we often write
[t = t′]A1 instead of ([t = t′]S1, id), A1|A2 instead of (S1|S2, id), A1 +A2 instead
of (S1 + S2, id), and so on.

In order to specify a security protocol in SPPA, we use the classic approach
[9, 20] of specifying the principals as concurrent agents. Given a principal A,
SPPA processes are constructed as follows:

P ::= A (principal) | A ‖ P (protocol)
| P\L (restriction) | P/O (observation).

where ‖ is an associative and commutative operator forcing communication over
public channels.

A constrained process is an expression of the form 〈P, φ〉 where P is a process
and φ is a formula designed to constrain the free variables occurring in P . Com-
monly, notation 〈P, φ〉 stands for the pair (P, [[φ]]), where [[φ]] is the equivalence
class of φ under the relation V⇔ (see Section 2.2). Thus, if φ V⇔ φ′ (i.e. formulas
φ and φ′ are equivalent and have the same free variables), then the constrained
processes 〈P, φ〉 and 〈P, φ′〉 are considered to be the same.

Example 2. Consider the following one-step protocol

Message 1: A
{nA}kB−→ B

in which principal A generates a fresh nonce nA and sends to the principal B
this nonce encrypted with B’s public key kB. Principals A and B are specified,

1163Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

respectively, as the SPPA principals A ::= (SA, idA) and B ::= (SB, idB), where
idA is A’s identifier, idB is B’s identifier, and the initial agents SA and SB are
defined as follows:

SA ::= let x1 = newNumber(−) in let x2 = enc(kB, x1) in c(x2).0
SB ::= c(y1). case y1 of {y2}kB in 0 .

The protocol is then specified as the SPPA process P ::= A ‖ B, in which
principals A and B can communicate over the public channel c. Since the process
P has no free variable, the protocol is then specified as the constrained process
〈P, 1〉.

3.2 Symbolic Semantics

The value-passing operational semantics of an SPPA process is defined in Ap-
pendix B. Note that this value-passing semantics is only defined for closed pro-
cesses. Also note that, because of the value-passing semantics, the obtained tran-
sition graph could be infinite. In this section, we establish a symbolic operational
semantics for constrained processes, which correspond to finite labeled transition
graphs.

Given a term t, the actions of SPPA are defined as follows:

α ::= cid(t) (output) | cid(x) (input)
| fid (function call) | splitid (splitting)
| decid (decryption) | signvid (signature verification)
| δ(t) (marker action) | τ (silent action)

For instance, function call action encidA stands for principal A encrypting some
message a with some key k; output action cidA({a}k) stands for principal A
sending message {a}k over the public channel c; and decryption action decidA

stands for principal A successfully decrypting some message {a}k. The silent
action τ is used to express non-observable behaviours. We often use C to denote
both the set of public channels and the set of output and input actions.

In value-passing process algebra, communication is commonly expressed by
replacing the matching output action and input action by the silent action τ .
However, this interpretation of communication causes a drastic loss of informa-
tion on the content of the exchanged values and the parties involved. Using a
marker action δ(t) instead of τ in those situations helps to parry this problem.
Marker actions are therefore introduced in an attempt to establish an annotation
to the semantics of an SPPA process; they do not occur in the syntax of processes
and their specific semantics restricts their occurrence in order to tag communi-
cations between principals. A marker action has three parameters: a principal
identifier, a channel and a term (message). Roughly speaking, the occurrence of
an output marker δcidA

(a) stands for “the principal A has sent message a over

1164 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

the channel c”, and the occurrence of an input marker δcidA
(a) stands for “the

principal A has received message a over the channel c”.
We write Act to denote the set of all actions and we consider the set ActA

of actions that may be launched by the principal A, defined by:

ActA = {cidA(t), cidA(t), δcidA
(t), δcidA

(t) ∈ Act | c ∈ C and t ∈ T }
∪ {fidA | f ∈ F} ∪ {splitidA

, decidA , signvidA
}

An observation criterion is a partial mapping O : Act∗ → Act which intends
to express equivalence between process behaviours. Two sequences of actions γ1

and γ2 are said to carry out the same observation α whenever γ1, γ2 ∈ O−1(α).
Given a subset L ⊆ Act \ {τ}, we consider the observation criterion OL defined
as follows:

O−1
L (α) =

{
(Act \ L)∗ α (Act \ L)∗ if α ∈ L

(Act \ L)∗ if α = τ.

Only behaviours from the set L are observable through this observation criterion.
In particular, we have a natural observation criterion OActA∪C , often denoted
by OA, describing the actions observable by a principal A.

The symbolic operational semantics for constrained processes is given in
Fig. 1 and Fig. 2. It is inspired by Hennessy-Lin’s symbolic operational seman-
tics [12] where boolean values guarding actions are replaced by formulas φ

restricting free variables within the processes. Note that any transition
〈P, φ〉 α−→ 〈P ′, φ′〉 is dismissed whenever either φ or φ′ is equivalent to 0.

Rules Output and Input allow principals to, respectively, send and receive
messages over public channels. Rules Function and Generator allow the exe-
cution of local function calls made by principals. Rule Split allows to extract
pairs. Rules Decryption and Signature-Verif allow to, respectively, recover
encrypted messages and verify signed messages. Rule Match allows the verifica-
tion of equality between two messages. Rules Sum and Parallel allow the spe-
cification of non-deterministic sum and parallel product of agents (with match-
ing identifier). Rules Protocol and Synchronisation allow the specification of
protocols, where the operator ‖ is similar to a parallel product in which com-
munication between principals is achieved (and forced) through public channels.
Rules Sum, Parallel, Protocol and Synchronisation are assumed to be both
associative and commutative (i.e. P + (Q+R) behaves as (P +Q) +R, Q+ P

behaves as P +Q, and so on). Moreover, recall that constrained processes 〈P, φ〉
and 〈Q, ψ〉 must be defined with different variables, thus fv(φ)∩ fv(ψ) = ∅. Rule
Restriction interprets P \ L as process P with the actions in L forbidden. In
the Restriction rule, we assume that formula φLα (which forbids instantiations
of α to be in L) is such that fv(φLα) = fv(α). Moreover, we need to restrict rule
Restriction to the sets L such that formula φLα is definable within our logic.

1165Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Output −

〈c(t).A, φ〉
cidA

(t)
−→ 〈A, φ〉

Input −

〈c(x).A, φ〉
cidA

(x)
−→ 〈A, (∃xφ) ∧ M(x)〉

Function f ∈ F

〈let x=f(t) in A, φ〉
fidA−→ 〈A, (∃xφ) ∧ φf (t) ∧ x==f(t)〉

Generator new ∈ F
〈let x=f(−) in A, φ〉

newidA−→ 〈A, (∃xφ) ∧ φnew(x)〉

Split −

〈let (x,y)=(t,t′) in A, φ〉
splitidA−→ 〈A, (∃x∃yφ) ∧ x==t ∧ y==t′〉

Decryption −

〈case t of {x}t′ in A, φ〉
decidA−→ 〈A, (∃xφ) ∧ K(t′) ∧ t=={x}t′ 〉

Signature-Verif −

〈case t of [t′′]t′ in A, φ〉
signvidA−→ 〈A, φ ∧ K(t′) ∧ t==[t′′]t′ 〉

Figure 1: Semantics of constrained processes.

Finally, rule Observation interprets the observation of a process through an ob-
servation criterion O, where the computation 〈P, φ〉 γ−→ 〈P ′, φ′〉, for a sequence
of actions γ = α0α1 . . . αn ∈ Act∗, stands for the finite string of transitions sat-
isfying

〈P, φ〉 α0−→ 〈P1, φ1〉
α1−→· · · αn−→ 〈P ′, φ′〉.

Thus, P/OL (where L is a set of actions) means P with the actions outside L
ignored (set to τ).

A constrained process 〈P ′, φ′〉 is a derivative of 〈P, φ〉 if there is a computa-
tion 〈P, φ〉 γ−→ 〈P ′, φ′〉 for some γ ∈ Act∗. Hence, the set of 〈P, φ〉’s derivatives
is defined by

D(〈P, φ〉) = {〈P ′, φ′〉 | ∃γ∈Act∗ 〈P, φ〉 γ−→ 〈P ′, φ′〉}.

The following theorem states that the transition graph associated to any
constrained process is always finite.

Theorem 2. For every constrained process 〈P, φ〉, the set D(〈P, φ〉) is finite.

Proof of Theorem 2 is given in Appendix C.

1166 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Match 〈A, φ〉 α−→ 〈A′, φ′〉
〈[t=t′]A, φ〉 α−→ 〈A′, ψ〉

with ψ ::=

⎧⎨
⎩

(∃x(φ ∧ t==t′)) ∧ ψ′ if α= cid(x), fid, splitid or decid

and φ′::=(∃xφ) ∧ ψ′

φ′ ∧ t==t′ otherwise.

Sum 〈P, φ〉 α−→ 〈P ′, φ′〉 and fv(φ)∩fv(ψ)=∅
〈P+Q, φ ∧ ψ〉 α−→ 〈P ′, φ′ ∧ ψ〉

Parallel 〈P, φ〉 α−→ 〈P ′, φ′〉 and fv(φ)∩fv(ψ)=∅
〈P |Q, φ ∧ ψ〉 α−→ 〈P ′|Q, φ′ ∧ ψ〉

Protocol 〈P, φ〉 α−→ 〈P ′, φ′〉, α�∈C and fv(φ)∩fv(ψ)=∅
〈P‖Q, φ ∧ ψ〉 α−→ 〈P ′‖Q, φ′ ∧ ψ〉

Synchronisation 〈P, φ〉
cid(t)−→ 〈P ′, φ′〉, 〈Q, ψ〉

cid′(x)−→ 〈Q′, ψ′〉 and fv(φ)∩fv(ψ)=∅

〈P‖Q, φ ∧ ψ〉
δc

id
(t)

−→ 〈P ′‖Q, ϕ1〉
δc

id′(t)−→ 〈P ′‖Q′, ϕ2〉

with ϕ1 ::= φ′ ∧ ψ and ϕ2 ::= φ′ ∧ ψ′ ∧ x == t.

Restriction 〈P, φ〉 α−→ 〈P ′, φ′〉
〈P\L, φ〉 α−→ 〈P ′\L, φ′ ∧ φL

α〉

where φLα is such that ∀� (� |= φLα iff �(α) ∈ Act \ L).

Observation 〈P, φ〉
γ−→ 〈P ′, φ′〉 and γ ∈ O−1(α)

〈P/O, φ〉 α−→ 〈P ′/O, φ′〉

Figure 2: Semantics of constrained processes.

Example 3. Consider the following SPPA processes:

A ::= c(x1).A1, A1 ::= c(x2).A2 and A2 ::= [x1 = x2] c(x1).A1 .

The semantics of the constrained process 〈A, 1〉 is illustrated in Fig. 3. Notice
that rule Match yields the transition

〈A2, M(x1) ∧M(x2)〉
cidA

(x1)−→ 〈A1, M(x1) ∧M(x2) ∧ x1 == x2〉,

1167Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

but we write 〈A2, M(x1) ∧M(x2)〉
cidA

(x1)−→ 〈A1, x1 == x2〉 since

M(x1) ∧M(x2) ∧ x1 == x2
V⇔ x1 == x2.

Thus 〈A1, M(x1) ∧M(x2) ∧ x1 == x2〉 and 〈A1, x1 == x2〉 correspond to the
same constrained process. Similarly, the transition

〈A1, x1 == x2〉
cidA

(x1)−→ 〈A2, M(x1) ∧M(x2)〉

follows from the Input rule and the fact that

(∃x2 x1 == x2) ∧M(x2)
V⇔ M(x1) ∧M(x2).

〈A, 1〉 �cidA
(x1) 〈A1, M(x1)〉 �cidA

(x2) 〈A2, M(x1) ∧M(x2)〉

�
cidA

(x1)
�
cidA

(x2)

〈A1, x1 == x2〉

Figure 3: Symbolic Semantics of 〈A, 1〉.

Example 4. Consider the following processes:

B ::= c(y2).B1, B1 ::= let y3 = enc(y1, y2) in B2 and B2 ::= c(y3).0

where fv(B) = {y1}. The symbolic semantics of the constrained process
〈B, M(y1)〉 is given in Fig. 4, where φ ::= K(y1) ∧ M(y2) ∧ y3 == {y2}y1 .

〈B, M(y1)〉 �cidB
(y2) 〈B1, M(y1) ∧M(y2)〉 �encidB 〈B2, φ〉 �cidB

(y3) 〈0, φ〉

Figure 4: Symbolic Semantics of 〈B, M(y1)〉.

3.3 Symbolic Semantics vs Value-Passing Semantics

The relationship between the symbolic operational semantics of constrained pro-
cesses and the value-passing operational semantics of processes (see Appendix B)
is detailed in the following lemmas. Every sequence of transitions between SPPA

1168 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

processes can be unwound to a sequence of transitions between constrained pro-
cesses. Conversely, every transition between constrained processes can be inter-
preted as a set of transitions between processes.

For the remainder of this paper, we will discriminate between two types of
actions: actions cid(t), δcid(t), δ

c
id(t), signvid and τ (denoted by α), and actions

cid(x), fid, splitid and decid (denoted by β). From the symbolic operational
semantics, we see that an action β introduces a new variable x (or two, x and
y, in the case of action splitid), while an action α does not. In the following,
we will assume that, given an action β, x is always the introduced variable.
Moreover, for simplicity purposes, we will omit the case of action splitid which
introduces two variables and treat it as any other action β. It is easy to see
that this last assumption will not affect the results presented is this paper since
complete proofs can be obtained by adding special cases for action splitid.

Lemma3. Let P, P ′ be SPPA processes, let α′ = cid(t), δcid(t), δ
c
id(t), signvid

or τ , for some term t such that fv(t) ⊆ {x1, . . . , xn}, and let β′ = cid(x), fid,
splitid or decid.

– If P [a1/x1] . . . [an/xn]
α−→ P ′[a1/x1] . . . [an/xn], for some a1, . . . , an ∈ M

(n ≥ 0) and α = α′[a1/x1] . . . [an/xn], then, for any formula φ �⇔ 0 such
that fv(φ) = {x1, . . . , xn}, we have

〈P, φ〉 α′
−→ 〈P ′, φ′〉

where φ′ is the formula given by the symbolic operational semantics (with
φ′ �⇔ 0).

– If P [a1/x1] . . . [an/xn]
β−→ P ′[a/x][a1/x1] . . . [an/xn], for some a1, . . . , an, a ∈

M (n ≥ 0) and β = β′[a/x], then, for any formula φ �⇔ 0 such that
fv(φ) = {x1, . . . , xn}, we have

〈P, φ〉 β′
−→ 〈P ′, φ′〉

where φ′ is the formula given by the symbolic operational semantics (with
φ′ �⇔ 0).

Lemma4. Let P, P ′ be SPPA processes, let α′ = cid(t), δcid(t), δ
c
id(t), signvid

or τ , for some term t such that fv(t) ⊆ {x1, . . . , xn}, and let β′ = cid(x), fid,
splitid or decid.

– If 〈P, φ〉 α′
−→ 〈P ′, φ′〉, with fv(φ) = fv(φ′) = {x1, . . . , xn}, then, for every

valuation � such that � |= φ′,

P [�(x1)/x1] . . . [�(xn)/xn]
α−→ P ′[�(x1)/x1] . . . [�(x1)/xn]

where α = �(α′).

1169Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

– If 〈P, φ〉 β′
−→ 〈P ′, φ′〉, with fv(φ) = {x1, . . . , xn} and fv(φ′) = fv(φ) ∪ {x},

then, for every valuation � such that � |= φ′,

P [�(x1)/x1] . . . [�(xn)/xn]
β−→ P ′[�(x)/x][�(x1)/x1] . . . [�(xn)/xn]

where β = �(β′).

Lemma5. Let P, P ′ be SPPA processes, let α′ = cid(t), δcid(t), δ
c
id(t), signvid

or τ , for some term t such that fv(t) ⊆ {x1, . . . , xn}, and let β′ = cid(x), fid,
splitid or decid. Consider a, a1, . . . , an ∈ M, and let α = α′[a1/x1] . . . [an/xn]
and β = β′[a/x].

– If P [a1/x1] . . . [an/xn]
α−→ P ′[a1/x1] . . . [an/xn] and |= φ[a1/x1] . . . [an/xn],

then |= φ′[a1/x1] . . . [an/xn] whenever

〈P, φ〉 α′
−→ 〈P ′, φ′〉.

– If P [a1/x1] . . . [an/xn]
β−→ P ′[a/x][a1/x1] . . . [an/xn] and

|= φ[a1/x1] . . . [an/xn], then |= φ′[a/x][a1/x1] . . . [an/xn] whenever

〈P, φ〉 β′
−→ 〈P ′, φ′〉.

The proofs of Lemma 3, Lemma 4 and Lemma 5 are given in Appendix D.

4 Bisimulation Equivalence for Constrained Processes

In this section, we extend Milner’s notion of strong bisimulation [16] to handle
constrained processes. But first, in order to bind the variables of the compared
constrained processes, we need to consider finite relations between their free
variables. Recall that whenever we compare two processes P and Q, we always
assume that no variable has been used in both definitions.

4.1 Relations Between Variables

Consider the family R of all relation between finite subsets of variables, hence
R = {R | R ⊆ V1 ×V2 for some finite sets V1,V2 ⊆ V}. A relation R ∈ R is said
to be a full relation between V1 and V2 whenever ∀x∈V1∃y∈V2 (x, y) ∈ R and
∀y∈V2∃x∈V1 (x, y) ∈ R (or R = ∅ if either V1 = ∅ or V2 = ∅).

For any variable x ∈ V and any relation R ∈ R, we consider the relation
R[x] ∈ R defined by R[x] = {(x′, y′) ∈ R | x′ �= x and y′ �= x}. Moreover, for
any x, y ∈ V , we consider the relation R[[(x, y)]] ∈ R defined by

R[[(x, y)]] = R[x][y] ∪ {(x, y)}.

1170 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

The relation R[[(x, y)]] is therefore obtained from R by, first removing every
occurrence of x and y, and then adding (x, y).

A valuation � is said to be consistent with the relation R ∈ R if �(x) = �(y)
whenever (x, y) ∈ R. Given x, y ∈ V , we define �[x/y] as the valuation obtained
from � by setting �[x/y](y) = �(x) (and �[x/y](z) = �(z) otherwise). It is easy to
see that the valuation �[x/y] is consistent with the relation R[[(x, y)]] whenever
� is consistent with R[x].

4.2 Bisimulation

For the following definition, recall from Section 3.3 that, given an action β =
cid(x), fid, splitid or decid, we assume that x is always the variable introduced
by β.

Definition 6. (Bisimulation) Let 〈P, φ〉 and 〈Q, ψ〉 be constrained processes
and let R ∈ R be a full relation between fv(φ) and fv(ψ). A bisimulation between
〈P, φ〉 and 〈Q, ψ〉 with respect to R is a family of relations R = {R�}�, for
every valuation �, where each relation R� ⊆ D(〈P, φ〉)×D(〈Q, ψ〉)×R satisfies
the following conditions:

1. If � |= φ, � |= ψ and � is consistent with R, then (〈P, φ〉, 〈Q, ψ〉, R) ∈ R�;

2. Whenever (〈P1, φ1〉, 〈Q1, ψ1〉, R1) ∈ R�, for any action α = cid(t), δcid(t),
δcid(t), signvid or τ , and any action β = cid(x), fid, splitid or decid, we have

– if 〈P1, φ1〉
α−→ 〈P2, φ2〉 and � |= φ2, then (〈P2, φ2〉, 〈Q2, ψ2〉, R1) ∈ R�,

where Q2 and ψ2 are such that � |= ψ2 and 〈Q1, ψ1〉 α′
−→ 〈Q2, ψ2〉, and

α′ is such that α′ = α[y1/x1] . . . [yn/xn] for some (xi, yi) ∈ R1;

– if 〈Q1, ψ1〉 α−→ 〈Q2, ψ2〉 and � |= ψ2, then (〈P2, φ2〉, 〈Q2, ψ2〉, R1) ∈
R� where P2 and φ2 are such that � |= φ2 and 〈P1, φ1〉 α′

−→ 〈P2, φ2〉,
and α′ = α[y1/x1] . . . [yn/xn] for some (yi, xi) ∈ R1;

– if 〈P1, φ1〉
β−→ 〈P2, φ2〉, then (〈P2, φ2〉, 〈Q2, ψ2〉, R1[[(x, y)]]) ∈ R�′[x/y]

for every valuation �′ consistent with R1[x] such that �′ |= φ2, where Q2

and ψ2 are such that �′[x/y] |= ψ2 and 〈Q1, ψ1〉
β′
−→ 〈Q2, ψ2〉, and

β′ = β[y/x];

– if 〈Q1, ψ1〉
β−→ 〈Q2, ψ2〉, then (〈P2, φ2〉, 〈Q2, ψ2〉, R1[[(x, y)]]) ∈ R�′[x/y]

for every valuation �′ consistent with R1[x] such that �′ |= ψ2, where P2

and φ2 are such that �′[x/y] |= φ2 and 〈P1, φ1〉
β′
−→ 〈P2, φ2〉, and

β′ = β[y/x].

1171Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Two constrained processes 〈P, φ〉 and 〈Q, ψ〉 are bisimilar if there exists a
bisimulation which relates 〈P, φ〉 and 〈Q, ψ〉 with respect to some full relation
R between fv(φ) and fv(ψ). In that case, we write 〈P, φ〉 � 〈Q, ψ〉.

Note that if R = {R�}� is a bisimulation, � |= φ and � |= ψ whenever
(〈P, φ〉, 〈Q, ψ〉, R) ∈ R�. Moreover, � must be consistent with the relation R.

4.3 Equivalence of the Bisimulations

In the following theorem, we see that the bisimulation equivalence between SPPA
constrained processes, as defined above, corresponds to the strong bisimulation
equivalence between SPPA processes. Obviously, this result holds only when the
SPPA processes under comparison are compatible i.e., for processes without free
variables. (We say that an SPPA process P is closed whenever fv(P) = ∅.) First,
we define strong bisimulation between SPPA (value-passing) processes.

Definition 7. A bisimulation between closed processes P and Q is a relation
R ⊆ D(P) ×D(Q) such that

– (P,Q) ∈ R;

– If (P1, Q1) ∈ R and P1
α−→ P2, then (P2, Q2) ∈ R, where Q2 is such that

Q1
α−→ Q2;

– If (P1, Q1) ∈ R and Q1
α−→ Q2, then (P2, Q2) ∈ R, where P2 is such that

P1
α−→ P2,

where α ∈ Act is any (variable-free) action. We write P � Q whenever P and Q
are related by some bisimulation.

Theorem 8. Let P and Q be closed processes. Then, P � Q if and only if
〈P, 1〉 � 〈Q, 1〉.

Proof. First, assume that P � Q and let R be a bisimulation between P and
Q. Consider the family of relations R′ = {R′�}�, where, given a valuation �, the
relation R′� is defined as follows:

– for every (P ′, Q′) ∈ R, (〈P ′, 1〉, 〈Q′, 1〉, ∅) ∈ R′�;

– for every (P ′[�(x1)/x1] . . . [�(xn)/xn], Q′[�(y1)/y1] . . . [�(ym)/ym]) ∈ R, for
every formulas φ and ψ, with fv(φ) = {x1, . . . , xn} and fv(ψ) = {y1, . . . , ym},
and for every relation R ⊆ fv(φ)× fv(ψ), (〈P ′, φ〉, 〈Q′, ψ〉, R) ∈ R′� when-
ever � |= φ, � |= ψ and � is consistent with R.

In the following, we show that R′ = {R′�}� is a bisimulation between 〈P, 1〉
and 〈Q, 1〉 with respect to the empty relation ∅. To achieve this goal, we show
that each relation R′� fits the conditions from Definition 6.

1172 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

1. First, we see that (〈P, 1〉, 〈Q, 1〉, ∅) ∈ R′� (with � |= 1 and � is consistent
with the empty relation ∅).

2. Let (〈P1, φ1〉, 〈Q1, ψ1〉, R) ∈ R′�. First, we see that � |= φ1, � |=
ψ1 and � is consistent with R. Moreover, we may assume that fv(φ1) =
{x1, . . . , xn} and fv(ψ1) = {y1, . . . , ym}, with R ⊆ fv(φ1) × fv(ψ1). Also,
we have (P ′

1, Q
′
1) ∈ R, with P ′

1 ::= P1[�(x1)/x1] . . . [�(xn)/xn] and Q′
1 ::=

Q1[�(y1)/y1] . . . [�(ym)/ym].

Assume that � |= φ2 and 〈P1, φ1〉 α′
−→ 〈P2, φ2〉 with α′ = cid(t), δcid(t),

δcid(t), signvid or τ . By Lemma 4,

P ′
1

α−→ P ′
2

where P ′
2 ::= P2[�(x1)/x1] . . . [�(xn)/xn] and α = �(α′). Since (P ′

1, Q
′
1) ∈ R,

there is a transition
Q′

1
α−→ Q′

2

such that (P ′
2, Q

′
2) ∈ R, where Q′

2 ::= Q2[�(y1)/y1] . . . [�(ym)/ym]. By
Lemma 3, there is a transition

〈Q1, ψ1〉 α′′
−→ 〈Q2, ψ2〉

with α = α′′[�(y1)/y1] . . . [�(ym)/ym] and � |= ψ2 (by Lemma 5).
Moreover, since � is consistent with R, we may assume that
α′ = α′′[y′1/x1] . . . [y′n/xn] with {y′1, . . . , y′n} = {y1, . . . , ym} and (xi, y′i) ∈ R.
Therefore, since � |= φ2, � |= ψ2 and � is consistent with R, we see that

(〈P2, φ2〉, 〈Q2, ψ2〉, R) ∈ R′�. The case where 〈Q1, ψ1〉 α′
−→ 〈Q2, ψ2〉 is

similar.

Now assume that 〈P1, φ1〉
β′
−→ 〈P2, φ2〉, with β′ = cid(x), fid, splitid or

decid, and let �′ be a valuation consistent with R[x] such that �′ |= φ2. By
Lemma 4,

P ′
1

β−→ P ′
2

where β = �′(β′) and P ′
2 ::= P2[�′(x)/x][�′(x1)/x1] . . . [�′(xn)/xn]. Since

(P ′
1, Q

′
1) ∈ R, there is a transition

Q′
1

β−→ Q′
2

such that (P ′
2, Q

′
2) ∈ R, where Q′

2 ::= Q2[�′(x)/y][�′(y1)/y1] . . . [�′(ym)/ym]
for some y. By Lemma 3, there is a transition

〈Q1, φ1〉
β′′
−→ 〈Q2, ψ2〉

with β = β′′[�′(x)/y] = �′(β′′) and �′[x/y] |= ψ2 (by Lemma 5). Moreover,
since �′ is consistent with R[x], we may assume that β′ = β′′[y/x]. Therefore,

1173Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

since �′[x/y] |= φ2, �′[x/y] |= ψ2 and �′[x/y] is consistent with R[[(x, y)]],
we see that (〈P2, φ2〉, 〈Q2, ψ2〉, R[[(x, y)]]) ∈ R′�′ [x/y]. The case where

〈Q1, ψ1〉
β′
−→ 〈Q2, ψ2〉 is similar.

Conversely, assume that 〈P, 1〉 � 〈Q, 1〉 and let R = {R�} be a bisimulation
between 〈P, 1〉 and 〈Q, 1〉 with respect to ∅. Consider the relation R′ ⊆
D(P) ×D(Q) defined as follows:

– If (〈P ′, 1〉, 〈Q′, 1〉, ∅) ∈ R� for some �, then (P ′, Q′) ∈ R′;

– If (〈P ′, φ〉, 〈Q′, ψ〉, R) ∈ R� for some �, then

(P ′[�(x1)/x1] . . . [�(x1)/xn], Q′[�(y1)/y1] . . . [�(ym)/ym]) ∈ R′

where fv(φ) = {x1, . . . , xn} and fv(ψ) = {y1, . . . , ym}.

In the following, we show that R′ is a bisimulation between P and Q.

1. First, we see that (P,Q) ∈ R′ since (〈P, 1〉, 〈Q, 1〉, ∅) ∈ R�. for any
valuation �.

2. Let P ′
1 ::= P1[a1/x1] . . . [an/xn] and Q′

1 ::= Q1[b1/y1] . . . [bm/ym], for some
ai, bj ∈ M, be such that (P ′

1, Q
′
1) ∈ R′. By the definition of R′, there is a

valuation �, with �(xi) = ai and �(yj) = bj, such that (〈P1, φ1〉, 〈Q1, ψ1〉, R)
∈ R� with fv(φ1) = {x1, . . . , xn} and fv(ψ1) = {y1, . . . , ym}. Moreover, we
have � |= φ1, � |= ψ1 and � is consistent with R.

Let α′ = c(t), δcid(t), δ
c
id(t), signvid or τ , and assume that P ′

1
α−→ P ′

2 where
α = α′[�(x1)/x1] . . . [�(xn)/xn] = �(α) and P ′

2 ::= P2[�(x1)/x1] . . . [�(xn)/xn].
By Lemma 3 and since fv(φ1) = {x1, . . . , xn}, we have

〈P1, φ1〉 α′
−→ 〈P2, φ2〉

with � |= φ2 (by Lemma 5). But since (〈P1, φ1〉, 〈Q1, ψ1〉, R) ∈ R�, there
is a transition

〈Q1, ψ1〉 α′′
−→ 〈Q2, ψ2〉

for α′ = α[y′1/x1] . . . [y′n/xn] with {y′1, . . . , y′n} = {y1, . . . , ym} and (xi, y′i) ∈
R, such that (〈P2, φ2〉, 〈Q2, ψ2〉, R) ∈ R� and � |= ψ2. Also, since � is
consistent with R, we have �(α′′) = �(α′) = α. Therefore, by Lemma 4 and
since � |= ψ2, we have

Q′
1

α−→ Q′
2

where Q′
2 ::= Q2[�(y1)/y1] . . . [�(ym)/ym]. Moreover, since fv(φ2) =

fv(φ1) = {x1, . . . , xn} and fv(ψ2) = fv(ψ1) = {y1, . . . , ym}, and since
(〈P2, φ2〉, 〈Q2, ψ2〉, R) ∈ R�, we see from the definition of R′ that
(P ′

2, Q
′
2) ∈ R′. The case where Q′

1
α−→ Q′

2 is similar.

1174 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Now assume that P ′
1

β−→ P ′
2 where β = β′[a/x] for some β′ = cid(x), fid,

splitid or decid, and P ′
2 ::= P2[a/x][�(x1)/x1] . . . [�(xn)/xn]. Consider the

valuation �′ defined as follows:

�′(x) = a and �′(z) = �(z) otherwise.

Since � is consistent with R, then �′ is consistent with R[x] and β = �′(β′).
Furthermore, we see that P ′

2 = P2[�′(x)/x][�′(x1)/x1] . . . [�′(xn)/xn]. By
Lemma 3, and since fv(φ1) = {x1, . . . , xn}, we have

〈P1, φ1〉
β′
−→ 〈P2, φ2〉

with �′ |= φ2 (by Lemma 5). But since (〈P1, φ1〉, 〈Q1, ψ1〉, R) ∈ R�,
there is a transition

〈Q1, ψ1〉
β′′
−→ 〈Q2, ψ2〉

for β′ = β[y/x], such that (〈P2, φ2〉, 〈Q2, ψ2〉, R[[(x, y)]]) ∈ R�′[x/y] and
�′[x/y] |= ψ2. Also, since �′ is consistent with R[x], therefore �′ is consistent
with R[[(x, y)]], we have �′[x/y](β′′) = �′[x/y](β′) = β. Put �′′ = �′[x/y]. By
Lemma 4 and since �′′ |= ψ2, we have

Q′
1

β−→ Q′
2

where Q′
2 ::= Q2[�′′(y)/y][�′′(y1)/y1] . . . [�′′(ym)/ym] with �′′(y) = a,

�′′(y1) = �(y1), . . . , �′′(ym) = �(ym). Moreover, since fv(φ2) = fv(φ1) ∪
{x} = {x1, . . . , xn, x} and fv(ψ2) = fv(ψ1)∪{y} = {y1, . . . , ym, y}, and since
(〈P2, φ2〉, 〈Q2, ψ2〉, R[[(x, y)]]) ∈ R�′′ , we see from the definition of R′ that

(P ′
2, Q

′
2) ∈ R′. The case where Q′

1
β−→ Q′

2 is similar. ��

5 Symbolic Bisimulation: A Proof Method for Bisimulation

In this section, we introduce a symbolic bisimulation relation for constrained
processes which can be constructed within a finite number of steps. We also show
that this symbolic bisimulation relation is equivalent to the bisimulation relation
introduced in Definition 6. Our symbolic bisimulation may therefore serve as
a sound and complete finite proof method for the bisimulation of constrained
processes.

5.1 Equivalence Relation over Valuations

For the following, we consider two constrained processes 〈P, φ〉 and 〈Q, ψ〉. We
also consider the following sets:

{φ′ | 〈P ′, φ′〉 ∈ D(〈P, φ〉) for some P ′} = {φ1, . . . , φm},

1175Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

{ψ′ | 〈Q′, ψ′〉 ∈ D(〈Q, ψ〉) for some Q′} = {ψ1, . . . , ψm′},⋃
1≤j≤m

fv(φj) = {x1, . . . , xn} and
⋃

1≤j≤m′
fv(ψj) = {y1, . . . , yn′}.

Such sets of formulas and variables are finite (up to formula equivalence) since
the sets D(〈P, φ〉) and D(〈Q, ψ〉) are finite by Theorem 2. Now consider the
equivalence relation over valuations defined as follows: � ≡ �′ if

– for every 1 ≤ i ≤ m, � |= φi iff �′ |= φi;

– for every 1 ≤ i ≤ m′, � |= ψi iff �′ |= ψi;

– for every z, z′ ∈ {x1, . . . , xn} ∪ {y1, . . . , yn′},

�(z) = �(z′) iff �′(z) = �′(z′).

Also consider the equivalence class (with respect to 〈P, φ〉 and 〈Q, ψ〉) of a
valuation � defined as follows:

[[�]] = {�′ | �′ ≡ �}.

Lemma9. Let � and �′ be valuations such that � ≡ �′.

1. For any relation R ⊆ {x1, . . . , xn} × {y1, . . . , yn′},

� is consistent with R if and only if �′ is consistent with R.

2. For any x, y ∈ {x1, . . . , xn} ∪ {y1, . . . , yn′},

�[x/y] ≡ �′[x/y] and �[y/x] ≡ �′[y/x].

The proof of Lemma 9 is straightforward from the definition of the equiva-
lence relation ≡.

Lemma10. There are finitely many equivalence classes [[�]] i.e., the set
{[[�]] | � is a valuation} is finite.

Proof. Follows from the fact that the sets {φ′ | 〈P ′, φ′〉 ∈ D(〈P, φ〉) for some

P ′} and {ψ′ | 〈Q′, ψ′〉 ∈ D(〈Q, ψ〉) for some Q′} are finite (up to formula
equivalence). Therefore, using the notation established above, we see that

– there are at most 2m equivalence classes for the relation:

∀1≤i≤m � |= φi iff �′ |= φi;

– there are at most 2m
′
equivalence classes for the relation:

∀1≤i≤m′ � |= ψi iff �′ |= ψi;

– there are at most 2(n+n′)2 equivalence classes for the relation:

∀z,z′∈{x1,...,xn}∪{y1,...,yn′} �(z) = �(z′) iff �′(z) = �′(z′).

Hence, there are at most 2m+m′+(n+n′)2 equivalence classes [[�]]. ��

1176 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

5.2 Symbolic Bisimulation

Definition 11. (Symbolic Bisimulation) Let 〈P, φ〉 and 〈Q, ψ〉 be con-
strained processes and let R ∈ R be a full relation between fv(φ) and fv(ψ).
A symbolic bisimulation between 〈P, φ〉 and 〈Q, ψ〉 with respect to R is a finite
family R = {R[[�]]}�, for every valuation �, where each relation R[[�]] satisfies the
following conditions:

1. If � |= φ, � |= ψ and � is consistent with R, then (〈P, φ〉, 〈Q, ψ〉, R) ∈ R[[�]];

2. Whenever (〈P1, φ1〉, 〈Q1, ψ1〉, R1) ∈ R[[�]], for any action α = cid(t),
δcid(t), δ

c
id(t), signvid or τ , and any action β = cid(x), fid, splitid or decid,

we have

– if 〈P1, φ1〉 α−→ 〈P2, φ2〉 and � |= φ2, then (〈P2, φ2〉, 〈Q2, ψ2〉, R1) ∈
R[[�]], where Q2 and ψ2 are such that � |= ψ2 and 〈Q1, ψ1〉

α′
−→ 〈Q2, ψ2〉,

and α′ = α[y1/x1] . . . [yn/xn] for some (xi, yi) ∈ R1;

– if 〈Q1, ψ1〉 α−→ 〈Q2, ψ2〉 and � |= ψ2, then (〈P2, φ2〉, 〈Q2, ψ2〉, R1) ∈
R[[�]], where P2 and φ2 are such that � |= φ2 and 〈P1, φ1〉 α′

−→ 〈P2, φ2〉,
and α′ = α[y1/x1] . . . [yn/xn] for some (yi, xi) ∈ R1;

– if 〈P1, φ1〉
β−→ 〈P2, φ2〉, then (〈P2, φ2〉, 〈Q2, ψ2〉, R1[[(x, y)]]) ∈ R[[�′[x/y]]]

for every valuation �′ consistent with R1[x] such that �′ |= φ2, where Q2

and ψ2 are such that �′[x/y] |= ψ2 and 〈Q1, ψ1〉
β′
−→ 〈Q2, ψ2〉, and

β′ = β[y/x];

– if 〈Q1, ψ1〉
β−→ 〈Q2, ψ2〉, then (〈P2, φ2〉, 〈Q2, ψ2〉, R1[[(x, y)]]) ∈ R[[�′[x/y]]]

for every valuation �′ consistent with R1[x] such that �′ |= ψ2, where P2

and φ2 are such that �′[x/y] |= φ2 and 〈P1, φ1〉
β′
−→ 〈P2, φ2〉, and

β′ = β[y/x].

We write 〈P, φ〉 �s 〈Q, ψ〉 whenever there exists a symbolic bisimulation which
relates 〈P, φ〉 and 〈Q, ψ〉 with respect to some full relation R between fv(φ)
and fv(ψ).

The following theorem states that symbolic bisimulation is a sound and com-
plete proof method for verifying bisimilarity between constrained processes.

Theorem 12. 〈P, φ〉 � 〈Q, ψ〉 if and only if 〈P, φ〉 �s 〈Q, ψ〉.

Proof. First, assume that 〈P, φ〉 � 〈Q, ψ〉, and let R = {R�}� be a bisimu-
lation with respect to some full relation R between fv(φ) and fv(ψ). For every
equivalence class [[�]], consider the relation

R′[[�]] =
⋃

�′∈[[�]]

R�′ .

1177Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Hence R� ⊆ R′[[�]] for every �. Then it is enough to show that the (finite)
family R′ = {R′[[�]]}� is a symbolic bisimulation with respect to R, therefore
〈P, φ〉 �s 〈Q, ψ〉. Indeed, given an equivalence class [[�]], we see that the R′[[�]]

satisfies every conditions from Definition 11.

1. If � |= φ, � |= ψ, and � is consistent with R, then (〈P, φ〉, 〈Q, ψ〉, R) ∈ R�,
thus (〈P, φ〉, 〈Q, ψ〉, R) ∈ R[[�]].

2. Assume (〈P1, φ1〉, 〈Q1, ψ1〉, R1) ∈ R[[�]], with � |= φ1 and � |= ψ1. Then
we have (〈P1, φ1〉, 〈Q1, ψ1〉, R1) ∈ R�′ , for some �′ ≡ �, with �′ |= φ1

and �′ |= ψ1. Therefore, if 〈P1, φ1〉 α−→ 〈P2, φ2〉 for α = cid(t), δcid(t),
δcid(t), signvid or τ , and � |= φ2, thus �′ |= φ2, then there is a transition

〈Q1, ψ1〉 α′
−→ 〈Q2, ψ2〉, for some α′ = α[y1/x1] . . . [yn/xn] with (xi, yi) ∈

R1, such that (〈P2, φ2〉, 〈Q2, ψ2〉, R1) ∈ R�′ and �′ |= ψ2. Therefore
(〈P2, φ2〉, 〈Q2, ψ2〉, R1) ∈ R[[�′]] = R[[�]] and � |= ψ2. The case where
〈Q1, ψ1〉 α−→ 〈Q2, ψ2〉 is similar.

Now assume that 〈P1, φ1〉
β−→ 〈P2, φ2〉, for β = cid(x), fid, splitid or decid,

and let �1 be a valuation consistent with R1[x] and such that �1 |= φ2.

There is a transition 〈Q1, ψ1〉
β′
−→ 〈Q2, ψ2〉, for some β′ = β[y/x], such

that (〈P2, φ2〉, 〈Q2, ψ2〉, R1[[(x, y)]]) ∈ R�1[x/y] and �1[x/y] |= ψ2. Moreover,
since R�1[x/y] ⊆ R[[�1[x/y]]], we see that (〈P2, φ2〉, 〈Q2, ψ2〉, R1[[(x, y)]]) ∈
R[[�1[x/y]]]. The case where 〈Q1, ψ1〉

β−→ 〈Q2, ψ2〉 is similar.

Conversely, assume that 〈P, φ〉 �s 〈Q, ψ〉, and let R = {R[[�]]}� be a sym-
bolic bisimulation with respect to some full relation R between fv(φ) and fv(ψ).
Consider the family R′ = {R�}� where R� = R[[�]]. We see that R′ is a bisimu-
lation with respect to R, thus 〈P, φ〉 � 〈Q, ψ〉. Indeed, given a valuation �, we
show that the relation R� = R[[�]] satisfies the conditions from Definition 6.

1. If � |= φ, � |= ψ, and � is consistent with R, then (〈P, φ〉, 〈Q, ψ〉, R) ∈ R[[�]],
thus (〈P, φ〉, 〈Q, ψ〉, R) ∈ R�.

2. Assume (〈P1, φ1〉, 〈Q1, ψ1〉, R1) ∈ R� with � |= φ1 and � |= ψ1. Then, we
have (〈P1, φ1〉, 〈Q1, ψ1〉, R1) ∈ R[[�]]. Therefore, if 〈P1, φ1〉 α−→ 〈P2, φ2〉
for α = cid(t), δcid(t), δ

c
id(t), signvid or τ , and � |= φ2, then there is a

transition 〈Q1, ψ1〉 α′
−→ 〈Q2, ψ2〉, for some α′ = α[y1/x1] . . . [yn/xn] with

(xi, yi) ∈ R1, such that (〈P2, φ2〉, 〈Q2, ψ2〉, R1) ∈ R[[�]] and � |= ψ2. There-
fore (〈P2, φ2〉, 〈Q2, ψ2〉, R1) ∈ R�. The case where 〈Q1, ψ1〉 α−→ 〈Q2, ψ2〉
is similar.

Now assume that 〈P1, φ1〉
β−→ 〈P2, φ2〉, for β = cid(x), fid, splitid or decid,

and let �1 be a valuation consistent with R[x] and such that �1 |= φ2. There-

fore, there is a transition 〈Q1, ψ1〉
β′
−→ 〈Q2, ψ2〉, for some β′ = β[y/x], such

1178 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

that (〈P2, φ2〉, 〈Q2, ψ2〉, R1[[(x, y)]]) ∈ R[[�1[x/y]]] and �1[x/y] |= ψ2. More-
over, since R�1[x/y] = R[[�1[x/y]]], we have (〈P2, φ2〉, 〈Q2, ψ2〉, R1[[(x, y)]]) ∈
R�1[x/y]. The case where 〈Q1, ψ1〉

β−→ 〈Q2, ψ2〉 is similar. ��

Theorem 12 allows us to construct bisimulation between constrained pro-
cesses using only finitely many valuations (one from each equivalence class [[�]]).
Therefore, it gives us a finite proof method for verifying bisimilarity between
any two constrained processes.

5.3 An Example

Example 5. Consider processes A and B defined as follows:

A ::= c(x1).A′, A′ ::= c(x2).A and B ::= c(y).B

with idA = idB = id. The symbolic semantics of 〈A, 1〉 and 〈B, 1〉 are given in
Fig. 5. We show that the constrained processes 〈A, 1〉 and 〈B, 1〉 are bisimilar.
From Theorem 12, it is enough to construct a symbolic bisimulation between
〈A, 1〉 and 〈B, 1〉 with respect to the empty relation R = ∅.

〈A, 1〉 �cid(x1) 〈A′, M(x1)〉 �cid(x2) 〈A, M(x1) ∧M(x2)〉

�
cid(x1)

�cid(x2)

〈A′, M(x1) ∧M(x2)〉

〈B, 1〉 �cid(y) 〈B, M(y)〉 �

��
cid(y)

Figure 5: Symbolic Semantics of 〈A, 1〉 and 〈B, 1〉.

First we consider the sets of formulas occurring in D(〈A, φ〉) and D(〈B, ψ〉):

{1, M(x1), M(x1) ∧M(x2)} and {1, M(y)}.

Thus, we only need to consider sets of variables {x1, x2} and {y}. Since these
formulas are satisfied by every valuation, there are five equivalence classes with
respect to ≡, namely those that cover all the possibilities of the variables having
identical values (resp. different values):

1179Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

[[�1]] = {�′ | �′(x1) �= �′(x2), �′(x1) �= �′(y) and �′(x2) �= �′(y)},
[[�2]] = {�′ | �′(x1) = �′(x2) and �′(x1) �= �′(y)},
[[�3]] = {�′ | �′(x1) = �′(y) and �′(x1) �= �′(x2)},
[[�4]] = {�′ | �′(x1) �= �′(x2) and �′(x2) = �′(y)}, and
[[�5]] = {�′ | �′(x1) = �′(x2) = �′(y)}.

Note that we have [[�i[x1/y]]] = [[�i[y/x1]]] = [[�3]] for i = 1, 3, [[�i[x1/y]]] =
[[�i[y/x1]]] = [[�5]] for i = 2, 4, 5, [[�i[x2/y]]] = [[�i[y/x2]]] = [[�4]] for i = 1, 4, and
[[�i[x2/y]]] = [[�i[y/x2]]] = [[�5]] for i = 2, 3, 5.

For each equivalence class [[�i]], the steps for constructing the relation R[[�i]]

are illustrated in Fig. 6. Thus, for each class [[�i]], we need go to through the

R[[�1]]

D(〈A, 1〉) D(〈B, 1〉) R
〈A, 1〉 〈B, 1〉) ∅

go to relations R[[�3]] and R[[�5]]

R[[�2]]

D(〈A, 1〉) D(〈B, 1〉) R
〈A, 1〉 〈B, 1〉) ∅

go to relations R[[�3]] and R[[�5]]

R[[�3]]

D(〈A, 1〉) D(〈B, 1〉) R

〈A, 1〉 〈B, 1〉) ∅
〈A′, M(x1)〉 〈B, M(y))〉 {(x1, y)}

〈A′, M(x1) ∧M(x2)〉 〈B, M(y))〉 {(x1, y)}
go to relation R[[�4]] and R[[�5]]

R[[�4]]

D(〈A, 1〉) D(〈B, 1〉) R

〈A, 1〉 〈B, 1〉) ∅
〈A, M(x1) ∧M(x2)〉 〈B, M(y)〉 {(x2, y)}

go to relations R[[�3]] and R[[�5]]

R[[�5]]

D(〈A, 1〉) D(〈B, 1〉) R

〈A, 1〉 〈B, 1〉) ∅
〈A′, M(x1)〉 〈B, M(y)〉 {(x1, y)}

〈A, M(x1) ∧M(x2)〉 〈B, M(y)〉 {(x2, y)}
〈A′, M(x1) ∧M(x2)〉 〈B, M(y)〉 {(x1, y)}
〈A, M(x1) ∧M(x2)〉 〈B, M(y)〉 {(x2, y)}
halt: already processed (success)

Figure 6: Symbolic Bisimulation of 〈A, 1〉 and 〈B, 1〉.

conditions imposed by Definition 11 and determine which pairs of derivatives

1180 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

from the set D(〈A, 1〉) × D(〈B, 1〉) belong to R[[�i]], along with their finite
relation R.

– For the class [[�1]], first we add (〈A, 1〉, 〈B, 1〉, ∅) to R[[�1]]. Then, since the
constrained process 〈A, 1〉 can execute the input action cid(x1), we need to
verify whether 〈B, 1〉 can simulate this input action with its own cid(y),
where x1 is mapped to y. But since both �3 and �5 are consistent with
the relation {(x1, y)}, we need to add (〈A′, M(x1)〉, 〈B, M(y)〉, {(x1, y)})
to both R[[�3]] and R[[�5]]. Similarly, simulating the input action cid(y) from
〈B, 1〉 by the input action cid(x1) from 〈A, 1〉 requires the same additions
on R[[�3]] and R[[�5]].

– For the class [[�2]], first we add (〈A, 1〉, 〈B, 1〉, ∅) to R[[�2]]. As for the class
[[�1]], we then need to add (〈A′, M(x1)〉, 〈B, M(y)〉, {(x1, y)}) to both R[[�3]]

(already added) and R[[�5]] (already added).

– For the class [[�3]], first we add (〈A, 1〉, 〈B, 1〉, ∅) to R[[�3]]. As above, we
also need to add (〈A′, M(x1)〉, 〈B, M(y)〉, {(x1, y)}) to both R[[�3]] (already
added) and R[[�5]] (already added). The addition of the tuplet
(〈A′, M(x1)〉, 〈B, M(y)〉, {(x1, y)}) to R[[�3]] (imposed by the other rela-
tions) requires the bisimulation of the input action cid(x2) form 〈A′, M(x1)〉
by the input action cid(y) 〈B, M(y)〉, through the relation {(x2, y)}. Hence,
since the valuations �4 and �5 are consistent with the relation {(x2, y)}, we
need to add (〈A, M(x1)∧M(x2)〉, 〈B, M(y)〉, {(x2, y)}) to both R[[�4]] and
R[[�5]]. Moreover, the addition of (〈A′, M(x1)∧M(x2)〉, 〈B, M(y)〉, {(x1, y)})
to R[[�3]] (imposed by the relation R[[�4]]) requires the bisimulation of the in-
put action cid(x2) from 〈A′, M(x1) ∧ M(x2)〉 by the input action cid(y)
from 〈B, M(y)〉, through the relation {(x2, y)}. Hence, we need to add
(〈A, M(x1)∧M(x2)〉, 〈B, M(y)〉, {(x2, y)}) to both R[[�4]] (already added)
and R[[�5]] (already added).

– For the class [[�4]], first we add (〈A, 1〉, 〈B, 1〉, ∅) to R[[�4]]. As above, we
then need to add (〈A′, M(x1)〉, 〈B, M(y)〉, {(x1, y)}) to both R[[�3]] (already
added) and R[[�5]] (already added). The addition of the tuplet (〈A, M(x1)∧
M(x2)〉, 〈B, M(y)〉, {(x2, y)}) to R[[�4]] (imposed by the relation R[[�3]]) re-
quires the bisimulation of the input action cid(x1) from 〈A, M(x1)∧M(x2)〉
by the input action cid(y) from 〈B, M(y)〉, through the relation {(x1, y)}.
Hence, since �3 and �5 are consistent with the relation {(x1, y)}, we need to
add (〈A′, M(x1) ∧M(x2)〉, 〈B, M(y)〉, {(x1, y)}) to both R[[�3]] and R[[�5]].

– For the class [[�5]], first we add (〈A, 1〉, 〈B, 1〉, ∅) to R[[�5]]. As above, we
then need to add (〈A′, M(x1)〉, 〈B, M(y)〉, {(x1, y)}) to both R[[�3]] (already
added) and R[[�5]] (already added). This last additon to R[[�5]] requires to
show the bisimulation of the input action cid(x2) from 〈A′, M(x1)〉 by the

1181Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

input action cid(y) from 〈B, M(y)〉, through the relation {(x2, y)}. Since
the valuations �4 and �5 are consistent with the relation {(x2, y)}, we need
to add (〈A, M(x1) ∧M(x2)〉, 〈B, M(y)〉, {(x2, y)}) to both R[[�4]] (already
added) and R[[�5]] (already added). This last addition to R[[�5]] then leads
us to look at constrained processes 〈A, M(x1) ∧ M(x2)〉 and 〈B, M(y)〉,
hence their respective input actions cid(x1) and cid(y) through the relation
{(x1, y)}. But since �3 and �5 are consistent with the relation {(x1, y)}, we
need to add the tuplet (〈A′, M(x1)∧M(x2)〉, 〈B, M(y)〉, {(x1, y)} to both
R[[�3]] (already added) and R[[�5]] (already added).

The algorithm halts (with success) when every triplet (〈P, φ〉, 〈Q, ψ〉, R) has
been processed, without any contradiction, for every relation R[[�]] such that �
is consistent with R. In our example, the construction of the bisimulation halts
since every triplet has been added whenever is was required. Therefore, we obtain

the symbolic bisimulation R =
5⋃
i=1

{R[[�i]]} where

R[[�1]] = { (〈A, 1〉, 〈B, 1〉, ∅) }
R[[�2]] = { (〈A, 1〉, 〈B, 1〉, ∅) }
R[[�3]] = { (〈A, 1〉, 〈B, 1〉, ∅), (〈A′, M(x1)〉, 〈B, M(y)〉, {(x1, y)}),

(〈A′, M(x1) ∧M(x2)〉, 〈B, M(y)〉, {(x1, y)}) }
R[[�4]] = { (〈A, 1〉, 〈B, 1〉, ∅), (〈A, M(x1) ∧M(x2)〉, 〈B, M(y)〉, {(x2, y)}) }
R[[�5]] = { (〈A, 1〉, 〈B, 1〉, ∅), (〈A′, M(x1)〉, 〈B, M(y)〉, {(x1, y)}),

(〈A, M(x1) ∧M(x2)〉, 〈B, M(y)〉, {(x2, y)}),
(〈A′, M(x1) ∧M(x2)〉, 〈B, M(y)〉, {(x1, y)}) }.

6 Security Protocols Analysis

In this section, we give a quick overview on how to use the symbolic framework
introduced in this paper to analyse security protocols. First, we show how to
specify a protocol using the concept of constrained process, and, secondly, we
show how to specify security properties using equivalence-checking methods.

6.1 Protocol Specification

Process algebra SPPA along with the notion of constrained process offer a useful
framework for the specification of security protocols, including cryptographic
protocols. Starting from a protocol P written in a notation à la Alice and Bob,
the main idea behind our specification approach is to specify each principal
involved in P as disjoint constrained processes. For instance, a principal A is
specified as the constrained process 〈A, φA〉, where A ::= (SA, idA), SA is the
initial SPPA agent of A, and φA is a formula characterising the principal’s initial

1182 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

knowledge (specified as free variables within SA). Note that a principal’s initial
knowledge (e.g. its private keys and the keys of other principals) are commonly
implicitly specified within the initial agent SA as specific messages m ∈ M or
keys k ∈ K. Thus, an initial agent SA is generally closed (i.e. fv(SA) = ∅) and,
in that case, we have φA ::= 1. However, our symbolic framework also allows for
the specification of these initial knowledge as symbolic values (i.e. free variables).
For instance, if fv(SA) = {x} and x stands for A’s private key in SA, then we
put φA ::= K(x).

Given specifications of the protocol’s principals, let say 〈A, φA〉, 〈B, φB〉 and
〈S, φS〉, then the whole protocol is specified as the constrained process 〈P, φP 〉
with P ::= A ‖ B ‖ S and φP ::= φA ∧ φB ∧ φS .

The intruders, namely the principals attacking the security protocols, are
specified similarly as the other principals. Hence, an intruder is specified as
a constrained process 〈E, φE〉, commonly called enemy process, where E ::=
(SE , idE), SE is the initial SPPA agent of E (i.e. the SPPA agent specifying
the intruder’s attack) and φE is a formula characterising the intruder’s initial
knowledge (as above). From this notation, the protocol P being attacked by the
enemy process E is then specified as the constrained process 〈PE , φPE 〉 with
PE ::= P ‖ E and φPE ::= φP ∧ φE .

6.2 Equivalence-Checking

We achieve security protocols analysis through a verification method called
equivalence-checking. The main idea is to verify whether the protocol always acts
correctly within an hostile environment. Roughly speaking, given a protocol P ,
we need to verify if the protocol being attacked, specified as the constrained
process 〈PE , φPE 〉, is equivalent to the protocol not being attacked, specified
as the constrained process 〈P, φP 〉. The equivalence relation used to compared
the two constrained processes is a relation based on bisimulation (Definition 6),
called O-bisimulation.

The concept of O-bisimulation [19], called O-congruence by Boudol [5], cap-
tures the notion of behavioural indistinguishability through an observation cri-
terion O. Given an observation criterion O, we say that the constrained process
〈P, φ〉 is O-bisimilar to the constrained process 〈Q, ψ〉 whenever 〈P/O, φ〉 �
〈Q/O, ψ〉. In that case, we write P �O Q.

From the concept of O-bisimulation, security properties are captured through
different interpretations of an information flow property called bisimulation-based
non-deterministic admissible interference (BNAI) [19]. In the following, we offer
a quick overview of previously defined security property based on BNAI (see
respective reference for further details).

Confidentiality [19]. Protocol 〈P, φP 〉 preserves the confidentiality if, for

1183Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

every enemy process E,

∀〈Q, ψ〉∈D(〈PE , φPE
〉) 〈Q \ Γ, ψ〉 �OE 〈Q \ (Γ ∪ Actsecret), ψ〉

where OE = OActE (see Section 3.2 for notation), Actsecret is the set of
actions containing a secret message, and Γ is a set of downgrading actions
containing every encrypting action, hashing action and signing action (hence
the actions causing admissible declassification of information). This confiden-
tiality property requires that no intruder can discriminate, in an inadmissible
way, the protocol’s behaviour and the behaviour of the protocol exchanging
no confidential information.

Authenticity [19]. Protocol 〈P, φP 〉 preserves the authenticity if, for every
enemy process E,

∀〈Q, ψ〉∈D(〈PE, φPE
〉) 〈Q \ Γ, ψ〉 �Oauth 〈Q \ActE , ψ〉

where Oauth = OActauth , the set Actauth ⊆ Act contains actions describ-
ing critical states of a process (i.e. the actions that should not occur when
the protocol is being attacked), and Γ ⊆ ActE is a set of admissible at-
tacks containing intruder’s actions corresponding to harmless interference
(e.g. intruder receiving an invitation for a protocol run or initiating an hon-
est protocol run). This authenticity property requires that no intruder can
interfere in an inadmissible way with the protocol.

Denial of Service [14]. Protocol P is robust against denial of service if, for
every enemy process E,

∀〈Q, ψ〉∈D(〈PE , φPE
〉) 〈Q \ Γ, ψ〉 �Ocostly 〈Q \ActE , ψ〉

where Ocostly = OActcostly , Actcostly is the set of costly actions (i.e. actions
requiring large amounts of resources and which could lead to resource ex-
haustion for some principal), and Γ ⊆ ActE is a set of admissible attacks
(defined similarly as above). This denial of service property requires no causal
dependency between enemy behaviours and costly actions (hence, potentially
exhausting actions) of other principals.

7 Future Work and Related Work

This paper presents a symbolic framework for the analysis of security proto-
cols. It is based on a message algebra that handles cryptographic primitives
and a logic over this message algebra. The notion of constrained processes is
then introduced as a value-passing process paired with a formula. Processes are
defined through SPPA, a process algebra which allows for the specification of

1184 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

local function calls as visible actions. SPPA also gives, through marker actions,
a clearer view of communication between principals. Generating functions for
random numbers, fresh nonces and fresh keys, are introduced into SPPA’s syn-
tax in order to specify intruders generating fake addresses and fake messages.
From SPPA symbolic semantics for constrained processes, we then establish a
bisimulation equivalence. Apart from introducing a new symbolic approach, the
major results of this paper are the decidability of every formula in our logic
(Theorem 1), the finiteness of the symbolic operational semantics of any con-
strained process (Theorem 2), and the fact that the bisimulation equivalence
between constrained processes corresponds to Milner’s strong bisimulation be-
tween value-passing processes (Theorem 8). Another main result of this paper
is a sound and complete proof method, called symbolic bisimulation, to check
bisimilarity between constrained processes.

The main difference between our approach and Hennessy-Lin’s [12] is the
symbolic transition graph: in our symbolic transition graph (symbolic seman-
tics), we assign to each state (process) a formula giving a precise description of
the free variables involved in the process; Hennessy-Lin’s symbolic framework
requires considering the formula built from some path leading to a given state
(process). Our symbolic framework was developed with security analysis in mind
– it is then essential to have an accurate description of the symbolic values at
a given state in order to properly analyse a security protocol in a computer
system. Indeed, security protocol analysis often requires checking the effect of
random values (e.g. nonces, fresh keys or fake messages) on certain principals
of the protocol. In this context, our notion of constrained process allows us to
explicitly view which such random value could lead, at a certain point of the pro-
tocol, to either a confidentiality leak or a masquerade (authentication attack).
For instance, in denial of service analysis, we commonly need to verify whether a
fake message sent by an intruder can cause the execution of a function requiring
a large amount of resources (e.g. decryption or signature verification). In that
case, one strategy based on constrained processes would be to verify, for every
process following such costly action, the restriction imposed by the formula to
the variable representing the fake message: if every fake message satisfies the
formula, then we should conclude that the protocol can not detect fake protocol
runs. If only few fake messages satisfy the formula, then we should conclude that
the protocol is safe since most fake protocol runs initiated by an intruder will
have been detected previously. A similar method, based on SPPA, for detecting
denial of service vulnerabilities was introduced in a previous paper [14].

Other significant symbolic methods applied to security protocols were pro-
posed by Boreale [3] and Fiore & Abadi [8]. Starting from a process algebra simi-
lar to spi-calculus, Boreale introduces a symbolic operational semantics based on
unification. Boreale then gives a method carrying out trace analysis directly on

1185Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

the symbolic model. Also starting from a process algebra similar to spi-calculus,
Fiore & Abadi propose a decision procedure for knowledge checking and a sym-
bolic procedure for knowledge analysis. In future work, we plan to establish
more complete relationships between these methods and ours. This task would
require introducing constrained processes containing π-calculus and spi-calculus
processes, and establishing a symbolic semantics for such constrained processes.

Acknowledgment:

Many thanks to prof. J. Mullins who helped me to write this paper, and to S.
Hamadou for verifying its cryptographic soundness.

References

1. M. Abadi and A. D. Gordon. A bisimulation method for cryptographic protocols.
Nordic Journal of Computing, 5(4):267–303, 1998.

2. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, January 1999.

3. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proceedings of
ICALP’01, 2001.

4. M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic
processes. In Logic in Computer Science, pages 157–166, 1999.

5. G. Boudol. Notes on algebraic calculi of processes. In Logic and Models of Con-
current Systems, NATO ASI Series F-13, pages 261–303. Springer, 1985.

6. V. Cortier. Observational equivalence and trace equivalence in an extension of
spi-calculus. application to cryptographic protocols analysis. Technical Report
LSV-02-3, Lab. Specification and Verification, ENS de Cachan, Cachan, France,
March 2002.

7. A. Durante, R. Focardi, and R. Gorrieri. CVS: A compiler for the analysis of cryp-
tographic protocols. In Proceedings of 12th IEEE Computer Security Foundations
Workshop, pages 203–212. IEEE Computer Society, June 1999.

8. M. Fiore and M. Abadi. Computing symbolic models for verifying cryptographic
protocols. In Proceedings of the 14th IEEE Computer Security Foundations Work-
shop, pages pp. 160–173, 2001.

9. R. Focardi, A. Ghelli, and R. Gorrieri. Using non interference for the analysis of
security protocols. In H. Orman and C. Meadows, editors, Proceedings of the DI-
MACS Workshop on Design and Formal Verification of Security Protocols, Rutgers
University, September 1997.

10. R. Focardi and R. Gorrieri. A classification of security properties for process alge-
bras. Journal of Computer Security, 3(1):5–33, 1994/1995.

11. R. Focardi and F. Martinelli. A uniform approach for the definition of security
properties. In Proceedings of World Congress on Formal Methods (FM’99), volume
1708 of LNCS, pages 794–813. Springer, 1999.

12. M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science,
138:353–389, 1995.

13. C.A.R. Hoare. Communicating sequential processes. Prentice-Hall, 1985.
14. S. Lafrance and J. Mullins. An information flow method to detect denial of ser-

vice vulnerabilities. In V. Dvorak, M. Sveda, C. Rattray, and J. W. Rozenblit,
editors, Formal Specifications of Computer-Based Systems, volume 9, pages 1258–
1260. Journal of Universal Computer Science, November 2003.

1186 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

15. G. Lowe. Breaking and fixing the needham-schroeder public-key protocol us-
ing FDR. In Proceedings of TACAS’96, volume 1055 of LNCS, pages 147–166.
Springer-Verlag, 1996.

16. R. Milner. Communication and concurrency. Prentice-Hall, 1989.
17. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and

II. Information and Computation, 100(1):1–77, September 1992.
18. J. Mullins. Nondeterministic admissible interference. Journal of Universal Com-

puter Science, 6(11):1054–1070, 2000.
19. J. Mullins and S Lafrance. Bisimulation-based non-deterministic admissible inter-

ference with applications to the analysis of cryptographic protocols. International
Journal in Information and Software Technology, pages 1–25, 2002.

20. S. Schneider. Security properties and CSP. In IEEE Symposium on Security and
Privacy, pages 174–187, 1996.

A Decidability of Formulas

A formula φ is decidable whenever there is a finite algorithm allowing to verify,
for every valuation �, whether � |= φ. But since � |= φ is equivalent to |= �(φ),
and �(φ) is a closed formula, we see that, in order to prove the decidability of
every formula from our logic, it is enough to show that every closed formula φ is
decidable i.e., to give an algorithm deciding whether |= φ. The first step toward
proving this result consists in showing that every closed formula is equivalent to
a quantifier-free (closed) formula.

Given a formula φ ::= (∃x φ1) ∧ φ2 and a variable y that does not occur in
φ2, it is easily seen that φ is equivalent to the formula ∃y (φ1[y/x]∧ φ2). Hence,
we may assume that a closed formula φ is always given in its normal form i.e.,

φ ::= ∃x1 . . . ∃xn (φ1 ∧ . . . ∧ φm)

where the φi are either predicates (φi = K(t), I(t), N (t) or M(t)) or equations
(φi = (t == t′)) with fv(t), fv(t′) ⊆ {x1, . . . , xn}. (We assume that formu-
las 1 and 0 coincide with their normal form.) Moreover, from the definition of
|= (a == b) given in Section 2.2, we see that every equation t == t′ is equivalent
to a finite conjunction of irreducible equations x == t′′. Thus, we may assume
that φ ::= ∃x1 . . . ∃xn (φ1∧ . . .∧φm) where the sub-formulas φi are either predi-
cates or equations x == t (with x ∈ {x1, . . . , xn} and fv(t) ⊆ {x1, . . . , xn}). For
the following, we consider the family of closed formulas:

F = {∃x1 . . . ∃xn (φ1 ∧ . . . ∧ φm) | φi = K(t) or φi = I(t) or φi = N (t)
or φi = M(t) or φi = (x == t), for some n,m ∈ IN,

for some x ∈ {x1, . . . , xn} and for some t such that fv(t) ⊆ {x1, . . . , xn}}
∪ {0,1}.

Therefore, given a closed formula φ, we may always assume that φ ∈ F ; other-
wise, an equivalent formula φ′ ∈ F can be easily constructed from φ following
the steps above.

1187Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Given a formula φ ∈ F , we can construct an equivalent quantifier-free formula
as follows. We proceed by induction on the number of existential quantifiers in
φ. The case where φ has no quantifiers is trivial.

Let n ≥ 0 and assume that every formula in F with at most n existential
quantifiers is equivalent to some quantifier-free formula in F . Now consider some
formula φ ∈ F , where

φ ::= ∃x∃x1 . . .∃xn (φ1 ∧ φ2 ∧ . . . ∧ φm).

First assume that one of the φi = (x == t) (let say i = 1). If t = x (i.e.
φ1 = (x == x)), then we may drop φ1 and assume that φ ::= ∃x∃x1 . . .∃xn (φ2∧
. . .∧φm). Otherwise, if x occurs in t, then φ is equivalent to 0, hence �|= φ, since
we do not allow infinite messages. If x does not occur in t, then we see that φ is
equivalent to the formula

∃x1 . . . ∃xn (φ2[t/x] ∧ . . . ∧ φm[t/x])

which has one less quantifier than φ. Moreover, every sub-formula φi = (t == t′)
can be replaced by an equivalent conjunction of equations (x′1 == t1) ∧ . . . ∧
(x′k == tk) with x′j ∈ {x1, . . . , xn}. Since the obtained formula belongs to F ,
the proof is resolved using the induction hypothesis: there is a quantifier-free
formula φ′ ∈ F equivalent to the formula above, and therefore equivalent to φ.
Furthermore, we see that every equation can be withdrawn from φ by repeating
the steps presented above for each variable x′j .

Now assume that none of the φi is an equation. Moreover, assume that x
occurs only in φ1, . . . , φk (for k ≤ m). Since formulas ∃xI(t), ∃xN (t) and ∃xK(t)
can only be true whenever t = x, none of the other quantified variables x1, . . . , xm
occurs in the predicates φ1, . . . , φk (otherwise φ⇔ 0). The formula φ is therefore
equivalent to

∃x(φ1 ∧ . . . ∧ φk) ∧ ∃x1 . . . ∃xn (φk+1 ∧ . . . ∧ φm)

where φi ∈ {K(x), I(x),N (x)} (for 1 ≤ i ≤ k). Hence, it is enough to find a
quantifier-free formula ψ equivalent to ∃x(φ1∧. . .∧φk); we take ψ ::= 1 whenever

– φi = I(x), for every i = 1, . . . , k; or

– φi = N (x) or φi = K(x), for every i = 1, . . . , k.

Otherwise we take ψ ::= 0. Finally, it is straightforward to see that the result-
ing formula (either 0 or ∃x1 . . . ∃xn (φk+1 ∧ . . . ∧ φm)) still belongs to F and
has at most n quantifiers. Thus, by the induction hypothesis, we can found an
equivalent formula φ′ ∈ F , which is also equivalent to φ.

For the next lemma, recall that every formula in F in closed, including the
quantifier-free formulas.

1188 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Lemma13. Every quantifier-free formula in F is decidable.

Proof. Let φ ∈ F be any quantifier-free formula. If φ = 1 or φ = 0, then the
statement is trivial. Now assume that φ = φ1 ∧ . . . ∧ φn with n ≥ 1. Since φ
is closed, every sub-formula φi is either a predicate I(a), K(a) or N (a) (every
predicate M(a) can be replaced right away with 1), or an equation a == a′, for
some messages a, a′ ∈ M. But, as we saw in Section 2.2, each predicate I(a),
K(a) or N (a) is assumed to be decidable, and each equation a == a′ is also
decidable by successive reductions. Hence, each sub-formulas φi may therefore
be individually replaced by either 1 or 0. Any such conjunction of 1 and 0 is
clearly decidable. ��

The proof of Theorem 1 follows from Lemma 13 and the fact that every closed
formula is equivalent to a formula from F .

B Operational Semantics of SPPA.

The operational semantics of SPPA is given in Fig. 7 and Fig. 8. It is a value-
passing-based semantics defined only for closed processes i.e., processes P such
that fv(P) = ∅. Rules Sum, Parallel, Protocol and Synchronisation are as-
sumed to be associative and commutative.

A process P ′ is a derivative of P if there is a computation P
γ−→ P ′ for some

γ ∈ Act∗. We also consider the set of P ’s derivatives defined as follows:

D(P) = {P ′ | ∃γ∈Act∗ P
γ−→ P ′}.

C Proof of the Finiteness of Symbolic Semantics

In this section, we show that, for any constrained process 〈P, φ〉, the transi-
tion graph associated to 〈P, φ〉 using SPPA’s operational symbolic semantics
is always finite. But in order to obtain this result, we first need to establish
the following restriction on SPPA’s syntax (often applied on other process al-
gebras for similar purposes): we do not allow recursive definitions P := P1 \ L,
P := P1/O, P := P1|P2, or P := P1 ‖ P2 such that P occurs somewhere within
either P1’s or P2’s definition. Hence, we assume that any recursive definition of
some SPPA’s agent or process P (i.e. where P is defined using a self reference
P) never uses a restriction operator, nor an observation operator, nor a parallel
composition operator, nor a protocol operator. Such recursive definitions often
lead to “infinite” processes, i.e. SPPA processes with infinitely many derivatives.
For instance, processes P ::= (c(x).P) \ L and P ::= P |P ′ are refrained, while
processes P := let x = f(t) in P and P := c(x).P + P ′ are retained.

We say that the process P ′ is a sub-process of the constrained process 〈P, φ〉
whenever there is some formula φ′ such that 〈P ′, φ′〉 ∈ D(〈P, φ〉).

1189Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Output −

c(a).A
cidA

(a)
−→ A

Input a∈M

c(x).A
cidA

(a)
−→ A[a/x]

Function
f∈F , |=φf (a) and a′=f(a)

let x=f(a) in A
fidA−→ A[a′/x]

Generator new∈F and |=φnew(a)

let x=new(−) in A
newidA−→ A[a/x]

Split −

let (x,y)=(a,a′) in A
splitidA−→ A[a/x][a′/y]

Decryption −

case {a}k of {x}k in A
decidA−→ A[a/x]

Signature-Verif −

case [a]k of [a]k in A
signvidA−→ A

Figure 7: Semantics of SPPA processes.

Lemma14. Every constrained process 〈P, φ〉 has finitely many sub-processes
i.e., the set {P ′ | 〈P ′, φ′〉 ∈ D(〈P, φ〉) for some φ′} is finite.

Proof. The proof follows from the fact that SPPA’s symbolic semantics rules
(Fig. 1 and Fig. 2) never alter the initial definition of P (and its sub-processes),
neither through substitution P ′[t/x] or variable renaming. Hence, any sub-process
P ′ occurring in D(〈P, φ〉) must be syntactically identical to its initial def-
inition within P . We may therefore conclude that the cardinality of the set
{P ′ | 〈P ′, φ′〉 ∈ D(〈P, φ〉) for some φ′} is at most Nu + 2Nb, where Nu is the
number of unary SPPA operators (output, input, function call, match, restric-
tion, etc.) used in the syntactical definition of P , and Nb is the number of binary
operators (sum, parallel composition, etc.) used in the syntactical definition of
P . ��

It follows from Lemma 14 that, for any constrained process 〈P, φ〉, there
are only finitely many variables occurring in P and its sub-processes. Moreover,
these variables are exactly the ones used within P ’s syntactical definition. Let
{x1, . . . , xn} be the finite set containing those variables. We may also conclude
from observing the semantics rules that fv(φ′) ⊆ {x1, . . . , xn} for any formula
φ′ ∈ Φ, where Φ = {φ′ | 〈P ′, φ′〉 ∈ D(〈P, φ〉) for some P ′}. Thus, any variable

1190 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Match A
α−→ A′

[a=a] A
α−→ A′

Sum P
α−→ P ′

P+Q
α−→ P ′

Parallel P
α−→ P ′

P |Q α−→ P ′|Q

Protocol P
α−→ P ′ and α�∈C

P‖Q α−→ P ′‖Q

Synchronisation P
cid(a)−→ P ′ and Q

cid′(a)−→ Q′

P‖Q
δc

id
(a)

−→ P ′‖Q
δc

id′(a)−→ P ′‖Q′

Restriction P
α−→ P ′ and α�∈L

P\L α−→ P ′\L

Observation P
γ−→ P ′ and γ ∈ O−1(α)

P/O α−→ P ′/O

Figure 8: Semantics of SPPA processes.

occurring in some derivative 〈P ′, φ′〉 ∈ D(〈P, φ〉) (either in P ′ or in φ′) must
also occur somewhere in the initial definition of P (or its sub-processes).

A computation 〈P, φ〉 γ−→ 〈P ′, φ′〉 is said to be minimal whenever no con-
strained process appears more than once during the computation, including con-
strained processes 〈P, φ〉 and 〈P ′, φ′〉. Hence, neither 〈P, φ〉 nor 〈P ′, φ′〉
may appear within the minimal computation, except at the extremities, al-
though we allow them to be the same constrained process. Any computation
〈P, φ〉 γ−→ 〈P ′, φ′〉 may clearly be reduced to a minimal sub-computation

〈P, φ〉 γ′
−→ 〈P ′, φ′〉 (where γ′ is a sub-sequence of γ) by taking out any loop

within the computation of γ.

Lemma15. For every constrained process 〈P, φ〉, there are only finitely many
minimal computations 〈P, φ〉 γ−→ 〈P, φ′〉.

Proof. First, we see that any constrained process 〈P, φ〉 as finitely many tran-
sitions emanating from it i.e., the set

{α ∈ Act | 〈P, φ〉 α−→ 〈Q, ψ〉 for some 〈Q, ψ〉}

1191Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

is finite. Indeed, we see from the semantics rules that the existence of a transition
〈P, φ〉 α−→ 〈Q, ψ〉, along with the value of the action α, depends only on the
process P and not on the formula φ (as long it is not equivalent to 0). Moreover,
since 〈P, φ〉 has only a finite number of sub-processes (by Lemma 14), the total
number of actions α occurring within 〈P, φ〉’s semantics must be finite.

We may therefore conclude that given any two constrained processes, there
are finitely many minimal computations between them. Indeed, if Np denotes
the number of P ’s sub-processes and Na denotes the number of actions occurring
within 〈P, φ〉’s semantics, then the number of minimal computations between
any two constrained processes is at most Np! ·NpNa+1, where

– Np! is a bound on the number of possible sequences of sub-processes corre-
sponding to some minimal computation between the two constrained pro-
cesses (i.e. no sub-process may occur twice), and

– Np
Na+1 is a bound on the number of possible sequences of actions corre-

sponding to some minimal computation between the two constrained pro-
cesses.

In particular, there are only finitely many minimal computations between 〈P, φ〉
and 〈P, φ′〉. ��

Proof of Theorem 2. Let 〈P, φ〉 be a constrained process and assume that
it has infinitely many derivative i.e., D(〈P, φ〉) is infinite. In that case, and since
the number of transitions emanating from some constrained process is always
bounded, there is an infinite computation

〈P, φ〉 α−→ 〈P ′, φ′〉 α′
−→ . . . (1)

with pairwise different constrained processes (i.e. no constrained process occurs
more than once during the computation). Let {x1, . . . , xn} be the set of variables
occurring in the computation (1) (we saw above that this set must be finite).
Since every formula ψ occurring in the computation (1) is such that fv(ψ) ⊆
{x1, . . . , xn}, we may assume that the infinite computation has a tail

〈P1, φ1〉
α1−→ 〈P2, ψ2〉

α2−→ . . .
αk−1−→ 〈Pk, ψk〉

αk−→ . . .

such that fv(φ1) = fv(ψk) = {x1, . . . , xn}, for k ≥ 2. Moreover, since P has
finitely many sub-processes (by Lemma 14), we may assume that process P1

occurs infinitely often in this computation. Hence, we can write

〈P1, φ1〉
γ1−→ 〈P1, φ2〉

γ2−→ . . .
γk−1−→ 〈P1, φk〉

γk−→ . . . (2)

with γk ∈ Act∗ and fv(φk) = {x1, . . . , xn}, for k ≥ 1. We may also assume that
each computation 〈P1, φk〉

γk−→ 〈P1, φk+1〉 is minimal. Moreover, by Lemma 15,

1192 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

there are finitely many minimal computations between any 〈P1, φk〉 and 〈P1, φk′ 〉,
thus there are finitely many different sequences of actions γk. Assume that these
possible sequences of actions are γ′1, γ

′
2, . . . , γ

′
m, hence any γk from the compu-

tation (2) is such that γk ∈ {γ′1, γ′2, . . . , γ′m}. Furthermore, we can assume that
each γ′k occurs infinitely often within the computation (2). Otherwise, if one of
the sequence of actions γ′k occurs only a finite number of times within the infinite
computation, then we consider the infinite computation obtained by cutting the
computation (2) after the last occurrence of γ′k; this computation contains no
γ′k.

From the proof of Lemma 15, we know that the fact that a constrained pro-
cess 〈P ′, φ′〉 may execute an action depends only on the definition of the process
P ′ (as long φ′ is not equivalent to 0). Hence, given any sequence of action γ′k,

every computation 〈P1, φl〉
γ′

k−→〈P1, φl+1〉 transforms the formula φl to the for-
mula φl+1 following the exact same rule (for any l). Moreover, we see from the
symbolic semantics rules that we must have

φl+1 ::= ∃
x
(k)
1 ,...,x

(k)
nk

(φl ∧ ψk) ∧ ψ′
k

for some formulas ψk and ψ′
k (which do not depend on l), and where

{x(k)
1 , . . . , x(k)

nk
} ⊆ {x1, . . . , xn}. Also notice that the formula φl+1 is equivalent

to the formula

∃
y
(k)
1 ,...,y

(k)
nk

(φl[y
(k)
1 /x(k)

1] . . . [y(k)
nk
/x(k)

nk
] ∧ ψk[y

(k)
1 /x(k)

1] . . . [y(k)
nk
/x(k)

nk
] ∧ ψ′

k),

where the y(k)
i are new variables. For simplicity, we use the following notation:

– we write ∃
y
(k)
i

instead of ∃
y
(k)
1 ,...,y

(k)
nk

, and

– we write φ[y(k)
i] instead of φ[y(k)

1 /x(k)
1] . . . [y(k)

nk
/x(k)

nk
].

Using this notation, we have

φl+1 ⇔ ∃
y
(k)
i

(φl[y
(k)
i] ∧ ψk[y

(k)
i] ∧ ψ′

k).

Now consider the family of formula mappings {Γk}mk=1 with

Γk : φ → ∃
y
(k)
i

(φ[y(k)
i] ∧ ψk[y

(k)
i] ∧ ψ′

k)

where the y(k)
i are always new variables i.e., any mapping Γk (for 1 ≤ k ≤ m)

never uses the same variables y(k)
1 , . . . , y(k)

nk
twice. From our arguments above, we

see that Γk(φl) ⇔ φl+1 for any l ≥ 1 such that 〈P1, φl〉
γ′

k−→〈P1, φl+1〉, and the
sequence of formulas φ1, φ2, φ3, . . . from the computation (2) can therefore be
written as

φ1, Γk1(φ1), Γk2(Γk1 (φ1)), Γk3(Γk2(Γk1(φ1))), . . .

1193Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

with γl = γ′kl
.

But each mapping Γk essentially does two things: on one hand Γk substitutes
the variables x(k)

1 , . . . , x(k)
nk

with some new variables y(k)
1 , . . . , y(k)

nk
, and, on the

other hand Γk introduces (through conjunction) formulas ψk and ψ′
k. Since Γk

always introduces new variables, we may assume that every formula φl from
the computation (2) has the form ∃y1,...,ynψ where the y1, . . . , yn are variables
y(k)
1 , . . . , y(k)

nk
introduced during previous applications of the mappings Γk (for

1 ≤ k ≤ m), and ψ is some quantifier-free formula. Moreover, the formula ψ

has the form φ1[y
(k1)

i] . . . [y(kl)

i] ∧ ψ′, where the formula ψ′ is a conjunction
of formulas ψk and ψ′

k (for 1 ≤ k ≤ m) on which substitutions [y(k1)

i] . . . [y(kl)

i]
where applied. Although there will be infinitely many new variables y(k)

1 , . . . , y(k)
nk

introduced during the infinite computation, we show that, at some point during
the computation, the introduction of those new variables by some Γk, and their
substitution with the variables x(k)

1 , . . . , x(k)
nl

, will create a formula φl equivalent
to a previous formula φl′ .

First, we see that Γk’s substitutions are applied at most once on the formulas
within ψ′. Indeed, consecutive substitutions

φ1[y
(k)
1 /x(k)

1] . . . [y(k)
nk
/x(k)

nk
][z(k)

1 /x(k)
1] . . . [z(k)

nk
/x(k)

nk
]

gives the formula φ1[y
(k)
1 /x(k)

1] . . . [y(k)
nk
/x(k)

nk
], hence φl[y

(k)
i]. The same remark is

true for any formula ψk and ψ′
k, for 1 ≤ k ≤ m, and consequently for the

formula ψ′. Since there are m mappings Γk, and therefore m sets of variables
{x(k)

1 , . . . , x(k)
nk
} to be substituted, there at most m! non-equivalent composed

substitutions of the form [y(k1)

i] . . . [y(kl)

i] that can be obtained by composing the
Γk; two composed substitutions are equivalent whenever the order in which the
sets of variables {x(k)

1 , . . . , x(k)
nk
} are substituted is exactly the same (the names of

the new variables y(k)
1 , . . . , y(k)

nk
does not matter). Moreover, since each mapping

Γk always introduces the same formulas ψk and ψ′
k, the number of possible for-

mulas we can obtain from the ψk and ψ′
k, and any composed substitution over

the sets of variables {x(k)
1 , . . . , x(k)

nk
} is at most 2m(m!), thus finite. But since we

assumed that every sequence of actions γ′k occurs infinitely often in the compu-
tation (2), at some point, for any new variables y(k)

1 , . . . , y(k)
nk

introduced by some
mapping Γk (through a substitution of x(k)

1 , . . . , x(k)
nk

) there are previously intro-
duced variables z(k)

1 , . . . , z(k)
nk

which are present within the exact same equivalent
composed substitutions applied to the exact same formulas ψl and ψ′

l. In that
case, the new set of variables y(k)

1 , . . . , y(k)
nk

can be replaced by the z(k)
1 , . . . , z(k)

nk
,

and the obtained formula is equivalent to a previous formula φl. In fact, we can
see that at some point in the infinite computation (2), more precisely when each
γ′k occurred at least 2m(m!) times, any new application of the mapping Γk gives
a formula equivalent to a previous application of Γk. Thus, there are formulas

1194 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

θ1, . . . , θm such that φl+1 ⇔ θk whenever

〈P1, φl〉
γ′

k−→ 〈P1, φl+1〉

for every l ≥ K (for some K ≥ 1 large enough). Hence, Γk(θk′) ⇔ θk. But
this contradicts the fact that the formulas φl (from the computation (2)) are
pairwise not equivalent, and therefore contradicts the existence of the infinite
computation (2). Hence, the set D(〈P, φ〉) must be finite. ��

Remark. The formulas θk from the previous proof are too large to be explicitly
written down in this paper, but we can see that they have the following form

θk ::= ∃y1,...,yn′ (φ1[y
(k1)

i] . . . [y(km)
i] ∧ θ ∧ ψk[z

(k)
i] ∧ ψ′

k)

where y1, . . . , yn′ are new variables introduced by the mappings Γk, with
{k1, . . . , km} = {1, . . . ,m} and y(k1)

i , . . . , y(km)
i , z(k)

i ∈ {y1, . . . , yn′}. The formula
θ, present in every θk, is the formula obtained by considering the conjunction of
every possible combination of composed substitutions [y(k1)

i] . . . [y(km)
i] (for new

variables y(k)
i) applied on every formulas ψk and ψ′

k (for k = 1, . . . ,m). The
formula θ may be a very large formula (although it is rather small in most prac-
tical cases) which turns out to be some sort of fixed point for every mapping Γk.
Indeed, since θ contains every composed substitution applied on every formulas
introduced by the mappings, then any new substitution introduced by some Γk
will have no effect on θ. The family of formulas {θk}mk=1 will therefore be such
that Γk(θk′) ⇔ θk, for any k, k′.

D Proofs of Lemma 3, Lemma 4 and Lemma 5

Proof of Lemma 3. In order to shorten the proof, the two statements are
proved simultaneously by induction on the structure of P . Depending on the
statement to prove, we put either

Q′ ::= P ′[a1/x1] . . . [an/xn] or Q′ ::= P ′[a/x][a1/x1] . . . [an/xn].

The case where P = 0 is trivial. If P = c(t).P ′, or P = c(x).P ′, or P =
let x = f(t) in P ′, or P = let (x, y) = t in P ′, or P = case t of {x}t′ in P ′,
or P = case t of [t′′]t′ in P ′, then the conclusion follows from rules Output,
Input, Function, Generator, Split, Decryption and Signature-Verif.

If P = P1 +P2, or P = P1|P2, or P = P1 ‖ P2 (and α is not a marker action),
then, from semantics rules Sum, Parallel and Protocol, we may assume that

P1[a1/x1] . . . [an/xn]
α−→ P ′

1[a1/x1] . . . [an/xn]

(resp. P1[a1/x1] . . . [an/xn]
β−→ P ′

1[a/x][a1/x1] . . . [an/xn])

1195Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

with either P ′ ::= P ′
1, or P ′ ::= P ′

1|P2, or P ′ ::= P ′
1 ‖ P2. Thus, by the induction

hypothesis,

〈P1, φ〉 α′
−→ 〈P ′

1, φ
′〉 (resp. 〈P1, φ〉

β′
−→ 〈P ′

1, φ
′〉).

Therefore, 〈P, φ〉 α′
−→ 〈P ′, φ′〉 (resp. 〈P, φ〉 β′

−→ 〈P ′, φ′〉). If P = P1 ‖ P2 and
α is a marker action, then we may assume that

P1[a1/x1] . . . [an/xn]
cid1 (a)
−→ P ′

1[a1/x1] . . . [an/xn]

and
P2[a1/x1] . . . [an/xn]

cid2(a)
−→ P ′

2[a/x][a1/x1] . . . [an/xn]

with P ′ ::= P ′
1 ‖ P2 or P ′ ::= P ′

1 ‖ P ′
2. By the induction hypothesis, we have

〈P1, φ〉
cid1(t)
−→ 〈P ′

1, φ
′〉 (with a = t[a1/x1] . . . [an/xn]) and 〈P2, φ〉

cid2(x)
−→ 〈P ′

2, φ
′〉.

Hence 〈P, φ〉 α′
−→ 〈P ′, φ′〉 by Synchronisation.

If P = [t = t′]P1 (with t[a1/x1] . . . [an/xn] = t′[a1/x1] . . . [an/xn]), then

P1[a1/x1] . . . [an/xn]
α−→ Q′ (resp. P1[a1/x1] . . . [an/xn]

β−→ Q′) and, by the
induction hypothesis, we see that

〈P1, φ〉
α′
−→ 〈P ′, φ′〉 (resp. 〈P1, φ〉

β′
−→ 〈P ′, φ′〉).

Therefore, by semantics rule Match, 〈P, φ〉 α′
−→ 〈P ′, φ′〉 (resp. 〈P, φ〉 β′

−→ 〈P ′, φ′〉)
with φ′ �⇔ 0 since � |= (t == t′) for any � such that �(xi) = ai.

If P = P1 \ L (with α, β �∈ L), then P1[a1/x1] . . . [an/xn]
α−→ Q′ (resp.

P1[a1/x1] . . . [an/xn]
β−→ Q′) and, by the induction hypothesis, we have

〈P1, φ〉 α′
−→ 〈P ′, φ′′〉 (resp. 〈P1, φ〉

β′
−→ 〈P ′, φ′′〉) with φ′′ �⇔ 0. Therefore,

〈P, φ〉 α′
−→ 〈P ′, φ′〉 (resp. 〈P, φ〉 β′

−→ 〈P ′, φ′〉) with φ′ �⇔ 0 since � |= φLα′

(resp. � |= φLβ′) for any � such that �(xi) = ai.
Finally, if P = P1/O, then there is a computation

P1[a1/x1] . . . [an/xn]
γ−→ P ′

1[a1/x1] . . . [an/xn]

(resp. P1[a1/x1] . . . [an/xn]
γ−→ P ′

1[a/x][a1/x1] . . . [an/xn])

such that γ ∈ O−1(α) (resp. γ ∈ O−1(β)) and with Q′ = P ′
1[a1/x1] . . . [an/xn]/O

(resp. Q′ = P ′
1[a/x][a1/x1] . . . [an/xn]/O). Thus, by the induction hypothe-

sis, we have 〈P1, φ〉
γ′
−→ 〈P ′

1, φ
′〉 where γ = γ′[a1/x1] . . . [an/xn] (resp. γ =

γ′[a/x][a1/x1] . . . [an/xn]). Hence, by semantics rule Observation and since P =

P1/O and P ′ = P ′
1/O, we see that 〈P, φ〉 α′

−→ 〈P ′, φ′〉, (resp. 〈P, φ〉 β′
−→ 〈P ′, φ′〉)

which concludes the proof. ��
Proof of Lemma 4. For simplicity, the two statements are proved simul-

taneously by induction on the structure of P . The case where P = 0 is trivial.

1196 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Let � be a valuation such that � |= φ′ and put Q ::= P [�(x1)/x1] . . . [�(xn)/xn]
and, depending on the statement proved, put either

Q′ ::= P ′[�(x1)/x1] . . . [�(xn)/xn]

or
Q′ ::= P ′[�(x)/x][�(x1)/x1] . . . [�(xn)/xn].

Also put α ::= �(α′) and β ::= �(β′).
If P = c(t).P ′, or P = c(x).P ′, or P = let x = f(t) in P ′, or P =

let (x, y) = t in P ′, or P = case t of {x}t′ in P ′, or P = case t of [t′′]t′ in P ′,
then we have eitherQ = c(�(t)).Q′, orQ = c(x).Q′, orQ = let x = f(�(t)) inQ′,
or Q = let (x, y) = �(t) in Q′, or Q = case {�(t′)}�(t) of {x}�(t) in Q′, or

Q = case [�(t′)]�(t) of [x]�(t) in Q′. Thus Q α−→ Q′ (resp. Q
β−→ Q′).

If P = P1 + P2, or P = P1|P2, or P = P1 ‖ P2, then either Q = Q1 + Q2,
or Q = Q1|Q2, or Q = Q1 ‖ Q2, where Q1 ::= P1[�(x1)/x1] . . . [�(xn)/xn]
and Q2 ::= P2[�(x1)/x1] . . . [�(x1)/xn]. Whenever α′ is not a marker action,

we may assume that 〈P1, φ〉 α′
−→ 〈P ′

1, φ
′〉 (resp. 〈P1, φ〉

β′
−→ 〈P ′

1, φ
′〉) with

either P ′ ::= P ′
1, or P ′ ::= P ′

1|P2, or P ′ ::= P ′
1 ‖ P2. Hence, by the induction

hypothesis, we see that

Q1
α−→ P ′

1[�(x1)/x1] . . . [�(xn)/xn]

(resp. Q1
β−→ P ′

1[�(x)/x][�(x1)/x1] . . . [�(xn)/xn]),

thus, Q α−→ Q′ (resp. Q
β−→ Q′). Now assume that α′ is a marker action, with

P = P1 ‖ P2. Then we may assume that 〈P1, ψ1〉
cid1(t)
−→ 〈P ′

1, ψ′
1〉 and

〈P2, ψ2〉
cid2(x)
−→ 〈P ′

2, ψ
′
2〉 with φ = ψ1 ∧ ψ2. By the induction hypothesis, we

have
Q1

cid1(�(t))
−→ P ′

1[�(x1)/x1] . . . [�(xn)/xn]

and
Q2

cid2(�(t))
−→ P ′

2[a/x][�(x1)/x1] . . . [�(xn)/xn].

Therefore, P α−→ P ′ by rule Synchronisation.

If P = [t = t′]P1, then we have 〈P1, φ〉 α′
−→ 〈P ′, ψ〉 (resp. 〈P1, φ〉

β′
−→ 〈P ′, ψ〉)

with � |= ψ and � |= (t == t′) since � |= φ′. Therefore, by the induction hypoth-

esis, we have 〈Q1, φ〉 α′
−→ 〈Q′, ψ〉 (resp. 〈Q1, φ〉

β′
−→ 〈Q′, ψ〉) where Q1 ::=

P1[�(x1)/x1] . . . [�(xn)/xn]. Thus, by rule Match, Q α−→ Q′ (resp.Q
β−→ Q′)

since �(t) = �(t′).

If P = P1 \L, then we have 〈P1, φ〉 α′
−→ 〈P ′

1, ψ〉 (resp. 〈P1, φ〉
β′
−→ 〈P ′

1, ψ〉)
with P ′ = P ′

1 \L and φ = ψ ∧ φLα′ (resp. φ = ψ ∧ φLβ′). Furthermore, we see that

1197Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

Q = Q1 \ L where Q1 ::= P1[�(x1)/x1] . . . [�(xn)/xn]. Since � |= ψ, we see, by
the induction hypothesis, that

Q1
α−→ P ′

1[�(x1)/x1] . . . [�(xn)/xn]

(resp. Q1
β−→ P ′

1[�(x)/x][�(x1)/x1] . . . [�(xn)/xn]).

But � |= φ′, therefore � |= φLα′ (resp. � |= φLβ′), we have α, β �∈ L. Hence Q α−→ Q′

(resp. Q
β−→ Q′).

If P = P1/O, then there is a computation 〈P1, φ〉
γ′
−→ 〈P ′

1, φ
′〉 such that γ′ ∈

O−1(α) (resp. γ′ ∈ O−1(β)) and with P ′ = P ′
1/O. By the induction hypothesis,

we see that Q1
γ−→ Q′

1 where Q′
1 ::= P ′

1[�(x1)/x1] . . . [�(xn)/xn] (resp. Q′
1 ::=

P ′
1[�(x)/x][�(x1)/x1] . . . [�(xn)/xn]) and γ = �(γ′). Thus, Q α−→ Q′ since γ ∈

O−1(α) (resp. Q
β−→ Q′ since γ ∈ O−1(β)). ��

Proof of Lemma 5. For simplicity, the two statements are proved simul-

taneously by induction on the structure of P . If the transition 〈P, φ〉 α′
−→ 〈P ′, φ′〉

(resp. 〈P, φ〉 β′
−→ 〈P ′, φ′〉) comes from either Output, Input, Function,

Generator, Split, Decryption, Signature-Verif, then we directly see from the
definition of φ′ that |= φ′[a1/x1] . . . [an/xn] (resp. |= φ′[a/x][a1/x1] . . . [an/xn])
whenever |= φ[a1/x1] . . . [an/xn].

If P = P1 +P2, or P = P1|P2, or P = P1 ‖ P2 (and α is not a marker action),

then we may assume that φ = φ1∧φ2 and φ′ = φ′1∧φ2, with 〈P1, φ1〉 α′
−→ 〈P ′

1, φ
′
1〉

(resp. 〈P1, φ1〉
β′
−→ 〈P ′

1, φ
′
1〉). Therefore, since |= φ[a1/x1] . . . [an/xn], we must

have |= φ1[a1/x1] . . . [an/xn], therefore by the induction hypothesis we see that
|= φ′1[a1/x1] . . . [an/xn] (resp. |= φ′1[a/x][a1/x1] . . . [an/xn]). Hence, we have
|= φ′[a/x][a1/x1] . . . [an/xn] (resp. |= φ′[a/x][a1/x1] . . . [an/xn]) since
|= φ2[a1/x1] . . . [an/xn]. The case where α is a marker action is similar. Now, if
P = [t = t′]P1, then we see, for any definition for φ′, that the statement holds
since t[a1/x1] . . . [an/xn] = t′[a1/x1] . . . [an/xn].

If P = P1\L, then φ′ = φ1 ∧ φLα′ (resp. φ′ = φ1 ∧ φLβ′). By the induction hy-
pothesis, we see that |= φ2[a1/x1] . . . [an/xn] (resp. |= φ1[a/x][a1/x1] . . . [an/xn]),
and since α, β �∈ L, |= φLα′ [a1/x1] . . . [an/xn] (resp. |= φLβ′ [a/x][a1/x1] . . . [an/xn]).
Therefore, |= φ′[a1/x1] . . . [an/xn] (resp. |= φ′[a/x][a1/x1] . . . [an/xn]). Finally,

assume that P = P1/O. Then 〈P1, φ〉
γ′
−→ 〈P ′

1, φ
′〉, where P ′ = P ′

1 and
γ′ ∈ O−1(α′) (resp. γ′ ∈ O−1(β′)). Thus, by using the induction hypothesis
for each action within the sequence γ′, we see that |= φ′[a1/x1] . . . [an/xn] (resp.
|= φ′[a/x][a1/x1] . . . [an/xn]) whenever |= φ[a1/x1] . . . [an/xn]. ��

1198 Lafrance S.: Symbolic Approach to the Analysis of Security Protocols

