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Abstract: We present an embedded-system design flow, discuss its details, and demon-
strate its advantages. We adopt the object-oriented methodology for the system-level
model because software dominates hardware in embedded systems and the object-
oriented methodology is already established for software design and reuse. As the
building-block of system implementation, we synthesise application-specific processors
that are reusable, through programming, for several related applications. This addresses
the high cost and risk of manufacturing specialised hardware tailored to only a single
application. Both the processor and its software are generated from the model of the
system by the synthesis and compilation procedures provided. We observe that the
key point in object-oriented methodology is the class library, and hence, we implement
methods of the class library as the instruction-set of the processor. This allows the
processor to be synthesised just once, but, by programming, to be reused several times
and specialised to new applications that use the same class library. An important point
here is that the processor allows its instructions to be selectively overridden by soft-
ware routines; this not only allows augmentation of processor capabilities in software,
but also enables a structured approach to make software patches to faulty or outdated
hardware. A case study illustrates application of the methodology to various applica-
tions modelled on top of a common basis class library, and moreover, demonstrates
new application-specific opportunities in power management (and area-management
for FPGA implementations) resulting from the structure of the processor based on
deactivation of unused features.
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1 Introduction

VLSI designers are facing a “quadruple whammy” [August et al. 02]: more tran-
sistors per chip, harder to design transistors and interconnects in deep sub-
micron, more heterogeneous elements on the same silicon, and tighter time-to-
market deadlines. Hence, chip design, synthesis, and manufacturing is contin-
uously getting harder, more expensive, and more time-consuming. One way to
address these is to use application-specific instruction processors (ASIP) instead
of application-specific integrated circuits (ASIC). An ASIC is a hardware spe-
cialised solely to a single application to provide that application with the best
quality factors (e.g. performance, chip area and power consumption); an ASIC
may accept some parameters affecting its operation, but is not programmable
to adapt to the needs of other applications and hence cannot be used for any
purpose other than its target application. On the contrary, an ASIP offers pro-
grammability to allow in-field (after the chip is manufactured) customisation to
several related applications; this allows the same chip to be reused for different
but related applications or for successive generations of the same application.
An ASIP is tailored to a set of target applications and hence can be manufac-
tured in larger volumes to reduce the unit price, while allowing programmability
through software to shrink time-to-market and ameliorate design risk. However,
system implementation using ASIPs risks additional costs of lower performance
and higher area and energy consumption when compared to ASICs. ASIP de-
signers strive to mitigate these costs by providing specific hardware features for
the application domain being supported. To achieve this goal, the MESCAL
project [MESCAL 03] suggests a complete ASIP design methodology as a five-
step discipline [Keutzer et al. 02]. This discipline is defined to completely char-
acterise the application domain, fully explore the space of various possible ar-
chitectures, and provide suitable mechanisms to enable the software efficiently
use the hardware. Section 2.2 gives an in-depth comparison of ASIPs vs. ASICs
and reviews the MESCAL discipline to build enough background to clarify the
position of our work in this research strand.

In our ODYSSEY research project [ODYSSEY 03] on system-level design so-
lutions, we stay in the same roadmap as the MESCAL discipline suggests, but in
addition we take advantage of the object-oriented (OO) methodology. Our mo-
tive behind advocating OO for embedded-system design is the need for higher
abstraction levels, in addition to the higher cost of software design compared
to hardware in embedded systems [ITRS 01]. These on one hand emphasise the
need for a higher abstraction level while on the other hand imply that a software-
suitable methodology is a better choice than a hardware-suitable one for the
“system design methodology”. In the ODYSSEY project, we aim at enabling
the designer to design a high-level OO model of the system-under-design and
synthesise it into cooperating hardware and software components; moreover, it
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is of our primary concern to reuse the synthesised hardware and to program it
through software for future extensions of the same application or for implement-
ing new but related ones.

In the rest of this paper, we first present background information on object-
oriented design methodology as well as ASIP-based implementation. Then in
Section 3, we draw a sketch of the ultimate design flow in the ODYSSEY project
and present our proposed flow for single-processor object-oriented design of em-
bedded systems. In an ASIP-based development solution, the three primary is-
sues are how to select the instruction-set, how to synthesise the ASIP with that
instruction-set, and how to program the synthesised ASIP. The first two issues
are introduced in Section 4 along with details on implementing class polymor-
phism, and the third one is presented in Section 5. A case study in Section 6
illustrates our view of system-level OO modelling and the reuse methodology;
the section also presents and analyses the experimental results of simulation and
synthesis of the case studies. Related work is introduced, discussed and com-
pared to ours in Section 7. Finally Section 8 concludes the paper and presents
directions for further research.

2 Background

For the last three decades, the ever increasing need for more complex systems and
shorter time-to-market has always motivated chip design at higher abstraction
levels. Currently, the highest abstraction level that is mature enough to be widely
adapted by designers and facilitated by commercial design automation tools is
the behavioural level where the hardware designer describes the behaviours of the
circuit-under-design as sequential algorithms (each very similar to a software
program); behavioural synthesis tools then analyse the design and synthesise
gates and registers that provide the same functionality.

The need for higher abstraction levels not only is still felt, but also is ex-
pected to exist for the foreseeable future [ITRS 01]. System-level design is gen-
erally believed to be the next step in this move towards higher abstractions. In
system-level design, not only the hardware, but also the software of the system,
and their interface, is desired to be abstracted. In other words, the system should
be designed in an abstract model that is independent of its final hardware or
software implementation, then system-level synthesis tools synthesise interact-
ing hardware and software components that provide the same functionality as
the system-level model. Naturally, the first question raised is “What is a system
model?” and the second one is “How is it synthesised into interacting hard-
ware and software?”. In the ODYSSEY project [ODYSSEY 03], we advocate
object-oriented model as the answer to the first question, and ASIP synthesis
and programming for the second one. To justify these decisions, this section first
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reviews object-oriented methodology and compares ASIPs vs. ASICs, and then
discusses our decisions.

2.1 Object-Oriented Methodology

In general, two different approaches can be taken to model a given application.
The first approach puts the emphasis on the algorithm that solves the problem
or provides the required service. In other words, the model is a step-by-step path
that when followed produces the expected results; such an approach is generally
called algorithm decomposition. On the other hand, the second approach puts
the emphasis on the data items and components that constitute the surrounding
world of the problem. This approach, also called data decomposition, models the
application as the interaction of its involved components that together provide
the expected results. These data components, or objects, of the model often
correspond to real-world objects, and hence, provide a more natural and rational
way of problem solving. Each object has a set of data fields, or attributes, that
is (in principle) not accessible to others; a certain set of operations, or methods
(also called behaviours), that each object defines is the sole interface to the other
objects and external world. Objects can invoke operations of, or pass messages to,
each other. These objects and their message-passing finally provide the required
service or result.

Inheritance. To efficiently model objects and their methods, they can be
categorised into classes; all objects of the same class have the same attributes
and methods, but can have their own value for each of the attributes. Some
classes of objects may have similarities in attributes and methods. The gener-
alisation/specialisation mechanism, also known as inheritance, allows to build a
hierarchy of classes where each child class inherits all attributes and methods
from its parent(s) and adds new ones if required. Therefore, the parent class is a
generalisation of all its children and each child is a specialisation of its parent(s).
This is a powerful mechanism that facilitates reuse of already defined features
as well as management of complexity by incrementally adding new features to
existing classes.

Polymorphism. A child class can also redefine each method of its parent
to correspond to the special needs of the child. Now, when this same method
is invoked on objects of the parent and the child class, the performed opera-
tion should differ. Polymorphism, or polymorphic behaviour, requires that the
performed operation depend on the class of the called object; if the object is of
the parent class, the parent method should be invoked, and if the object is of
the child class, it is the child method that should be run. In general, polymor-
phic behaviour may not be desired from all methods of a class. The designer
can selectively enable polymorphism for each method by annotating the method
declaration; such methods, that are to provide polymorphic behaviour, are often
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called virtual methods. Implementing polymorphism requires that when a virtual
method is called on an object, the class of the called object is determined, then
the implementation of the called virtual method in that class is located, and fi-
nally the call is dispatched to that method implementation; thus, polymorphism
implementation is also known as virtual method despatch.

The above-explained philosophy of design is called object-oriented methodol-
ogy and the programming style that uses this philosophy is called object-oriented
programming. A wide variety of languages (e.g. Java, SmallTalk, C++) provide
features required for object-oriented programming; these are object-oriented lan-
guages. Each object-oriented language may provide different mechanisms to de-
fine the fundamental concepts of classes, objects, inheritance, and polymorphism;
however, these concepts are supported by all of them.

What we presented in this section, was a broad view of the object-oriented
paradigm for modelling applications. It is out of scope of this paper to talk
about how to analyse and design object-oriented applications or how to do it
practically. To provide system-level synthesis from OO models, we consider only
the fundamental concepts explained above and provide the path to synthesise
collaborating software and hardware from models described by those concepts;
this gives language-independence to the synthesis methodology. Further reading
on object-oriented analysis, design, and programming can be found in books
such as [Booch 94, Lee and Tepfenhart 97].

2.2 ASIPs versus ASICs

The technology advancement towards nanometer transistor sizes has made the
design of ASICs much harder and much more expensive than ever. This arises
from four distinct sources: designing each transistor is harder in deep sub-micron
geometries (generally accepted as < 250nm), at the same time exponentially
more transistors are to be designed with this higher levels of integration and
increased die-sizes, integrating heterogeneous components (digital, analog, and
mixed-signal) on the same die is also common now, and in addition, the time-
to-market for products is increasingly shrinking. Consequently, the cost for the
design of an ASIC in 2010 is estimated to hit $100M [ITRS 01]. In addition
to this high risk and high cost of design, the manufacturing cost is also rising
to multi-million dollars for sub-100nm geometries; in the current 180-130nm
processes, it is already in the 0.5-1M$ range and is only to raise with further
shrinking geometries.

The aforementioned high cost of ASIC design and manufacturing necessitates
a higher production volume to amortise the costs over a larger number and reduce
the unit price. Providing “programmability” is one way to achieve higher vol-
umes; it allows the same chip to be used for multiple related applications as well
as for various generations of the same application. Moreover, programmability
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mitigates the aforementioned high risk of ASIC design; writing and debugging
an application in software is much cheaper, easier, and faster than designing,
debugging, and manufacturing working hardware. Hardware that features pro-
grammability is known as ASIP, also referred to as programmable platform.
Contemporary evidence, especially in the fields of network and communication
processors, confirms that ASIPs are rapidly emerging [Keutzer et al. 02]. How-
ever, the flexibility offered by this alternative implementation style to ASIC often
comes at a significant cost in performance and power consumption.

What is obviously desired is the flexibility of ASIP with the efficiency of
ASIC. To achieve this, a complete design methodology is required that enables
the ASIP to provide specific hardware features for the application domain be-
ing supported. The research in the MESCAL project [MESCAL 03], aimed at
developing a methodology and set of supporting tools for ASIP-based design,
suggests such a disciplined methodology that is discussed below.

MESCAL Five-Step ASIP Design Discipline. The MESCAL project
breaks the ASIP-based design into two parts. The first part, development of
ASIPs, deals with the design of the ASIP hardware so that better service is
provided for the supported applications while providing software features that
allow efficient programming. The second part, deployment of ASIPs, talks about
how to effectively use and program ASIPs to implement applications. The latter
is part of their current and future research but for the former, they have outlined
the following five-step methodology [Keutzer et al. 02]:

1. Disciplined Benchmarking. An ASIP is, by definition, tailored to an appli-
cation domain. This requires a set of benchmarks for analysis to identify
required features of that domain. Traditionally, benchmarks have consisted
of application kernels, and the only quantitative measure used has been
the number of execution cycles. MESCAL requires that benchmarks must
consist of a functional specification to describe what it should do, a require-
ments specification to specify what requirements the application must meet,
an environmental specification to ensure a complete and well-defined set of
stimuli, and a set of measurable performance metrics such as power con-
sumption and memory bandwidth in addition to execution time; moreover,
the benchmarks must be at the application-level rather than the kernel-level
as kernel-level benchmarks can potentially hide performance bottlenecks.
One such disciplined benchmarking is presented in the context of network
processors in [Tsai et al. 02].

2. Defining the Architectural Space. A wide variety of architectures are pos-
sible to develop an ASIP. However, not all of them may be suitable for a
given domain of applications. A careful definition of the suitable space of
architectures is essential for the subsequent design space exploration.
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3. Efficiently Describing the Detailed Design Space to be Explored. After the
benchmarks and architectures are defined, all benchmarks should be mapped
to each architecture and the design metrics should be measured to system-
atically explore the design space and find the best choice. Obviously, this
mapping cannot be done from scratch for each architecture; retargettable
software tools (e.g. compilers, instruction-set simulators, and power simula-
tors) are required to easily change target to another architecture. In addition,
it is essential that all these software tools stay consistent to each other and to
the target architecture in consideration. One way to achieve this, is to define
an efficient architecture description language from which all software tools
are generated. MESCAL introduces the MESCAL Architecture Description
(MAD) language along with metatools to generate compiler, simulators, and
the like tailored to the architecture being considered.

4. Exploring the Design Space. The design space is explored in an iterative
process of compiling the benchmarks on the design point, evaluating the
result on the metrics using the simulator and accordingly enhancing the
ASIP design. The retargettability of the tools is the key to efficiency of this
process for a large number of design points.

5. Exporting the Programming Environment for the Final Architecture. The
application-specific features of an ASIP may be completely useless if it
cannot be programmed efficiently. Efficient programming requires a high
level language for today’s levels of software complexity. Furthermore, lan-
guage features are required that expose those details of the architecture
that account for most of its performance. A long-known example is the
C language; C exported 20% of the architectural features of 1970s proces-
sors (such as pointers and registers) that resulted in 80% of their perfor-
mance [Keutzer et al. 02]. The modern equivalent of such a programmers’
model is needed that exports critical features of the ASIP to the program-
mer for easy and efficient exploitation.

2.3 Justification of the Methodology Decisions

As discussed in the first part of this section, elevating the design abstraction
level is inevitable in order to cope with the design complexity as well as the
market demands. “System-level design” is the next milestone in this path and a
design methodology is required that supports modelling at this level and synthe-
sising lower-level components from that model. Such a methodology can start
from a hardware-resembling model (e.g. SystemC [SystemC 04] and SystemVer-
ilog [SystemVerilog 04]), or a software-resembling model (e.g. Java [OASE 03]),
or a mathematical model (e.g. co-design finite-state machine [Sgroi et al. 00]).
Any of these choices has its own advantages and disadvantages, and hence, each
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can make sense depending on the point of emphasis. In safety critical systems, a
strict mathematical model can be of more interest since it enables strict charac-
terisation and assessment of safety and fault-tolerance factors. In computation-
intensive applications, a hardware-centred model can be a better fit that first
provides the necessary performance but can also give enough flexibility to allow
slight modifications or upgrade. In rapidly-changing market sectors, where the
customer demands constantly change and a few additional features can result in
a big increase in market share (e.g. mobile phones, personal digital assistants,
and other general consumer electronics), a software-centred model is more ap-
pealing due to the ease of modification and upgrade it offers. In such general
embedded systems, which we envisage as our target applications, short time-to-
market is required and a tight market-window applies. Moreover, the Interna-
tional Technology Roadmap for Semiconductors reports that software now rou-
tinely accounts for 80% of embedded system development cost [ITRS 01]. This
necessitates paying special attention to the software component of the system.
Therefore, we advocate a software-centred model as the initial system-model.
Subsequently, within this category, we have chosen the object-oriented method-
ology. Object-oriented technology has gained such high reputation in the software
community that it is believed to be “the most important evolution (revolution)
of the 1990s” [Lee and Tepfenhart 97]. Some merits of OO can be listed as ca-
pability to share and reuse code, capability to localise and minimise the effects
of modifications, capability to manage complexity, and inherent support for con-
currency [Cooling 03]. Specifically, support for reuse is a primary issue in OO
and is inherently provided by the class and class hierarchy concepts. We take
advantage of this property in Section 4 to form a correspondence between a class
library (the enabling concept for high-level reuse) and an ASIP (the low-level
unit of reuse).

The other important decision to make is the implementation philosophy.
In Section 2.2, we presented several facts that have led to the increase in the
significance of programmability in chips. For the same reason, we have chosen an
ASIP style of implementation. Satisfactorily, this implementation methodology
is in harmony with our modelling methodology: both OO and ASIP put emphasis
on reuse and extensibility. Section 4 shows how we have put enough hooks in the
ASIP hardware to enable capturing the extensions of the model as software of
the ASIP. We call such an ASIP, that also provides special support for object-
orientation, an OO-ASIP.

3 The ODYSSEY Embedded System Design Flow

In the ODYSSEY project [ODYSSEY 03] we advocate system-level design of
embedded systems in the OO methodology. The final system design flow we en-
visage starts from a high-level implementation-neutral modelling environment,
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e.g. using UML, that specifically allows concurrency in the model. The con-
currency can be both inter-object (multiple objects exist and interact in the
system) and intra-object (concurrent method invocations over a single object).
ODYSSEY ultimately aims at mapping such a high-level model into a network of
OO-ASIPs in an NoC (Network-on-Chip) platform. The motivation behind tar-
geting NoC is that firstly it addresses design issues in deep sub-micron technolo-
gies [Benini and DeMicheli 02] and secondly the NoC paradigm matches the OO
one: the OO paradigm clearly separates functionality (method implementation)
from communication (method invocation); similarly, the NoC paradigm sepa-
rates computation (processing in network nodes) from communication (packet
routing).

In the ideal design environment we currently envisage, first the system-under-
design will be modelled in object-oriented methodology where objects can exist
concurrently and exchange messages to ask for services from one another, to
exchange information, and/or to synchronise their operations. Then C++ code
is generated from this concurrent system model, objects are statically partitioned
into sets each assigned to an OO-ASIP, and finally the methods of the objects
assigned to each OO-ASIP are partitioned into either hardware or software.

In this starting-point work, for simplicity we mainly address system develop-
ment on a single OO-ASIP, which obviously implies sequentialisation in method
invocations due to having a single instruction stream; however, fine-grained con-
currency is still provided inside each method implementation (see Section 4).

Single-Processor Embedded System Design Flow. Our proposed de-
sign flow is shown in Figure 1. It is divided into two related sub-flows. First,
illustrated at the left-hand side of the figure, an OO-ASIP is designed and tai-
lored to the application domain in question. This results in a database consisting
of pairs of an OO-ASIP and its corresponding class library; each pair is designed
for a certain domain of applications. Later when developing an application, an
appropriate OO-ASIP is selected from the database and deployed in the system,
shown in the right-hand side of Figure 1. As any other ASIP, an OO-ASIP may
cause some performance penalty; however, since OO-ASIP scales well when the
applications (and the corresponding class library) grows, such a design flow is
very promising.

The “OO-ASIP Design Flow” starts with designing a suitable class library
for the application domain. After a disciplined benchmarking and analysis phase
(Figure 1, the box with number 1 in the upper left corner), such as the MESCAL
proposal, essential abstract data types of the application domain are identified
and modelled in a class library called “hardware class library”; critical operations
in the application domain comprise the to-be-in-hardware methods of the class
library. Then in box 2 of Figure 1, the “hardware class library” is synthesised to
an OO-ASIP as described in [Goudarzi et al. 03] and summarised in Section 4.
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Figure 1: Object-oriented embedded system design flow using a single OO-ASIP.

The “hardware class library” and its corresponding OO-ASIP are saved in a
central database for later adoption and use in the “OO System Development
Flow”, the right-hand side of Figure 1. This flow starts by choosing a suitable
“hardware class library” from the database. The adopted class library may be
augmented if necessary to cover application requirements. The extending classes
are called “software class library” and the entire resulting classes are named
“system class library”. We naturally call the methods that have been imple-
mented in hardware as “hardware methods” and similarly those implemented in
software as “software methods”.

The embedded application is modelled using the “system class library”. The
model is functionally verified in the designer’s favourite environment using the
(possibly pre-compiled) “hardware class library” which is functionally equiva-
lent to the OO-ASIP. Finally, compilation (of the software-method parts of the
class library) results in an object file to be stored in instruction-memory on the
final chip/board along with the synthesised OO-ASIP retrieved from the central
database.

4 The Object-Oriented ASIP

Reusability for a set of applications is the key property that an ASIP needs
to provide, otherwise its overhead compared to ASICs cannot be justified. This
firstly requires the ASIP to provide support for the operations that are common
in most of the applications in the target set, and secondly facilities must be
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provided to allow applying post-manufacturing extensions to the ASIP so that
required, but unforeseen, features can be provided for the applications that were
unavailable at the ASIP development time. Furthermore, to pay primary atten-
tion to reuse, we have adopted OO, which is an inherently designed-for-reuse
model, as the initial system model in the ODYSSEY project (see Section 2.3).
We observe that in an OO model, the methods of the class library constitute
all the (macro)operations that can be performed in the model, and moreover,
this continues to hold for any application that uses that class library. This can
address the first issue above, i.e. identifying common and core operations of the
target domain; such operations are the methods of the class library that repre-
sents the target application domain. Therefore, we propose to use these methods
as the instruction-set of the ASIP. For the second issue, i.e. applying extensions
to support unforeseen features, we observe that in the OO methodology, the class
library can be extended by new classes that add new attributes and methods to
the existing ones. These new methods were not available at ASIP development
time, and hence, are not covered in its hardware; however, if the ASIP enables
such extensions to run as new parts of the ASIP software, the second issue is also
addressed. In this section, we introduce such an ASIP and show how it provides
the above capabilities.

In a previous publication [Goudarzi et al. 03] we identified method invoca-
tion (among objects in an object-oriented specification) with instruction execu-
tion in a processor. In other words, we viewed a method invocation on an object
as an instruction to be executed specifying the object and additional argument(s)
as instruction operands. This view results in identifying selected methods of the
class library as the instruction-set of a corresponding processor. Such a processor
will be able to execute any program comprised of objects of that class library, i.e.
all applications with that class library. We call this processor an object-oriented
application-specific instruction processor, or an OO-ASIP for short. This view
results in associating the OO-ASIP with the class library.

A currently implemented internal architecture for the OO-ASIP is shown in
Figure 2. Each “hardware method” is implemented as a Functional Unit (FU)
shown in the middle of the figure. The OO-ASIP in Figure 2 corresponds to a
class hierarchy of two classes: A and B; class A has defined a single f() method
while class B, derived from A, overrides the f() method and introduces g()
method. The below C++-like code fragment illustrates this simple class library:

class A { virtual int f() {...} ...; };

class B extends A {

virtual int f() {...}

virtual int g() {...}

...;

};
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Figure 2: OO-ASIP internal architecture for a sample class library. Here, class
B is derived from class A while redefining its f() method and introducing a g()
method.

Thus, three distinct methods (A :: f(), B :: f(), and B :: g()) exist in this
class library and correspondingly, three FUs are implemented in the OO-ASIP as
its Execution Unit (EU). The two other key components of the architecture are
the Method Invocation Unit (MIU) and the Object Management Unit (OMU)
described below. All program instructions (method invocation commands) are
stored in an instruction memory shown at the upper right of Figure 2. During
OO-ASIP operation, instructions are read from the instruction memory by the
MIU; each instruction designates a method (opcode) and one or more arguments
(addressed by instruction operands); as conventional in OO style, the first argu-
ment indicates the object to be manipulated. The MIU determines (see below)
and activates the corresponding FU implementing the method in question. The
MIU can also dispatch such instructions to software routines depending on the
class of the called object; this class membership of the object is determined
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at run-time to enable polymorphism (see “Implementing Polymorphism” part
below).

All objects’ data fields are stored in the data memory at the upper left of
Figure 2. Objects of the same class (e.g. OA1 and OA2 that are respectively
objects 1 and 2 of class A) have the same size and layout for their attributes.
Objects of a derived class (e.g. OB1 as object 1 of class B derived from class
A) keep the same layout for their inherited attributes, but append it with their
newly added fields (the grey part labeled “B-Specific Attributes” in the OB1

box).
In an OO model, a single method may be called on different objects, and

hence, a mechanism is required to enable the method implementation to access
all objects that may be called. Correspondingly, each FU (the method implemen-
tation in the architecture of Figure 2) must be able to operate on all appropriate
objects; this is provided by the OMU that regulates all accesses to object data
fields. To access fields of the called object, the FU communicates with the OMU
which makes the memory or register transaction on behalf of the FU. The OMU
also implements a data cache to accelerate data access. A “hardware method”
may need to call other methods to accomplish its task. In such a case, the active
“hardware method” issues an internal instruction (through the instruction

signal between the FU and the MIU in Figure 2) and the MIU dispatches it in
the same way as normal instructions read from the instruction memory.

Our key contributions in that previous publication [Goudarzi et al. 03] are
to define the instruction-set of an ASIP by selected methods of the “hardware
class library”, to propose an architecture to implement the OO-ASIP, and to
realise polymorphism in hardware, supporting (virtual) method dispatch even
to software. The synthesis process can in fact be expanded to steps 2 to 4 of the
MESCAL discipline. The proposed internal architecture (presented in Figure 2)
is only a prototype to present the concepts and show their use in practice; the fine
details of this architecture are not our primary focus in this paper and hence
are not discussed anymore. However, the implementation of polymorphism is
presented below due to its importance. In addition to being a very important
feature of the OO methodology, we show in Section 5 that polymorphism can be
used to apply software patches to hardware after manufacturing.

Implementing Polymorphism. We define the following notation: each
object in the system is designated by an “object identifier” or oid, each class by
a “class identifier” or cid, each class method by a “method identifier” or mid
(shared by all redefinitions of that method in child classes), and each FU by a
“Functional Unit identifier” or FUid.

Polymorphism implies dynamic type checking of the called object to find out
the method that corresponds to the instruction being executed. This is done
by the MIU through the Object-Type Table (OTT) and Virtual-Method Table
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(VMT) in Figure 2. The OTT shows current class membership of all objects
available in the system, i.e. an oid → cid mapping. In software realisations,
this information is normally stored as a (hidden) tag in the object attribute
storage. We hold this inside the OO-ASIP for higher performance, but this is
not particularly important here.

The VMT is a matrix containing an entry for each class of the system and for
each virtual method, designating its corresponding FU. Hence, it is a mapping
function of type (cid ,mid) → (FUid). Naturally, the row of a derived class is
identical to its immediate parent except for its overridden and newly introduced
methods.

OO-ASIP instructions designate the mid (the opcode, i.e. the called method)
and the oid (first operand, i.e. the called object). After reading an instruction, the
MIU consults the OTT to find out the cid of the called object, and then maps
the (cid ,mid) pair to an FUid through the VMT. The resulting FUid is not
necessarily a hardware unit but may point to the starting address of a software
routine according to a tag bit; in either case, it is the appropriate method of the
called object and is invoked accordingly. This entire process effectively realises
polymorphism.

It is worth considering how the virtual method dispatch mechanism works
as the source and destination of the call vary between hardware and software
implementation. Non-virtual calls are just a special case where we know the
implementation format of the callee. It was explained above that the despatch
mechanism works irrespective of the implementation format of the caller and
callee. However, passing parameters to the method implementation can be tricky
depending on the caller and callee implementation format. Two alternative mech-
anisms for this parameter passing are: pushing parameters on a stack, or writing
them to argument registers. The stack-based approach provides independence
from caller and callee implementations, while the register-based approach gives
higher performance. These are discussed below.

First assume all actual arguments are put on a stack before each method
call. This provides the same mechanism for parameter passing irrespective of
the caller and callee being in hardware or software. For example, assume a soft-
ware method f() invokes a call obj.g() while obj is an object of class B; g’s
arguments are pushed on the stack. The g component of the VMT for B is then
extracted. This is then (according to a tag bit) either interpreted as a software
method (in which case the call effects a traditional branch-and-link instruction)
or as a hardware method in which it effects an OO-ASIP instruction B::g. The
same would hold for a hardware caller.

Now assume that registers are used for parameter passing instead of a stack
to gain higher performance. For a software caller, the scenario is simple and
the same as above, but the parameters are placed in assumed registers a1, . . . ,
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an. For a hardware caller, however, two cases would arise depending on the
implementation format of the call destination: a hardware destination just cor-
responds to the activation of the appropriate FU as above (and the movement
of arguments to the callee’s input register); a software destination is more tricky
as the call arguments (held internally in the caller’s FU) must be routed to the
input registers (a1, . . . , an as above) for g().

It is worthy of note that the register-based calling scheme above means that
each method declaration (and all its overriding instances—i.e. the same mid) uses
a common set of argument registers, but different method declarations (i.e. sepa-
rate mids) use separate argument registers. This simplifies the software/hardware
interface for presentational purposes; in practice we would seek to use a single
set of argument registers (cf. procedure call on MIPS or ARM processors), but
doing so is more complicated and puts additional requirements for a software
callee to save argument registers before using a hardware instruction which could
use a software method. This is not a concern when using a stack for parameter
passing.

5 Programming the OO-ASIP

As described in previous section, we synthesise a class library as an OO-ASIP.
Applications modelled with that hardware class library without augmenting it
run directly on the OO-ASIP, e.g.

A x; // Class A is part of the "hardware class library"

main() { x.init(); x.go(); }

corresponds to two instructions of the OO-ASIP since A::init() and A::go()

are hardware methods, and hence, are instructions of the OO-ASIP. However,
evolution of the products and applications implies extensions to the class li-
braries (e.g. to provide more complicated functionality using the existing base
classes, or to override a hardware-implemented method with an upgraded soft-
ware implementation). Figure 3 gives a diagrammatic view of the system class
library where its hardware portion (in grey box) corresponds to the OO-ASIP,
and the extending classes (in white box) correspond to the software for the OO-
ASIP. Software methods either call each other (this just corresponds to OO-
ASIP software function call), or call hardware methods (this just corresponds to
an OO-ASIP single instruction). Therefore, software methods can be translated
into a sequence of instructions representing hardware and software method calls,
and thus are the software for the OO-ASIP, for example stored in flash ROM.
Traditional processors can be viewed as special cases of the general OO-ASIP,
performing operations on simple objects such as int, float, etc.; hence, run-
ning general software is possible by including FUs corresponding to traditional
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Figure 3: Diagrammatic view of the correspondence between the OO-ASIP and
the hardware class library, and also between the software class library and the
OO-ASIP software.

ALU-like operations, or alternatively by supplying a general-purpose processor
core along with the OO-ASIP.

Note also how OO model of evolution and the correspondence of the OO-
ASIP to the hardware class library provides hardware-accelerator reuse. An OO
model evolves incrementally over an existing class library by adding missing
functionalities and reusing the fixed existing ones; the OO-ASIP, which can be
viewed as a hardware-accelerator for all applications modelled with that hard-
ware class library, corresponds to that fixed existing part and hence directly
addresses reusability in future application extensions.

To illustrate embedded system development and evolution using the OO-
ASIP, consider the example of a security system controlling and monitoring
authorised access of people to rooms. People and rooms are the main objects in
the system. Access rights, authentication algorithm, and recorded information
may differ for each person, and similarly for each room. Therefore, one would
design two class hierarchies for people and rooms and synthesise an OO-ASIP
for them. To implement a specific instance of security system, the designer in-
stantiates appropriate people and rooms and properly models their interaction
by appropriate method calls over objects.

As long as no new type of people or room is introduced to the system, i.e.
the hardware class library suffices, the same OO-ASIP can be reused for new
security systems, even if the number of objects or the sequence of method calls
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change (e.g. recording of the access trials is now to be done for every attempt
instead of merely after successful authentication); such changes correspond to
software modifications of the OO-ASIP.

However, if for example a new type of room is added to the system, the class
library of rooms needs to be augmented. This is done by adding software classes.
The new room either still uses OO-ASIP-provided methods but in a different
way (e.g. uses triple-DES instead of simple DES1 for authentication, allowing
reuse of current hardware methods), or radically differs in behaviour. In this
latter case, the worst case, the new behaviour is implemented in software, using
current class methods wherever possible. Performance degradation for objects of
these new classes is the price one pays for the unforeseen support in this worst
case of class augmentation. However, this is a graceful degradation occurring
only to the objects of the new type. Moreover, note that many time-consuming
operations can still be dispatched to hardware methods even if an application
uses only objects of software classes; e.g. in the domain of digital signal processing
applications a MAC (Multiply and ACcumulate) method in the hardware class
library enables all future software methods to use it.

The design of people and rooms class hierarchies is the starting point for the
development of an OO-ASIP tailored to the domain of security systems, and
hence, it plays a significant role in practicality of the final ASIP. We wish to
leverage the MESCAL efforts in disciplined benchmarking here for designing the
hardware class library, and hence, we do not concern ourselves with the process
of developing the hardware class library anymore in this paper. The MESCAL
disciplined benchmarking is meant to carefully analyse the target application
domain; therefore, part of its results can be captured as our hardware class
library.

Another programming feature of the OO-ASIP compared to traditional pro-
cessors is that it enables the programmer to selectively override hardware units
by software routines; e.g. the following code extends the example shown at the
beginning of this section by deriving a software class B from the hardware class
A and overriding its go() method:

class B extends A {

void go() {...} // overrides A::go() method

};

B x;

main() { x.init(); x.go();}

Although the code in the main() function is the same as before, the x.go()
method call is now dispatched to B :: go() instead of A :: go(). This shows how
1 DES (Data Encription Standard) is a cryptography method that operates on fixed-

sized blocks and generates blocks with the same size. Triple-DES uses three subse-
quent DES operations for higher security.
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software classes can selectively override hardware methods. This feature may be
required in several circumstances where, for example, the hardware unit has a
physical, manufacturing, or design fault or has gone out of date and replacing
it is too expensive or even impossible (e.g. when the hardware is installed in
an out-of-reach satellite or spacecraft). The traditional approach to this prob-
lem is to rewrite, in an ad hoc manner, the entire program in order to catch
all invocations of the faulty hardware and to replace them by correct software
routines. Note how the use of dynamic method dispatch provides a structured ap-
proach to incorporating enough ‘hooks’ in hardware to allow software patches to
out-of-date features; this is to be contrasted with the current ad hoc approach
explained above. These ‘patches’ can override an outdated or faulty-designed
(or manufactured) hardware FU with correct software implementation (i.e. post-
manufacturing design-error correction) in return for a performance penalty that
conveniently only affects objects that could exercise the faulty FU.

5.1 Functional Verification of the Application

The correspondence between an OO-ASIP and its “hardware class library” al-
lows to use the class library as the software counterpart of the OO-ASIP when
designing new applications to run on the OO-ASIP. The designer selects an
appropriate class library, models the application in his favourite design environ-
ment, and functionally validates it by simulation on his favourite OS-processor
platform.

Imagine an application programmer building a new instance of security sys-
tems following the above example. Access to people and rooms class hierarchies is
enough for him to design the application and functionally validate it. Regardless
of the design environment, the class library/OO-ASIP correspondence means the
application has been functionally validated on the OO-ASIP.

5.2 Compiling the Application

5.2.1 Embedded OO Programs—Numbering Concepts

In object oriented systems, there are two separate concepts concerning asso-
ciating distinct identifiers (e.g. small integers) to methods. One is to allocate
per-definition, so that A::f() and B::f() are given separate identifiers. We re-
fer to these as functional unit identifiers (FUid, introduced in Section 4). The
other is to allocate per-declaration where overriding virtual methods are given
the same identifier as the overridden method. These latter will be referred to as
method identifiers (mid). OO-ASIP method invocation instructions will use the
mid form, which can then be dynamically dispatched to the FUid form. Note
that the mid form is determined for a “hardware class library” irrespective of
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how it is extended, a fact which we exploit in the following section in building
an OO-ASIP.

Implementing polymorphism requires identical encodings (i.e. mid) for a vir-
tual method and all its overriding definitions throughout the library. Numbering
of methods starts from the root node of the library. Whenever encountering a
new method (not a redefinition) within the library a new number is assigned to
it which is also inherited to all its subsequent redefinitions. These mid encodings
along with operand encodings in the instruction, number and type of registers,
and support for dynamic object allocation/deallocation and the like, are charac-
teristics of the OO-ASIP and are saved in the (OO-ASIP, class library) database
of Figure 1. The compiler uses these for code generation.

We have not yet implemented a retargettable compiler for the OO-ASIPs
and currently assemble the programs manually. However, automatic compiler
generation from the (OO-ASIP, class library) database entry is possible and
will be addressed in the ODYSSEY project—the task consists of straightforward
modifications to the compiler algorithm which replaces calls in intrinsic functions
to hardware instructions; in the same way that a compiler maps a language call
to (say) sqrt function by loading arguments into registers and then using the
SQRT opcode rather than a CALL instruction, we need to map language method
invocations of “hardware class methods” into their corresponding opcodes.

5.2.2 Compiling Software Methods

The “software methods” may either override existing “hardware methods” or
introduce brand new methods not foreseen when the OO-ASIP was designed.
In the former case, the encoding of the method is the same as its overridden
hardware one, and hence can be encoded as the corresponding old instruction;
updating the VMT is enough to enable the MIU to dispatch method calls also
to this new implementation. However in the latter case, as no old instruction
corresponds to this new method, the instruction-set of the OO-ASIP needs to
be augmented if the MIU is still to be the dispatcher. This ISA-augmentation
is possible by reserving a certain amount of encodings in the opcode field of
instructions at the OO-ASIP synthesis time; however, this is just a partial rem-
edy. To address this issue when the ISA can no longer be augmented, we switch
back to the software implementation of polymorphism, where an indirect CALL

instruction through a virtual method table branches to the appropriate routine.
This allows the “system class library” to grow indefinitely.

6 Traffic Light Controllers—A Case Study

The case study is summarised as follows: a controller is to be designed for the
crossroads of a highway and a farm road. The highway should always remain
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open unless a car appears at the farm road. In this situation, if the highway
has been open for at least a min green time, it is closed and the farm road
temporarily opened for a fixed fixed green time after which the highway is
reopened. It is noteworthy that this example is a metaphor for a reasonable
design and is only to illustrate the design flow and concepts.

6.1 Experiment Setup

We intend to use a single linguistic framework (C++/SystemC) for both software
and hardware components throughout the system design flow, thereby simplify-
ing late-in-the-design-process allocation of methods into hardware or software.
However when the implementation of this case study started, we had no ac-
cess to SystemC synthesis tools. Therefore, Verilog was used to synthesise the
OO-ASIP and produce the experimental results2. We used ModelSim c© and
LeonardoSpectrum c© to respectively simulate and synthesise the models. Power
estimations are reported by PowerCompiler c© tool at the register-transfer level
based on activity annotations gathered during a sample simulation run.

6.2 Synthesising a Traffic-Light Controller OO-ASIP

For this simple example, we propose the class library at the top-left corner of
Figure 4 rooted at traffic light class with two child classes farmroad light

and highway light. The traffic light class represents a general traffic light
that can be green or red for any arbitrary time span, while the farmroad light

can be green only for the given fixed time of the farm track. The highway light

class is another special kind of traffic light that cannot be made red unless
the given minimum green-time of the highway is already elapsed. The central
panel in Figure 4, with “Class Hierarchy” caption, shows the declarations of these
classes in C++. The traffic light class defines a state data member (showing
whether the traffic light is in red, green, or yellow state) and an elapsed time

data member (showing how long the current state has been active), and three
methods open(), close(), and timekeeper(), which respectively turn the light to
green, turn it to red, and keep track of time units. These methods are defined
in C++ notation in the “traffic light methods” panel in Figure 4. An auxiliary
method, update state, is defined but not shown in the figure; it updates the
object state field and resets the elapsed time. The traffic light::open()

method turns the light to green irrespective of its current state, but the close()
method ensures that if the light is in green state, it is first turned to yellow and
2 This interestingly confirms that support for object-orientation is possible even with

non-OO HDLs, in the same way as general processors run OO software although
they are not OO themselves.
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class traffic_light {
  int state;
  int elapsed_time;
  void open();
  void close()
  void timekeeper();
};

class farmroad_light:
   public traffic_light {
  int fixed_green;
  void open();
};

class highway_light:
   public traffic_light {
  int min_green;
  void close();
};

traffic_light

farmroad_light highway_light

 Class Hierarchy 

highway_light::close() {
 while(state!=RED)
  switch(state) {
   case GREEN:  
     while(elapsed_time<min_green)
       wait(1);
     state=YELLOW; 
   case YELLOW:
     wait(YELLOW_TIME);
     state=RED;
   default: 
     state=YELLOW;
  }
}  highway_light method

farmroad_light::open() {
 done=0;
 while(!done)
  switch(state) {
   case RED: 
     state=GREEN;
   case YELLOW:
     state=GREEN;
   case GREEN:
       wait(fixed_green);
       state=YELLOW;
       wait(YELLOW_TIME);
       state=RED;
       done=1;
  }
}

 farmroad_light method

traffic_light::open() {
 if (state!=GREEN)
   update_state(GREEN);
 }

 traffic_light::close() {
  while(state!=RED)
   if (state==YELLOW)
    update_state(RED);
   else {
    update_state(YELLOW);
    wait(YELLOW_TIME);
   }
}

traffic_light::time_keeper() {
  elapsed_time++;
}

 traffic_light methods

Figure 4: The class library (top-left) along with class definition details (panels)
for the traffic-light controller problem.

kept for a certain YELLOW TIME time units before being changed to red. The
traffic light::timekeeper() method simply increments the elapsed time.

There are two variants of this class: farmroad and highway lights. Hence,
two classes are derived: farmroad light and highway light. The former adds
a new data member named fixed green and specialises the open() method,
shown in the “farmroad light method” panel in Figure 4. Following the afore-
mentioned functionality of the farmroad light, this method first turns the light
to green and keeps this for the given time of its fixed green attribute, then
closes the farmroad again by turning the light subsequently to yellow and red.
The highway light class adds the new min green data member and overrides
the close() method, shown in the “highway light method” panel. This method
ensures that the light has been green for at least the given min green time before
closing the highway by turning the light to red. Details of how to synthesise the
above class library into an OO-ASIP are presented in the Appendix A.

The entire model was first validated by simulation and then synthesised. The
area/delay results of synthesis over a sample 0.5 µm process technology are shown
in Table 1. An analysis of the synthesis figures in Table 1 along with the software
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Area (equivalent gates)
Functional Units Frequency

Total MIU OMU traffic light farmroad light highway light (MHz)
open close timekeeper open close

7115 460 1845 429 887 564 1558 1372 98.6

Table 1: Results of synthesis of an OO-ASIP for the traffic-light controller prob-
lem over a sample 0.5 µm process technology.

1  #include "traffic_lights.h"

2  farmroad_light frl(1);
3  highway_light hwl(5);

4  main() {
5   frl.close();
6   hwl.open();
7   forever do {
8    if(frl_sensor) {
9      hwl.close();
10     frl.open();
11     frl.close(); // unnecessary
12     hwl.open();
13   } //if
14  } //forever
15 }

 main program 

1  #include "traffic_lights.h"

2 main() {
3  traffic_light *p;
4  for all objects obj do {
5   p = & obj;
6   p->timekeeper();
7  }  
8 }

 timekeeper interrupt routine

Figure 5: Software for the highway-farmroad traffic-lights problem.

running on the OO-ASIP (shown in Figure 5) is presented in Section 6.5.

6.3 Developing Traffic-Light Controller Applications

The C++ source code for the highway-farmroad problem is presented in Figure 5.
The “main program” panel shows two static object instantiations, frl and hwl

for the two traffic lights; line 2 states that the fixed green field of the frl object
is initialised to 1, while line 3 initialises the min green field of the hwl object to
5. The main() function first initialises the system so that the farmroad is closed
(line 5) and the highway is opened (line 6) and then defines the normal operation
(the forever loop in lines 7 to 14). A sensor is installed in the farmroad to detect
whether a car is waiting there to cross the highway; frl sensor represents the
status of this sensor. If this sensor shows that a car is waiting there (line 8), first
the highway is closed (line 9) and then the farmroad is opened (line 10); then,
the reverse is done (lines 11 and 12) to return to the normal state. Recalling
definitions of the class methods in Figure 4 makes it clear that line 9 ensures
that the highway is kept at least 5 time units open before being closed again; also
note that frl.close() (line 11) need not be called since frl.open() is defined
to close the farmroad after the given fixed time of 1 time unit. The frl sensor
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Memory Usage Power Consumption3 (nW)
instruction data without with

(words) (bytes) power-down power-down

highway-farmroad crossing 8 2 × 2 171.0 N.A.
Crossing with four lights
of type farmroad light 17 4 × 2 195.2 165.3
Crossing with four lights
of type highway light 17 4 × 2 187.3 148.7

Table 2: Experimental results of software development for the traffic-light con-
troller OO-ASIP.

(line 8) is an input to the system and can be a memory-mapped IO port in a
physical implementation; similarly, the status of the lights are outputs of the
system. Line 8 is currently executed by the MIU, however, frl sensor can be
considered an object of class int, and hence in a purely-OO system, would be
executed by FUs of the default system classes (int, float, etc.).

The right-hand side panel in Figure 5 shows the interrupt routine that when-
ever invoked by the system timer interrupt updates the elapsed time field (line
6) of all traffic light objects (line 4) in the system. Note how lines 4 to 7
use identical commands to call timekeeper() method of different objects; the
dynamic dispatch mechanism of the OO-ASIP ensures that the method corre-
sponding to the class of the called object is invoked. In this simple example,
all three classes use the same timekeeper() method, and hence, all iterations
of line 6 are dispatched to the traffic light::timekeeper() FU. However,
one may derive a new class from traffic light that operates irrespective of
the elapsed time (for example controlled manually by a policeman), and hence
would override the timekeeper() method to do nothing; still the same code in
the “timekeeper interrupt routine” panel of Figure 5 works fine and invokes this
new method for objects of this new class.

The prototype system implementing the application presented in Figure 5
was machine-coded manually. The results are presented in the first data row of
Table 2. The resulting Verilog model was simulated with a set of sample inputs to
gather activity information for signals. The model and this activity information
were then given to the power estimation tool that reported the number given in
the third data column in Table 2. The fourth data column is unavailable in this
example since the power management approaches presented in next subsection
are not applicable.
3 As estimated by PowerCompiler tool, over a 1 µm process with 5 V operating voltage.
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6.4 Reusing the OO-ASIP

Now, consider a different example of traffic lights at the junction of four roads
at a square. Suppose that all roads are of fixed priority and hence fixed green-
time. The basic types in the system are the same as highway-farmroad traffic-
light controller problem. This encourages the designer to reuse the OO-ASIP
developed for that problem. Moreover, any of the three flavours of the light
available in the “hardware class library” can be used to model this application,
offering a level of freedom to the designer. We show how this freedom provides
a spectrum of different design points and how one can take advantage of it to
satisfy criteria such as power and area consumption.

First, assume that we use farmroad light objects, which is a good choice
since the green-time of lights at the square is fixed, similar to the farmroad light

class. The software model is presented in Figure 6, that first defines four objects
of farmroad light class (line 2) and then (lines 5 to 8) iteratively opens one
of them, in turn, and closes the others (for better readability, a sequence of
four commands is shown per line). Software and power consumption results are
shown in the second data row of Table 2. The power consumption figures in the
third and fourth data columns are produced as in previous section; for the power-
down mode, the unused FUs are switched off (the highway light::close() and
traffic light::open()FUs in this case). This is an application-specific “power
management” technique whose effectiveness will be analysed in Section 6.5. In
our experiment setup this power-down mode was realised by statically deleting
these unused FUs from the Verilog design and then estimating power consump-
tion as before. In case of implementing the OO-ASIP on a Field-Programmable
Gate Array (FPGA), this same deleting technique can be used to consume less
area; this is an application-specific “area management” technique that is enabled
by the granularity of the OO-ASIP instructions and its internal architecture.
This same deactivation technique can also be applied at run-time to allow dy-
namic power and area management. The MIU is always aware of the FUs that
are active at any point in time (because FUs are activated only by the MIU), and
hence, the MIU can dynamically switch off inactive FUs. For power management
this can be done, for example, by stopping the clock of the inactive FUs, and for
area management this can be applied by run-time reconfiguration of the FPGA
so that only the active FU(s) are implemented in the FPGA. This dynamic
deactivation can be applied independent of the application being executed on
the OO-ASIP and represents our dynamic and application-independent power
and area management policy. Obviously, these dynamic management policies in-
troduce some performance overhead (to switch on or bring into the FPGA the
now-invoked FU) that needs to be carefully traded off for the offered benefits.

As mentioned before, one can equally well use highway light objects in
this application by simply replacing farmroad light with highway light in
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1  #include "traffic_lights.h"

2  farmroad_light lights[4];

3  main() {
4   forever do {
5   lights[0].open();    lights[1].close();    lights[2].close();    lights[3].close();
6   lights[0].close();   lights[1].open();     lights[2].close();    lights[3].close();
7   lights[0].close();   lights[1].close();    lights[2].open();     lights[3].close();
8   lights[0].close();   lights[1].close();    lights[2].close();    lights[3].open();
9   }
10 }

 main program  

Figure 6: Software for the four traffic-lights at a square.

line 2 of Figure 6. This results in the figures shown in the third row of Ta-
ble 2. The power estimation is done as before, but for the power-down mode the
farmroad light::open() and traffic light::close() FUs are deleted from
the Verilog model.

6.5 Analysis of the Experimental Results

By realising polymorphism in hardware, the dispatching function of the MIU
introduces some overhead. However, Table 1 shows that the area overhead is
only 6% of the total system area, while taking only one clock cycle. Of course,
by incorporating more methods the MIU will be bigger, but the total chip area
will also grow; hence, the ratio can remain the same or even decrease as FUs are
to be more complicated and area-consuming than the MIU, which merely adds
one row to the VMT per new class. When synthesising the chip for higher clock
frequencies, the MIU may, or may not, need more clock cycles; this needs more
complicated examples to explore. Nevertheless, we have addressed such issues
concerning polymorphism overhead in our other work [Goudarzi et al. 04] that
dispatches virtual methods at the same time that packets are routed in an NoC
platform; this realises polymorphism for free in NoC implementation since no
extra hardware is used other than what is already required for packet routing in
the NoC.

The OO-ASIP total area in Table 1 seems a little bit high. This is because
we did not try to optimise the design and use synthesis-tool options at all. Opti-
mising internals of each FU is the well-known process of “behavioural synthesis”
and we do not directly concern ourselves with it. The OO-ASIP structure, the
MIU, and the OMU are the concepts that we have introduced and their area
overhead is negligible, especially noting that in this preliminary work they have
been described at the behavioural level for simplicity. In a real evaluation in
silicon, various techniques from mature processor architecture technology will
be employed to design them optimally.

In the above case study, we first devised a “hardware class library” for the
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original problem of highway-farmroad traffic-lights. Then the “hardware class
library” and the corresponding OO-ASIP were reused in another similar problem
involving four traffic lights at a square. This illustrates how the OO-ASIP is
reused. We sadly could not demonstrate “hardware class library” augmentation
to illustrate “hardware-accelerator reuse” since it required at least a processor
core, if not a compiler, to deal with the “software methods”.

Analysis of Power and Area Management Policy. Our choice of the
instruction-set and internal architecture of the OO-ASIP enables statically purg-
ing or turning-off parts of the system that are not used in a certain embedded
application. In the first example (highway-farmroad crossing), all class methods
were required for system operation. However in the two others, some methods
were not used at all; so, they can be statically powered off, or even cut out of
the architecture in the case of OO-ASIP realisation on reconfigurable hardware.
This offers ‘application-specific power and area management’ in the OO-ASIP
by statically switching off or deleting hardware units that are certainly not used
by the application.

Table 2 confirms effectiveness of this policy by showing 15% and 20% re-
duction in power consumption when using respectively farmroad light and
highway light objects in the square lights problem. This reduction is achieved
by powering-off (purging, in our experiment setup) the unrequired FUs; i.e.
highway light::close() and traffic light::open() in the first case and
farmroad light::open() and traffic light::close() in the second one. Sim-
ilarly, results of OO-ASIP synthesis in Table 1 confirm effectiveness of the area
reduction by “method purging”: the area can be reduced by 19% and 22% when
respectively using farmroad light and highway light objects in square lights
problem.

Comparing the second and third data rows of Table 2 shows that the use
of highway light objects is preferable due to less power consumption (4 or
10% depending on whether the power-down mode is active or not). The same
is true regarding required chip area. This demonstrates another dimension of
application-specific static power and area management based on the choice of
objects type.

It is worthy of note that the “traffic-light controllers” example elaborated
and analysed above is a very simple one that may not benefit highly (and was
not intended to) from an object-oriented implementation; it was adopted as a
universally well-known digital design example that firstly is simple enough to
allow its OO model be easily understood by general readers, and secondly allows
concentration on the synthesis and reuse methodology instead of the modelling
methodology that we wish not to deal with in this paper. Instead, the interested
reader is referred to [Wolf 01] where object-oriented models are presented for
several applications in a variety of domains, ranging from as simple as an alarm
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clock to as complex as a video-accelerator. As already mentioned in Section 2.3,
different types of systems may benefit from different system-level models and
design styles. Our methodology is aimed at general consumer electronics systems,
however, elaborate characterisation of the type of systems that would benefit
from modelling and implementation in our methodology is an essential part of
our further research.

7 Comparison to Related Work

Several previous works address OO hardware synthesis by extending VHDL
[Radetzki 00, Ashenden et al. 97, Schumacher and Nebel 95], synthesis from Java
[Kuhn et al. 01, Young et al. 98], and from SystemC models [Grimpe et al. 02,
Schulz-Key et al. 04]; however, none of them involve ASIP approach.

Radetzki [Radetzki 00] proposes to synthesise objects as finite-state ma-
chines. The object data fields comprise the object state. The methods, each
implemented as a hardware module, manipulate these state bits. He uses some
bits in the object storage to show its class membership and hence, his objects can
dynamically change type. To implement polymorphism, each object implements
in hardware all the methods that a virtual method may be dispatched to. When
a virtual method is called, all potential implementations are activated and a
multiplexer at their output ports selects the output value of the only implemen-
tation that corresponds to the run-time class membership of the polymorphic-
object. The expansion of many methods for every object carries a significant
area cost. Moreover, the polymorphism realisation approach introduces unnec-
essary power consumption due to activating many implementations but using
only one of them. These are addressed in our ODYSSEY solution. Radetzki’s
approach has also been used in the European ODETTE project [ODETTE 03],
which introduces SystemC-Plus as an extension to SystemC with synthesisable
object-oriented features [Grimpe et al. 02]. Both Radetzki and ODETTE aim
at synthesising an ASIC from the OO model and hence do not talk about post-
manufacturing extensions of the OO model and hardware reuse through pro-
grammability.

In the OASE project [OASE 03], Kuhn et al. transform an OO specification to
a non-OO specification and then use behavioural synthesis tools to synthesise it
into hardware [Kuhn et al. 01, Schulz-Key et al. 04]. They implement polymor-
phism as a switch-case statement to test the object type at run-time and call
the appropriate method, which again causes significant area overhead as they
have already reported in [Kuhn et al. 01]. Current OASE work is also limited to
ASIC synthesis and does not address programmability.

Parvataneni et al. at Silicon Infusion Ltd. propose an object-orientated het-
erogeneous multiprocessor platform [Parvataneni et al. 03], which uses a network
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structure to dispatch messages (method invocation commands) among process-
ing elements that are either hardware modules or normal processors. They pro-
pose to use firmware to dynamically resolve virtual methods to the appropriate
processing elements [Parvataneni and Nanetti 03], and hence, they would also
allow overriding hardware by software. Our work is very close to theirs espe-
cially regarding the internal architecture; however, we follow a top-down design
flow while they start from IP blocks for the processing elements and follow a
bottom-up approach.

The “class library” of our OO-ASIP is devised by the system designer effec-
tively capturing his experience and insight on target applications. Hence, our
instruction selection approach reflects a direct hint from the designer. Simi-
larly, Wolf [Wolf 96] has used designer-provided decomposition hints (objects
and methods) in OO specifications to partition an OO model and co-synthesise
it to a distributed engine of heterogeneous processors and their software. How-
ever, he assumes the processors are given and does not synthesise them.

Each of the above approaches has its own merits; however, to the best of our
knowledge, our ODYSSEY approach is the first in the literature that proposes
an ASIP approach to implementing OO models, that enables hardware/software
co-design from an OO model while proposing “class methods” (in contrast to a
“complete object”) as the partitioning quantum, and that realises polymorphism
in an ASIP.

8 Summary and Conclusion

The main thrusts of this paper are firstly to introduce our design flow for em-
bedded system development based on employing OO-ASIPs, secondly to present
a policy of hardware/software co-design where the hardware and software com-
ponents are both specified in the same language and even the same syntax,
and finally to demonstrate the reuse methodology and power/area management
policies that the employment of OO-ASIPs provides.

We proposed a methodology for embedded system design persuading object-
oriented design of applications at system level to run on the OO-ASIP that is
tailored to the class library corresponding to the application domain. The issues
on synthesising and programming the OO-ASIP were discussed and the practical
use of the methodology was shown by some case studies. Experimental results of
implementing the case studies were presented and analysed to demonstrate the
advantages of the approach in ASIP reuse, in application-independent power and
area management (i.e. dynamic deactivation of unused parts), and in application-
specific power and area management (i.e. static deactivation of unused parts).

We have presented a prototype internal architecture for the OO-ASIP. How-
ever, the core point on which we would like to emphasise is the OO-ASIP
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instruction-set, not the architecture. Other architectures can be proposed em-
ploying prior knowledge of processor design or innovative solutions. Indeed we
have proposed a variant architecture [Goudarzi et al. 04] that realises polymor-
phism for free. We view at least the following areas for further research and
for revisiting in order to suggest customised innovative solutions for the OO-
ASIP: alternative architectures to address instruction-level parallelism or multi-
threading, memory architectures, and caching policies and mechanisms.

We intend to use the same language, C++, over all development stages by
moving from Verilog to SystemC for OO-ASIP synthesis. Currently we are fo-
cusing on the networked internal architecture mentioned above. A retargettable
compiler will then be developed to accelerate application development and im-
plementation of case studies.
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A Details of Traffic-Light Controller OO-ASIP Synthesis

In this appendix we present the details of synthesising an OO-ASIP for the
case study discussed earlier in Section 6. For this simple example, one would
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suggest the class library of Figure 4 rooted at traffic light class. This class
includes a state data member (whether light is in red, green, or yellow state)
and an elapsed time data member (how long this state has been active), and
three methods open(), close(), and timekeeper(), which turn the light to
green, turn it to red, and keep track of time units, respectively. There are two
variants of this class: farmroad and highway lights. Hence, two classes are de-
rived: farmroad light and highway light. The former adds a new data member
named fixed green and specialises the open() method accordingly. The latter
adds the new min green data member and overrides the close() method. De-
tails of the class library and methods are also presented in Figure 4 and discussed
in Section 6.2.

A.1 Synthesising the Traffic-Light Controller OO-ASIP

In our experiment setup, the OO-ASIP is described in Verilog HDL, simulated,
and then synthesised. Five class methods exist in the class library rooted at
traffic light. As an example of our FU synthesis procedure, Verilog code of
open() method of the traffic light class, i.e. the traffic light$open FU,
is provided in Figure 7 (we named each class::method FU as class$method

module in Verilog for better readability and correct Verilog syntax). In lines 1 to
6 the Verilog module and its ports and parameters are defined. Then from line
8 to 45 Verilog tasks are defined that are used to contact the OMU to access
object fields. The read task is discussed here in detail; all other task operate
similarly. The read task is to read from data memory the value of an object field
designated by a virtual-address (oid, index ), where oid is the object identifier
and the index is the index of the requested field in the object data storage. The
oid is an input port of the Verilog module (line 1) and hence is already available
to the read task. The index is specified as an input to the task (line 11). The
output of the task is the data read from the data memory (through the OMU)
and is specified as d in line 10. First, the virtual-address is formed in line 13.
Then, four control signals of the OMU are assigned appropriate values in line 14;
the rd, wr, lock, and unlock control signals respectively designate a read, write,
lock, and unlock request to the OMU. Line 15 waits for the ready signal from the
OMU that shows availability of the requested data, and then accordingly assigns
the task output value (i.e. the d argument of the task). Finally line 16 returns
the OMU control signals to the inactive state. As can be seen in Figure 7, for
each operation (i.e. read or write) there are three variants; e.g. read (lines 9 to
18), read lock (lines 20 to 29), and read unlock (lines 31 to 40). The locking
version asks the OMU to block other access requests to that object field until
an unlocking operation is done by this same FU; this facilitates atomic update.

Finally, lines 47 to 61 define the FU functionality in behavioural Verilog.
This involves re-specifying each method functionality in Verilog using the above-
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1 module traffic_light$open( clk, reset, oid, 
2    start, done, vaddr, rd, wr, lock, unlock, 
3    ready, data_in, data_out);
4
5 // parameters and ports definitions
6  ...
7
8 // Task definitions
9 task read;
10   output [data_width-1:0] d;
11   input[max_index_width-1:0] index;
12 begin
13   vaddr={oid, index};
14   rd=1; wr=0; lock=0; unlock=0;
15   wait(ready) d=data_in;
16   rd=0;
17 end
18 endtask //read
19 
20 task read_lock;
21   output [data_width-1:0] d;
22   input[max_index_width-1:0] index;
23 begin
24   vaddr={oid, index};
25   rd=1; wr=0; lock=1; unlock=0;
26   wait(ready) d=data_in;
27   rd=0; lock=0;
28 end
29 endtask //read_lock
30

continued in the right panel

31 task read_unlock;
32   output [data_width-1:0] d;
33   input[max_index_width-1:0] index;
34 begin
35   vaddr={oid, index};
36   rd=1; wr=0; lock=0; unlock=1;
37   wait(ready) d=data_in;
38   rd=0; unlock=0;
39 end
40 endtask //read_unlock
41
42 // Other tasks similar to the previous ones
43 task write; ...
44 task write_lock; ...
45 task write_unlock; ...
46
47 reg done;
48 reg [7:0] state;
49 parameter state_index=0;
50
51 always @(start or reset) begin
52   if (reset)
53     done = 1;
54   else if (start) begin
55     done = 0;
56     read(state, state_index);
57    if (state!=GREEN)
58      update_state(GREEN);
59     done = 1;
60   end // else if
61 end // always
62 
63 endmodule //traffic_light$open

 traffic_light::open() method 

continued from the left panel

Figure 7: Verilog code for traffic light$open FU. Bold italic text shows part
of the template of OO-ASIP architecture. Other parts come from the method
definition.

mentioned Verilog tasks for simulation and synthesis. This part of the FU is
specified in normal font in Figure 7. The bold italic portions of the figure are the
FU- and application-invariant templates that define the OO-ASIP architecture.
All other FUs are defined in the same template.

Comparing lines 56, 57, and 58 of Figure 7 to the C++ definition of the
traffic light::open() method in Figure 4 (top-right panel, first method defi-
nition) confirms the high resemblance of the FU behavioural code to the method
definition. All other code in lines 47 to 55, and 59 to 61 are provided just to allow
the MIU to control and monitor the operation of the FU. The high resemblance
between the method definition and the FU behavioural code shows possibility
of designing a translation tool that generates FU modules from the code of class
methods. This is part of our current work in providing an automated synthesis
tool framework for our methodology.

For time-keeping of the lights, an internal timer in the OO-ASIP issues inter-
rupts and the corresponding interrupt service routine updates the elapsed time

attribute of all traffic light objects in the system (see Section 6.3). This is an
example of concurrent attribute access in system operation and hence requires a
control mechanism for shared access. Figure 8 shows the use of read lock (line
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1 module traffic_light$timekeeper( clk, reset, oid, 
2    start, done, vaddr, rd, wr, lock, unlock, 
3    ready, data_in, data_out);
4
5 // parameters and ports definitions
6 ...
7 
8 // Task definitions
9 task read;
10   output [data_width-1:0] d;
11   input[max_index_width-1:0] index;
12 begin
13  vaddr={oid, index};
14  rd=1; wr=0; lock=0; unlock=0;
15  wait(ready) d=data_in;
16  rd=0;
17 end
18 endtask //read
19
20 task read_lock;
21   output [data_width-1:0] d;
22   input[max_index_width-1:0] index;
23 begin
24   vaddr={oid, index};
25   rd=1; wr=0; lock=1; unlock=0;
26   wait(ready) d=data_in;
27   rd=0; lock=0;
28 end
29 endtask //read_lock
30

continued in the right panel

31 task read_unlock;
32   output [data_width-1:0] d;
33   input[max_index_width-1:0] index;
34 begin
35   vaddr={oid, index};
36   rd=1; wr=0; lock=0; unlock=1;
37   wait(ready) d=data_in;
38   rd=0; unlock=0;
39 end
40 endtask //read_unlock
41
42 // Other tasks similar to the previous ones
43 task write; ...
44 task write_lock; ...
45 task write_unlock; ...
46 
47 reg done;
48 reg [7:0] state;
49 parameter state_index=0;
50
51 always @(start or reset) begin
52  if (reset)
53    done = 1;
54  else if (start) begin
55     done = 0;
56     read_lock(elapsed_time, elapsed_time_index);
57     elapsed_time = elapsed_time + 1;
58     write_unlock(elapsed_time, elapsed_time_index);
59     done = 1;
60   end // if
61 end
62
63 endmodule //traffic_light$timekeeper

continued from the left panel

 traffic_light::timekeeper() method 

Figure 8: Verilog code for traffic light$timekeeper FU. Bold italic text
shows part of the template of OO-ASIP architecture. Other parts come from
the method definition.

56) and write unlock (line 58) Verilog tasks supported by the OMU to facilitate
atomic updates. The read lock Verilog task reads the elapsed time variable
and asks the OMU to lock it, then the write unlock Verilog task updates that
object fields and asks the OMU to release the lock. As the figure shows, the FU
code in bold-italic font is FU-invariant and is just the same as in Figure 7.

The entire model was simulated and validated using ModelSim c© commer-
cial HDL simulator. The initial model, using Verilog tasks as presented above,
was not directly synthesisable by LeonardoSpectrum c© commercial synthesis
tool. This was due to the use of timing constructs in the task definitions of the
FUs and the MIU, and also because of concurrent access to variables of the
Verilog module in the OMU specification. We inlined the tasks and integrated
all of the concurrent accesses into a single always block to synthesise them.
The area/delay results of synthesis over a sample 0.5 µm process technology are
shown in Table 1.
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