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Abstract: We see a temporal data warehouse as a set of temporal views defined in the past frag-
ment of the temporal relational algebra extended with set-valued attributes and aggregation. This
paper proposes an incremental maintenance method for temporal views that allows improvements
over the re-computation from scratch. We introduce a formalism for temporal data warehouse
specification that summarizes information needed for its incremental maintenance. According to
this formalism, a temporal data warehouse W is a pair of two sets of views: the materialized
component and the virtual component. The materialized component of W represents the set of
views physically stored in the warehouse. The virtual component of W is a set of non-temporal
expressions involving only relations kept in the materialized component. Several features of our
approach make it especially attractive as a maintenance method for warehouses: (a) there is no
need for storing the entire history of source databases, (b) maintenance of the temporal data
warehouse is reduced to maintaining the (non-temporal) materialized component, and (c) the
materialized component is self-maintainable. We build a uniform algorithm by combining two
previously unrelated techniques based on auxiliary views. Our method is sufficiently general so
that it can be easily adapted to treating databases with complex-valued attributes.

Key Words: Temporal data warehouse, temporal databases, temporal relational algebra, tempo-
ral logic, self-maintenance.
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1 Introduction

A warehouse integrates disparate data sources to provide consolidate, summary data
that can be used by online analytical processing (OLAP) and data mining tools. This
aggregated data speeds up the query processing and facilitates high-level analysis, help-
ing managers in their day-to-day decisions. In this paper, we consider the maintenance
of a data warehouse composed of a set of materialized temporal views. Each temporal
view originates from multiple, autonomous, heterogeneous and non-temporal sources.
When an update is performed over a source relation, temporal views in the warehouse
should change to reflect this update. The question arises whether the materialized views
should be recomputed from scratch after each source update or whether they should
be obtained from the old materialized views. Considering both approaches, one notices
that:
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• In a warehouse environment the cost of recomputing views from scratch is high since
it involves consulting different sites, and thus implies a large overhead in terms of
communication cost. In a temporal warehouse this approach requires keeping all the
database history. As sources are usually non-temporal, this solution implies the storage
of the history of all sources in the warehouse.
• The computation of new views from old ones usually requires querying source data
(to obtain extra information). This computation may be expensive. To avoid this pro-
cess, some methods allowing data warehouse self-maintenance have been introduced
[Laurent et al. 2001, Mohania and Kambayashi 2000, Quass et al. 1996].

A naı̈ve solution to the problem of maintaining materialized temporal views re-
quires storing all sources (and their history) in the warehouse. This solution implies
redundancies as illustrated by the next example.

Example 1.1 We consider a source database containing relations UNIV and EMP . The rela-
tion UNIV [C, N ] contains the name N of each student admitted in a course C at the university.
The relation EMP [N, J ] contains people’s names N and their current job J. We suppose a data
warehouse with just one temporal view V , specified by the following temporal relational algebra
expression where � means always in the past [Clifford and Tuzhilin 1990]:

V = �ΠN(UNIV � EMP ) (1)

This view gives the name of people who throughout the past but not necessarily at present have
worked and studied at the same time. We call these people the working students. In other words,
when the expression (1) is evaluated at instant i, it returns a relation containing all tuples 〈b〉 for
which, for all instant k in the past (k < i), the tuple 〈a, b〉 appears in UNIV and the tuple 〈b, c〉
appears in EMP .
Now, consider our source database evolving in time. At each instant i ∈ {0, 1, 2, 3}, the database
instance is δi. Note that an instance δi changes into instance δi+1 due to updates (seen as disjoint
sets of insertions and deletions that can be performed in a unique transaction).
Remark: We assume that transactions ensure database consistency w.r.t. integrity constraints.

UNIV
δ0 {〈cs, manuel〉, 〈math, jane〉, 〈law, john〉}
δ1 {〈cs, manuel〉, 〈math, mary〉, 〈law, john〉}
δ2 {〈cs, manuel〉, 〈cs, john〉, 〈math, paul〉}
δ3 {〈cs, john〉, 〈math, paul〉}

EMP
δ0 {〈manuel, teacher〉, 〈john, waiter〉, 〈mary, nurse〉}
δ1 {〈john, waiter〉, 〈jane, bookseller〉}
δ2 {〈john, waiter〉, 〈jane, bookseller〉, 〈paul, clerk〉}
δ3 {〈john, waiter〉, 〈jane, bookseller〉}

The evaluation of expression (1) at i = 3 requires the following computation: ΠN(δ0(UNIV ) �

δ0(EMP )) ∩ ΠN (δ1(UNIV ) � δ1(EMP )) ∩ ΠN(δ2(UNIV ) � δ2(EMP )). In our case,
we have δ3(V ) = {〈john〉}. Thus, considering that all the database history is stored in the ware-
house, the computation from scratch of V at instant i requires the execution of i join operations.
However, the resulting view contains just the tuples appearing in all these joins. For instance,
in our case, the computation of ΠN(δ0(UNIV ) � δ0(EMP ))) gives {〈manuel〉, 〈john〉} but
〈manuel〉 is eliminated from the final result by the intersection operation. In fact, at instant i = 1
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manuel stops working. This means that at instant i = 2 we know that manuel cannot be consid-
ered as a working student (as defined by expression (1)).
In real databases each join usually involves a large number of tuples. The cost of evaluating V can
be very high, affecting the efficiency of the warehouse maintenance. Considering our example,
it is easy to imagine the following situation. During the first year at a university, the majority
of students work. Then due to a scholarship program, this number decreases considerably. In
this case, the number of working students decreases but the evaluation of expression (1), at each
instant i, still involves a lot of computation: indeed, the view V at instant i is computed by
evaluating the expression ΠN(δ0(UNIV ) � δ0(EMP )) ∩ ΠN(δ1(UNIV ) � δ1(EMP ))
∩ ΠN (δ2(UNIV ) � δ2(EMP ))∩ . . . ...∩ ΠN(δi−1(UNIV ) � δi−1(EMP )). Instead of
computing V from scratch, it would be interesting to find V at instant i by using the instance of
V at i − 1 and some auxiliary information kept in the warehouse. �

As shown in Example 1.1, storing the entire history of sources in the warehouse
may be time and space consuming. The aim of this work is to perform the incremental
maintenance of a temporal warehouse without querying source data and keeping just a
fraction of historical information in the warehouse.

The main contributions of the paper are:

1. An incremental maintenance method for temporal data warehouses that allows im-
provements over the re-computation of temporal views from scratch. After an update
on the sources, the warehouse maintenance is performed by using only the updates on
sources together with the old instance of the view and some auxiliary views stored in
the warehouse. Not the entire history of source databases is stored in the warehouse.
2. Given a warehouse specification in terms of a set of views defined in the past fragment
of the temporal relational algebra (extended with set-valued attributes and aggregation),
we introduce a (formal) definition of a warehouse in terms of a materialized and a virtual
component. The materialized component contains a set of materialized relational views
and the virtual component implements the warehouse specification as a set of non-
temporal views defined in terms of the materialized component. Importantly, in our
approach (i) maintenance of the temporal data warehouse is reduced to maintaining the
(non-temporal) materialized component, and (ii) the materialized component is self-
maintainable.

Organization of the paper: Section 2 gives an overview of our approach. Section 3 in-
troduces our temporal data model and describes the syntax and semantics of the tempo-
ral algebra EPTA (used to specify temporal views). This algebra is equivalent to tempo-
ral logic TL extended with operators to deal with aggregates and set-valued attributes. It
generalizes the temporal algebra introduced in [Clifford and Tuzhilin 1990]. Section 4
shows how the materialized and virtual components of our temporal data warehouse
are built. Section 5 shows our algorithm for maintaining a temporal data warehouse.
Section 6 discusses some related work and Section 7 concludes the paper.

2 General Overview
To outline our approach, we consider its two main features, namely, (i) how to avoid
the storage of the entire history of source databases in the warehouse and (ii) how to
perform changes without consulting source relations.
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2.1 Temporal data warehouses over non-temporal sources

We suppose a set of non-temporal local data sources and a data warehouse containing
temporal views over these sources. The evaluation of the temporal views takes into
account the history of the local data. As seen in Example 1.1, computing temporal views
from scratch can be time and space consuming. In this work we propose an incremental
method for maintaining temporal warehouses. To this end, we store auxiliary relations
containing only a fraction of source history. After a source update, the computation of a
new temporal view consists of the evaluation of an algebraic expression involving some
auxiliary relations. We do not need to consult the entire history of source databases. For
instance, consider Example 1.1. In our approach, δ i(V ) (i.e., the view V at instant i)
is computed by evaluating δ i(Rα) ∩ (ΠN (δi(UNIV ) � δi(EMP ))) where Rα is an
auxiliary relation that stores just a fraction of temporal information.

In our approach, as illustrated by the following example, a temporal data warehouse,
although specified by a set of temporal expressions, is transformed into a set of non-
temporal views over an extended database schema composed of (a) the source database
schemas and (b) the auxiliary relation schemas.

Example 2.1 We consider a view V similar to the one presented in Example 1.1, but where
we add a new relation PHD[N, A, T ] indicating the name of people applying for a PhD thesis
T with an adviser A. Now our warehouse contains a temporal view specified by the following
expression. It gives working students applying for a PHD degree.

V = ΠN,A(�ΠN(UNIV � EMP ) � PHD) (2)
We consider that the source database evolves in time. The evolution of UNIV and EMP is the
one presented in Example 1.1. The instances of PHD are shown below.

PHD
δ0 {〈manuel, smith, th1〉 , 〈john, dupont, th2〉}
δ1 {〈manuel, smith, th1〉 , 〈john, dupont, th2〉 , 〈mary, smith, th3〉}
δ2 {〈manuel, smith, th1〉, 〈john, dupont, th2〉 , 〈mary, smith, th3〉 , 〈paul, dubois, th5〉}
δ3 {〈manuel, smith, th1〉 , 〈john, laurent, th4〉 , 〈mary, smith, th3〉, 〈paul, dubois, th5〉}

The temporal expression �ΠN(UNIV � EMP ) defines an auxiliary relation Rα. The way
this auxiliary relation is incrementally built at each instant is explained below. We translate the
temporal expression defining V into the non-temporal expression Vt = ΠN,A(Rα � PHD).
Now we describe the maintenance of our warehouse, step by step.

Instant i=0: δ0 is our database instance at instant i = 0. By definition, δ0(Rα) is empty. Thus,
Vt is also empty at i = 0.

Update on δ0: We consider now that an update is applied on instance δ0. Given a relation R,
we denote by �ri (resp. �ri) the set of tuples inserted in (resp. deleted from) instance δi(R).
Therefore, we have �univ0 = {〈math,mary〉}, �univ0 = {〈math, jane〉}, �emp0 =
{〈jane, bookseller〉}, �emp0 = {〈manuel, teacher〉, 〈mary, nurse〉} and �phd0 =
{〈mary, smith, th3〉}.

Instant i=1: After performing the update, the new source instance is δ1. Since in this situ-
ation ”always in the past” refers only to i = 0, to evaluate Rα at instant i = 1, we just
need to evaluate the expression ΠN(UNIV � EMP ) at instant i = 0. In this way, we ob-
tain that Rα, at i = 1, is {〈manuel〉 , 〈john〉}. Now, to find the new instance of V , we
compute the expression ΠN,A(Rα � PHD) at i = 1. Thus at instant i = 1, V contains
{〈john, dupont〉 , 〈manuel, smith〉}.
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Update on δ1: �univ1 = {〈cs, john〉 , 〈math, paul〉}, �univ1 = {〈law, john〉 , 〈math,
mary〉}, �emp1 = {〈paul, clerk〉} and �phd1 = {〈paul, dubois, th5〉}.

Instant i=2: The new source instance is δ2. To evaluate Rα at instant i = 2, we have to evaluate
the expression Rα∩(ΠN(UNIV � EMP )) at instant i = 1. We have {〈manuel〉 , 〈john〉}∩
{〈john〉}. Relation Rα, at i = 2, is {〈john〉}. As before, the new instance of V is calculated by
evaluating the relational algebra expression Vt at instant i = 2, resulting in {〈john, dupont〉}.

Update on δ2: �univ2 = {〈cs, manuel〉}, �emp2 = {〈paul, clerk〉}, �phd2 = {〈john,
laurent, th4〉} and �phd2 = {〈john, dupont, th2〉}.

Instant i=3: The new source instance is δ3. To evaluate Rα at instant i = 3, we have to evaluate
the expression Rα ∩ (ΠN (UNIV � EMP )) at instant i = 2. Thus relation Rα, at i = 3, is
{〈john〉}. The new instance of V is calculated by evaluating the relational algebra expression Vt

at instant i = 3, resulting in {〈john, laurent〉}. The following table shows the evolution of Rα.

Rα

δ0 ∅
δ1 {〈manuel〉 , 〈john〉}
δ2 {〈john〉}
δ3 {〈john〉}

�

2.2 Self-maintainable temporal data warehouses

A warehouse is self-maintainable if its maintenance is done without source consulta-
tion [Laurent et al. 2001, Mohania and Kambayashi 2000, Quass et al. 1996]. From Ex-
ample 2.1, our first proposal consists of storing, in the warehouse, the auxiliary relation
Rα and the non-temporal view Vt over the extended database schema {UNIV, EMP,

PHD, Rα}. However, this is not sufficient to achieve self-maintenance. For instance,
suppose we want to find the instance of V at instant i = 1. We need to compute the
expression ΠN,A(Rα � PHD) over instance δ1, i.e., we have to consult δ1(PHD).
The question here is how to avoid this kind of operation since it can lead to anomalies
[Zhuge et al. 1995]. In fact, the warehouse maintenance is decoupled from source up-
dates and sources are not supposed to perform sophisticated operations in support of
view maintenance.

To solve this problem, we store in the warehouse two types of auxiliary views,
namely the partial views and the complements. A partial view is a non-temporal join
view involving source relations and auxiliary relations resulting from the translation of
temporal expressions into non-temporal ones. A complement is any set of non-temporal
views which, together with the partial view, can re-compute all source relations.

Example 2.2 We consider the situation presented in Example 2.1. We define ∂V = Rα �
PHD to be a “partial” view of Vt. Instead of storing Vt we propose to store ∂V in the warehouse.
We notice that ∂V involves the join operator which is expensive to evaluate and so, this view is
worth being kept materialized in the warehouse. On the other hand, Vt may be calculated by
executing a projection over ∂V .
Besides the auxiliary relation Rα and the partial view ∂V , we suppose that the warehouse
stores three views CEMP , CUNIV and CPHD, complementary views of source relations EMP ,
UNIV and PHD, respectively, with respect to the partial view ∂V . These complementary views

1039de Amo S., Halfeld Ferrari Alves M.: Incremental Maintenance of Data ...



are defined in such a way that they satisfy the following properties: CEMP ∪ΠN,J∂V = EMP ,
CUNIV ∪ ΠN,C∂V = UNIV and CPHD ∪ ΠN,A,T ∂V = PHD (see Theorem 4.2).
Remark: A projection over incompatible attributes (i.e., πX(R) where X is not a subset of R’s
attributes) results in the empty relation over X. Thus, in this example, ΠN,C∂V and ΠN,J∂V
are both empty (and thus, they are omitted in the expression (∂V )′ below).

Now, to update the temporal view V it suffices to update the materialized view ∂V . As we will
see in Section 5, this is achieved by evaluating the relational expression (∂V )′:

(∂V )′ = (Rα ∩ ΠN(CUNIV � CEMP )) � (CPHD ∪ ΠN,A,T ∂V \ �PHD ∪�PHD)

For instance, in order to update the view V from instant i = 1 to instant i = 2, we have just to
evaluate the virtual view ΠN,A∂V . In our example, we have �phd1 = {〈paul, dubois, th5〉}
and �phd1 = ∅. At instant i = 1, Rα = {〈manuel〉 , 〈john〉} and the partial view ∂V =
{〈manuel, smith, th1〉, 〈john, dupont, th2〉}. Moreover, CUNIV = {〈cs, manuel〉 , 〈math,
mary〉 , 〈law, john〉}, CEMP = {〈john, waiter〉, 〈jane, bookseller〉} and CPHD= {〈mary,
smith, th3〉}. Thus, at i = 2, ∂V = {〈john, dupont, th2〉} and V = {〈john, dupont〉}. �

In Example 2.2 expression (∂V )′ defines how partial view ∂V is updated. We no-
tice that it involves only (i) the updates performed over the source relations and (ii)
relations stored in the data warehouse (complementary views, the partial view ∂V , the
auxiliary relation Rα). The warehouse maintenance is quite simplified since it can be
performed without consulting the sources: one just needs to evaluate Π N,A(∂V )′, a
non-temporal relational algebra expression.
Remark: Notice that our underlying temporal data model follows a time-implicit per-
spective. In a time-implicit approach, a temporal database instance is a finite sequence
of relational instances. On the other hand, in a time-explicit approach each relation is
augmented with an extra column storing the time instants of validity of each tuple. Our
choice of an implicit time representation (the so-called snapshot temporal model) is
due to the fact that within this perspective, the most natural temporal query languages
(such as those in [Abiteboul et al. 1996, Chomicki 1994, Clifford and Tuzhilin 1990,
Niwinsky and Toman 1996]) are extensions or algebraic counterparts of Temporal Logic
TL [Emerson 1990]. As modal logics in general, TL provides a good balance between
expressive power and computational complexity [Gradel 1999, Sistla and Clarke 1985,
Stockmeyer 1974].

Figure 1 shows how we put together the two main features discussed in this section
by illustrating the general structure of our self-maintainable temporal data warehouse.
In this work, a warehouse W is specified by a set of temporal expressions from which
we derive two sets of non-temporal views, Wm and Wv , that we call the materialized
component and the virtual component of W, respectively. These two components to-
gether completely determine the temporal data warehouse.

For instance, let W be the warehouse of Examples 2.1 and 2.2, specified by V =
ΠN,A(�ΠN ( UNIV � EMP ) � PHD). Its materialized component Wm is com-
posed by the auxiliary relation Rα, the partial view ∂V and complementary views
CEMP , CUNIV , CPHD . The virtual component Wv is defined by ΠN,A∂V .
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Figure 1: A Self-Maintenable Temporal Data Warehouse and non-temporal sources

It is worth pointing out that, in this paper, we combine in a uniform way two previ-
ously unrelated techniques based on auxiliary views: The maintenance of the temporal
data warehouse is achieved by means of a technique that was originally used to check
temporal integrity constraints [Chomicki 1995], while self-maintainability is achieved
by extending a complement-based approach [Laurent et al. 2001] for the temporal set-
ting. In this context, the materialization of auxiliary relations, i.e., information that is
not stored for application reasons but for “operational” reasons, is used successfully in
two fundamentally different ways, namely, (i) to reduce the temporal setting to a non-
temporal one and (ii) to get around the decoupling of non-temporal data sources and
temporal data warehouse (which even in the non-temporal setting is the cause of update
anomalies).

3 Temporal Data Model

In this section, we introduce the temporal data model underlying our temporal data
warehouses and the temporal language used to specify them. We assume the reader to
be familiar with the basics of relational databases [Abiteboul et al. 1995] but we briefly
recall some definitions and notations used in this paper.

3.1 Relational database basic notations

Let Atomtype be a finite set of atomic types. A type is an atomic type τ or {τ}. For each
atomic type τ , we assume the existence of a countable infinite set dom(τ ), called the
domain of τ , such that dom(τ1) ∩ dom(τ2) = ∅ if τ1 �= τ2. For non-atomic types {τ},
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we define dom({τ}) as ℘(dom(τ)), (i.e., the power set of dom(τ )). We assume as well
the existence of two countable infinite sets: att, a set of attributes names and relname,
a set of relation names. The sets att, relname and dom(τ ), for τ ∈ Atomtype, are
assumed to be pairwise disjoint. A type is associated to each attribute A ∈ att. An
attribute can be atomic or set-valued depending if its associated type is atomic or not.

As in [Ozoyoglu et al. 1987], we extend the relational model to incorporate set-
valued attributes and aggregate functions. This is justified by the fact that warehouses
usually contain aggregated data, which can be naturally manipulated using set-valued
attributes. We notice that relations with set-valued attributes constitute a subset of (non
first normal form) relations [Abiteboul and Bidoit 1984, Jaeschke and Schek 1982]. In
fact, our approach can be easily adapted to treat complex value relations since adding
the tuple constructor to the traditional relational data model is considerably easier than
adding the set constructor [Abiteboul et al. 1995].

We assume the existence of a function sort that associates a finite set of attributes U

to each relation name R. A relation schema is a relation name R and we write R[U ] to
indicate that sort(R) = U . A database schema is a non-empty finite set R of relational
schemas. A tuple u with sort U is a function that, for each attribute A ∈ U of type τ ,
associates a constant a ∈ dom(τ ) (if A is an atomic attribute) or a set s ∈ ℘(dom(τ))
(if A is a set-valued attribute). The value of tuple u on an attribute A ∈ U (or on a set
of attributes V ⊆ U ) is denoted by u[A] (respectively u[V ]). If u and v are two tuples
having sort U and X ⊆ U then we write u[X ] = v[X ] if u[A] = v[A] for all A ∈ X .

An instance or relation over a schema R of sort U is a finite set of tuples over U .
An instance over a database schema R is a mapping that associates an instance over R

to each relation schema R ∈ R. The set of all instances over a relation schema R (resp.
a database schema R) is denoted by Inst(R) (resp. Inst(R)).

For each atomic attribute A, we assume the existence of a countable infinite set agg A

of aggregate function names. We assume also that, if A and B are distinct attributes then
aggA and aggB are disjoint. To each fA ∈ aggA is associated a function fA : InstA →
dom(τ ), where τ is the type of the attribute A and InstA = {I ∈ Inst(R) | R is a relation
schema and A ∈ sort(R)}.

We assume that the following uniformness property [Klug 1982] is verified: Let A

and B be two atomic attributes of the same type τ and let I and J be two instances
in InstA and InstB respectively. Suppose that the column corresponding to the attribute
A of instance I is identical to the column corresponding to the attribute B of instance
J , i.e., for each a ∈ dom(τ ) there are as many occurrences of a in the A-column of
I as in the B-column of J . Then, for each fA ∈ aggA there exists gB ∈ aggB such
that fA(I) = gB(J). For instance, let R[A, B] be a relation schema where A and B

are atomic attributes of type Integer, and let I be an instance over R. Let sum A be the
aggregate function which returns the sum of the A-column of I . Then there exists an
“identical” aggregate function sumB returning the sum of the elements in the B-column
of I . We notice that an aggregate function is applied over a relation instance I and
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performs a computation over one column of I . This definition of aggregate functions
follows the lines of [Klug 1982] and (as it has been pointed out there) is justified by the
fact that it avoids dealing with duplicates.

3.2 Temporal databases

Our temporal data model is based on the time-implicit perspective widely adopted for
its simplicity [Abiteboul et al. 1996, Chomicki 1994, Niwinsky and Toman 1996]. The
structure of time is considered as being isomorphic to natural numbers. A temporal
database (instance) or a database history over a database schema R is defined as being
a finite sequence δ = (δ0, . . . , δn) of databases instances over R. We sometimes call
the instance δi the database state at instant i. For each R ∈ R and i ∈ {0, . . . , n} we
denote by ri the instance δi(R), i.e., the relation associated to R at instant i. The last
state n is the current state of the temporal database.

3.3 A temporal relational algebra with set-valued attributes and aggregate
functions

A temporal algebra is an essential part of a DBMS when it is designed to treat time-
varying data. In [Mckenzie and Snodgrass 1991], a variety of temporal algebras, which
are extensions of classical relational algebra, have been studied. Our temporal data
model is based on one of those temporal algebras, the Tuzhilin’s Temporal Algebra
(TA for short), introduced in [Clifford and Tuzhilin 1990]. Our choice was motivated
by the fact that TA satisfies most of the compatible classification criteria discussed in
[Mckenzie and Snodgrass 1991]. Furthermore, its operators were designed to be pow-
erful yet simple and to be based on the well-accepted formalism of temporal logic
[Emerson 1990].

To specify temporal views we extend the past fragment of TA, in order to manipu-
late set-valued attributes and aggregate functions. We denote this extension by EPTA.
Our treatment of aggregates and set-valued attributes is based on the formalisms in-
troduced in [Klug 1982, Ozoyoglu et al. 1987]. We recall that in these approaches, in
order to simplify the presentation, the underlying domain of attributes is assumed to be
the set N of the natural numbers and relational algebra is presented under the so-called
unnamed perspective [Abiteboul et al. 1995], i.e., attribute names do not appear in the
expressions of the language. In our presentation, in order to make it possible to present
more readable and real-world examples, attributes take values in the domain of their
associated type and the algebra expressions are defined using the named perspective.
Next, we briefly present the syntax and the semantics of EPTA.

Syntax of EPTA

Let R be a database schema. An EPTA expression over R and its output sort are
both defined inductively. The basic EPTA expressions are defined as follows:
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1. If A is an attribute of type τ (not necessarily atomic) and a ∈ dom(τ), then
{〈A : a〉} is a basic EPTA expression with sort({〈A : a〉}) = {A}.

2. Each R (R ∈ R) is a basic EPTA expression of sort identical to sort(R).

A basic expression is an EPTA expression. Moreover, if S and Q are EPTA expres-
sions then the following expressions are EPTA expressions:

1. Selection σGQ, where G is a selection formula, i.e., a conjunction of formulas of
the form AΘB where (i) A ∈ sort(Q), (ii) B ∈ sort(Q) or B ∈ dom(τ ) where
τ is the type of A and, depending on the type of A and B, (iii) Θ is either a
predicate for comparing sets (=,⊆,⊂, �=, . . .), or the membership predicates ∈,
�∈ or a predicate for comparing constants (=,≤,≥, . . .). Moreover, sort(σGQ) =
sort(Q).

2. Projection: ΠXQ, where X is a finite subset of att. We define sort(ΠXQ) = X .
3. Renaming: ρQ, where ρ is a renaming of the attributes in sort(Q) and we assume

that for each attribute A, ρ(A) and A are attributes of the same type. We define
sort(ρQ) = ρ(sort(Q)).

4. Natural join: S � Q, where sort(S � Q) = sort(S) ∪ sort(Q).
5. Union: S ∪ Q, where sort(S ∪ Q) = sort(S) = sort(Q).
6. Difference : S \ Q, where sort(S \ Q) = sort(S) = sort(Q).
7. Aggregate formation: 〈[X ], fA : B〉Q, where X ⊆ sort(Q), the function fA ∈

aggA and A and B are atomic attributes of the same type such that A ∈ sort(Q),
A �∈ X and B �∈ sort(Q). We define sort(〈[X ], fA : B〉Q) = X ∪ {B};

8. Unpack: UA:BQ, where A ∈ sort(Q), B ∈ att is a new atomic attribute w.r.t.
sort(Q) (B �∈ sort(Q)). Moreover, A and B have both the same atomic type
τ or A has type {τ} and B has type τ , where τ is an atomic type. We define
sort(UA:BQ) = (sort(Q) \ {A}) ∪ {B}.

9. Pack: PA:BQ, where A ∈ sort(Q), B ∈ att is a new set-valued attribute w.r.t.
sort(Q) (B �∈ sort(Q)). Moreover, A and B have both the same type {τ} or A has
type τ and B has type {τ}, where τ is an atomic type. We define sort(PA:BQ) =
(sort(Q) \ {A}) ∪ {B}.

10. Previous: prev Q, where sort(prev Q) = sort(Q).
11. Since: S since Q, where sort(S since Q) = sort(S) = sort(Q).
12. Sometime in the past: �Q where sort(�Q) = sort(Q).
13. Always in the past: �Q, where sort(�Q) = sort(Q).

Semantics of EPTA

A temporal expression Q of EPTA is evaluated on a temporal database δ = (δ 0,

. . . , δn) at an instant i, 0 ≤ i ≤ n. This evaluation (denoted by (δ, i)(Q)) gives the
answer of the query specified by the EPTA expression Q. It represents the set of tuples
of sort(Q) satisfying the expression Q at instant i. For expressions 1. to 6., (δ, i)(Q)
is defined as in relational algebra. For instance, (δ, i)(σGQ) = {u | u ∈ (δ, i)(Q) and u
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satisfies the selection formula G}. For the projection ΠXQ, where X �⊆ sort(Q), we
define (δ, i)(Q) = ∅. We note that the intersection operator P ∩ Q (with its obvious
semantics) can be easily derived from join and selection [Abiteboul et al. 1996]. For
expressions 7. to 13., the semantics is given below.

7. Let ◦ denote tuple concatenation. Then,

(δ, i)(〈[X ], fA : B〉Q) = {u[X ] ◦ y | u ∈ (δ, i)Q∧
y = fA({u′ | u′ ∈ (δ, i)Q and u′[X ] = u[X ]})}

Intuitively, this operation assembles all tuples belonging to the answer of Q at in-
stant i which have the same values for the attributes of X and executes fA over the
A-column of the resulting set of tuples. The attribute B is associated to the column
corresponding to the result of the application of fA.

8. Let Y denote the set sort(Q) \ {A}. In the case that A is a non-atomic attribute, let
A be the set

{u | u is a tuple over Y ∪ {B} such that there exists
v ∈ (δ, i)(Q) with u[B] ∈ v[A] and u[Y ] = v[Y ]}

Then, (δ, i)(UA:BQ) =

⎧⎨
⎩

ρQ, where ρ is a renaming of A, with ρ(A) = B

if A is an atomic attribute
A if A is a set-valued attribute

Intuitively, (δ, i)(UA:BQ) is the set of all tuples obtained by transforming each tu-
ple in Q which has the form 〈{a1, ..., an}, c1, ..., cm〉 into the set of tuples {〈a1, c1,

. . . , cm〉, 〈a2, c1, . . . , cm〉, . . . , 〈an, c1, . . . , cm〉}.
9. Let Y denote the set sort(Q) \ {A}. For each v ∈ (δ, i)(Q), let Bv denote the set

{z[A] | z ∈ (δ, i)Q and z[Y ] = v[Y ]}. Then,

(δ, i)(PA:BQ) = {u | u is a tuple over Y ∪ {B} and there exists v ∈ (δ, i)(Q)
with u[Y ] = v[Y ] and u[B] is defined by equation (3) below}

u[B] =
{
Bv if A is an atomic attribute⋃

B∈Bv
B otherwise

(3)

Intuitively, (δ, i)(PA:BQ) is the set obtained by transforming packages of tuples
in Q that have the form {〈a1, c1, . . . , cm〉, 〈a2, c1, . . . , cm〉, . . . , 〈an, c1, . . . , cm〉}
into a unique packed tuple 〈{a1, . . . , an}, c1, . . . , cm〉.

We illustrate the use of operators 7. to 9. over a non-temporal instance.
Example 3.1 We consider relations R[A, B] and S[A, C] where A and B are atomic attributes
and C is a set-valued attribute. We assume instances over R as {〈a1, 5〉 〈a1, 20〉, 〈a2, 45〉}
and over S as {〈a1, {20, 30}〉, , 〈a3, {40, 50}〉}. The relations created by PB:MR, UC:NS, and
〈[A], sumB : Tot〉R are the following:

PB:MR: {〈a1, {5, 20}〉, 〈a2, {45}〉}
UC:NS: {〈a1, 20〉 , 〈a1, 30〉 , 〈a3, 40〉 , 〈a3, 50〉}
〈[A], sumB :Tot〉R {〈a1, 25〉 , 〈a2, 45〉}

�
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At first glance, we can imagine pack and unpack to be inverse operations. However,
in general, Q �= UB:A(PA:B(Q)) and Q �= PB:A(UA:B(Q)) as the following example
illustrates. Clearly, when A is an atomic attribute, Q = UB:A(PA:B(Q)).

Example 3.2 We consider the following instance over Q[X, A].

Q {〈x1, {20, 30}〉 , 〈x1, {2, 3}〉, 〈x2, {2, 3}〉}
PA:B(Q) {〈x1, {2, 3, 20, 30}〉 , 〈x2, {2, 3}〉}
UB:A(PA:B(Q)) {〈x1, 20〉, 〈x1, 30〉, 〈x1, 2〉, 〈x1, 3〉, 〈x2, 2〉, 〈x2, 3〉}
UA:B(Q) {〈x1, 20〉, 〈x1, 30〉, 〈x1, 2〉, 〈x1, 3〉 , 〈x2, 2〉, 〈x2, 3〉}
PB:A(UA:B(Q)) {〈x1, {2, 3, 20, 30}〉 , 〈x2, {2, 3}〉}

�

For expressions 10. to 13. we use the following notation: if Q is an EPTA expression,
we denote (δ, j)(Q) by qj .

10. (δ, i)(prev Q) =
{

qi−1 if i ≥ 1
∅ otherwise

11. For each k ∈ {0, . . . , n}, let ek be inductively defined by: e0 = ∅ and ek = sk ∩
(qk−1 ∪ ek−1), for k > 0. We define: (δ, i)(S since Q) = ei, for i ∈ {0, . . . , n}.

Intuitively, (δ, i)(S since Q) is the set of all tuples u such that there exists an instant
j < i where u ∈ (δ, j)(Q) and for all k such that j < k ≤ i, we have u ∈ (δ, k)(S).

12. For each k ∈ {0, . . . , n}, let ek be inductively defined by: e0 = ∅ and
ek = qk−1 ∪ ek−1, for k > 0. We define: (δ, i)(�Q) = ei, for i ∈ {0, . . . , n}.

Intuitively, (δ, i)(�Q) is the set of all tuples u such that there exists an instant j < i

where u ∈ (δ, j)(Q).
13. For each k ∈ {0, . . . , n}, let ek be inductively defined by: e0 = ∅, e1 = q0 and

ek = qk−1 ∩ ek−1, for k > 1. We define: (δ, i)(�Q) = ei, for i ∈ {0, . . . , n}.

Intuitively, (δ, i)(�Q) is the set of all tuples u such that for all instants j < i one
has u ∈ (δ, j)(Q).

Example 3.3 We consider the source database from Example 1.1 and the EPTA expression
S since Q, where S = ΠNUNIV and Q = ΠNEMP . This expression gives the names of
people who have been studying at the university since the moment they got a job. At instant
i = 3, the answer to this query is computed as follows:

(δ, 3)(S since Q) = s3 ∩ (q2 ∪ (s2 ∩ (q1 ∪ (s1 ∩ (q0 ∪ (s0 ∩ ∅))))))
We have: (s0 ∩ ∅) = ∅, q0 ∪ ∅ = {〈manuel〉, 〈john〉, 〈mary〉},

s1∩ {〈manuel〉, 〈john〉, 〈mary〉} = {〈manuel〉, 〈john〉, 〈mary〉}
q1∪ {〈manuel〉, 〈john〉, 〈mary〉} = {〈manuel〉, 〈john〉, 〈mary〉, 〈jane〉},

s2∩ {〈manuel〉, 〈john〉, 〈mary〉, 〈jane〉} = {〈manuel〉, 〈john〉}
q2∪{〈manuel〉, 〈john〉} = {〈manuel〉, 〈john〉, 〈jane〉, 〈paul〉},

s3∩ {〈manuel〉, 〈john〉, 〈jane〉, 〈paul〉} = {〈john〉, 〈paul〉}
Only John and Paul have been studying at the university since they got a job. �

If α is an EPTA expression and β a sub-expression of α, we say that β is a pure
temporal sub-expression of α if β has the form prev Q, S since Q, �Q or �Q for some
EPTA expression Q.
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4 A Temporal and Self-Maintainable Data Warehouse

In our approach a temporal data warehouse W is specified by a set of EPTA expressions
over R. From this set of temporal expressions, we derive two sets of non-temporal views
Wm and Wv which completely characterize W. In this way, we define a temporal data
warehouse W as a pair (Wm,Wv) of sets of non-temporal views. The first set Wm,
called the materialized component of W, represents the information physically stored
in the data warehouse. The second set Wv , called the virtual component of W, contains
ERA (Extended Relational Algebra) expressions involving only relations stored in the
materialized component. We emphasize that, although both components are derived
from the temporal expressions specifying W, they are non-temporal entities. Moreover,
the materialized component gives a flexibility to our approach, since the auxiliary views
stored there can be used not only to compute the specified views of W but also to answer
potential ad-hoc queries.

Before introducing the components Wm and Wv , we need to establish some no-
tations concerning the evolution of source relations and the data warehouse. Given a
database instance δ = (δ0, . . . , δn) over R, there is a correspondence between the evo-
lution of the database and the evolution of the warehouse, that is, the data warehouse
history associated to δ is w = (w0, . . . , wn) where for each 0 ≤ i ≤ n, wi is the ware-
house corresponding to δ i. Thus, there is a complete order-preserving mapping between
the states of the warehouse and the states of the sources, i.e., in response to an update u

applied to the instance δi to obtain δi+1, the current warehouse state wi is modified to
produce wi+1.

The transitions between states δi and δi+1 are obtained by inserting tuples to δ i or
deleting tuples from δi. These updates are performed by consistency-preserving trans-
actions. Therefore, for each source relation r i at instant i, its updated version ri+1 at
instant i+1 is obtained by ri+1 = ri\�ri∪�ri, where �ri is the set of tuples deleted
from ri and �ri is the set of tuples inserted in ri. We assume that �ri ∩�ri = ∅ and
that ERA expressions without parenthesis are evaluated from left to right.

4.1 The materialized component Wm

In this section we concentrate our attention on the materialized component of our tem-
poral data warehouse. In fact, the materialized component Wm is defined as a triple1

Wm = (T , ∂V , C) where T is a set of auxiliary relations containing essential temporal
information to maintain the warehouse, ∂V is a set of non-temporal views (involving
only the join operator) over R ∪ T and C is a set of complementary views allowing the
warehouse maintenance without consulting the source databases.
1 Sometimes, we prefer a simpler representation for Wm as the set of views T ∪ ∂V ∪ C.
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4.1.1 Constructing the auxiliary relations T
In this section, we consider two important aspects of our approach.

1. The construction of the set T , included in the materialized component W m, con-
taining essential temporal information for the warehouse maintenance.

2. The translation of the temporal expressions that specify the temporal views of our
warehouse in terms of non-temporal ones.

To achieve these goals, we adapt to the data warehouse context the method intro-
duced in [Chomicki 1995] for checking temporal constraints. We also extend it to sup-
port aggregates and set-valued attributes. The basic idea of this approach is that in order
to evaluate a given finite set of temporal views it is not necessary to store the entire
database history. Instead, the data warehouse is augmented with new auxiliary relations.

We define the auxiliary relation schemas associated to the set of EPTA expressions
defining W. In the remainder of this section, we assume that the EPTA expressions
specifying the temporal views are defined over the (source) database schema R. For
each temporal view V and each pure temporal sub-expression α of V with sort(α)
= {A1, A2, . . . , Am}, we associate a new relational schema Rα[A1, A2, . . . , Am]. We
denote by T the set of all these new auxiliary relation schemas associated to the EPTA

expressions specifying the temporal views. For instance, if V is the temporal view of
Example 2.1, then V has only one pure temporal sub-expression α = �Π N (UNIV �

EMP ). So, we associate to V one auxiliary relation schema Rα[N ] and T = {Rα}.
Now, we describe the semantics of the auxiliary relations. More precisely, we show

how the contents of the auxiliary relations are modified when non-temporal source re-
lations are updated. We emphasize that auxiliary relations must store essential temporal
information to maintain the temporal views of our data warehouse.

Let δ = (δ0, . . . , δn, δn+1) be a temporal instance over R. We will associate to δ an
extended temporal instance δ̂ =(δ̂0, . . . , δ̂n, δ̂n+1) over the extended database schema
S = R ∪ T .
For each instant i:

– δ̂i(R) = δi(R) (denoted by ri) for R ∈ R and

– δ̂i(Rα) is denoted by ri
α, for Rα ∈ T .

We recall that at any instant i, the relations ri
α are stored in the current data ware-

house and the relations ri are stored in the source databases.
The construction of auxiliary relations r i

α is defined inductively over the structure
of the expression α in such a way that r i

α contains exactly the values that make α true in
i. By definition, each auxiliary relation r i

α is empty at the initial instant i = 0, because
each past temporal expression α is evaluated as empty at i = 0 (see the semantics of
EPTA expressions 10. to 13. in Section 3). Relations r i+1

α will be obtained from ri
α and

the source instances δi and δi+1. More precisely, ri+1
α is evaluated as the answer to a

relational query αi,i+1 over δ̂i and δi+1. So, r0
α = ∅ and ri+1

α = {u | u is an answer of
αi,i+1 evaluated over δ̂i and δi+1}.
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Table 4.1 contains a description of the construction of the relational expression
αi,i+1 which is inductive on the structure of α. We notice that in order to define each
αi,i+1 we make use of an auxiliary expression αi,i which is also inductively defined
in Table 4.1. As the expression αi,i+1 will be evaluated over the union of instances
δ̂i and δi+1, we denote by Ri (resp. Ri+1) the relational expression R (R ∈ S) which
should be evaluated on δ i (resp. δi+1).

Table 4.1 - Inductive procedure for constructing the auxiliary views. (Q and P are
EPTA expressions).

α αi,i αi,i+1

R Ri Ri+1

σGQ σGQi,i σGQi,i+1

ΠXQ ΠXQi,i ΠXQi,i+1

ρQ ρQi,i ρQi,i+1

Q � P Qi,i � P i,i Qi,i+1 � P i,i+1

Q ∪ P Qi,i ∪ P i,i Qi,i+1 ∪ P i,i+1

Q \ P Qi,i \ P i,i Qi,i+1 \ P i,i+1

〈[X], fAi : B〉Q 〈[X], fAi : B〉Qi,i 〈[X], fAi : B〉Qi,i+1

UA:BQ UA:BQi,i UA:BQi,i+1

PA:BQ PA:BQi,i PA:BQi,i+1

prev Q Ri
α Qi,i

P since Q Ri
α (P since Q)i,i ∪ Qi,i) ∩ P i,i+1

�Q Ri
α (�Q)i,i ∪ Qi,i

�Q Ri
α (�Q)i,i ∩ Qi,i for i ≥ 1 and

Q0,0 for i = 0

For each temporal view V , we associate an extended relational algebra expression
Vt over the extended database schema S by replacing each maximal pure temporal sub-
expressions2 α of V by its corresponding relation schema Rα.

Example 4.1 below illustrates how to use Table 4.1 to construct the auxiliary rela-
tions associated to a temporal view V (specified by an EPTA expression) and to translate
this temporal view into a view Vt specified by an ERA (Extended Relational Algebra)
expression. Note that, in Section 1, we have illustrated our method by a simple exam-
ple where only atomic types are used. From now on, we use a running example where
non-atomic types are considered.

Running Example 4.1 Let INFO1 = {UNIV, EMP, PROF} be a database schema. We
have UNIV [C, N ] and EMP [N, J ] (see Example 1.1) and the new relation PROF [C, I ]
which stores information about courses C and professors I. We consider the following tempo-
ral database instance.

UNIV
δ0 {〈cs, manuel〉 , 〈math, jane〉}
δ1 {〈cs, manuel〉 , 〈math, mary〉 , 〈law, john〉}
δ2 {〈cs, manuel〉 , 〈cs, john〉}

2 Maximal pure temporal sub-expressions are those expressions which are not a proper sub-

expression of a pure temporal sub-expression of V .
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EMP
δ0 {〈manuel, teacher〉 , 〈john, waiter〉 , 〈mary, nurse〉}
δ1 {〈john, waiter〉 , 〈jane, bookseller〉 , 〈manuel, teacher〉}
δ2 {〈jane, bookseller〉 , 〈paul, clerk〉}

PROF
δ0 {〈cs, pr1〉 , 〈math, pr1〉}
δ1 {〈cs, pr1〉 , 〈cs, pr2〉 , 〈math, pr2〉 , 〈law, pr3〉 , 〈law, pr4〉}
δ2 {〈cs, pr1〉 , 〈cs, pr2〉 , 〈math, pr2〉 , 〈law, pr3〉 , 〈law, pr4〉}

We suppose a data warehouse over INFO1, having just one temporal view specified by the EPTA
expression:

V = PI:SetProf(ΠC(UNIV � �EMP ) � PROF ) (4)

This view V gives the university courses having students who have had (at least once in the past)
an employment and, for each of these courses, the view prints the set of professors currently
associated to it.
Clearly, V has only one pure temporal sub-expression α = �EMP which we associate to
the auxiliary relation Rα. From Table 4.1 (row 13), we know that, at each instant i, αi,i+1 =
�EMP i,i ∪ EMP i,i and αi,i = Ri

α. Thus, to compute the contents of the auxiliary relation
Rα at each instant i ∈ {0, 1, 2} we proceed as follows:

– By definition, r0
α = ∅. We have α0,1 = (�EMP )0,0 ∪ EMP 0,0 and, using Table 4.1 (row

13, column 1), we find α0,1 = R0
α ∪ EMP 0. Thus, the instance r1

α is obtained by the union of
the instances r0

α ∪ emp0.
– α1,2 = (�EMP )1,1 ∪ EMP 1,1 = R1

α ∪ EMP 1. Thus, the instance r2
α is r1

α ∪ emp1.

Rα

δ0 ∅
δ1 {〈manuel, teacher〉,〈john, waiter〉, 〈mary, nurse〉}
δ2 {〈manuel, teacher〉, 〈john, waiter〉, 〈mary, nurse〉, 〈jane, bookseller〉 }

The above table describes the relation ri
α for i ∈ {0, 1, 2}. Note that the ERA expression associ-

ated to the temporal view V is Vt = PI:SetProf(ΠC(UNIV � Rα) � PROF ). �

One of the main results of this section is the following theorem which guarantees
that evaluating the relational algebra expression V t at the current extended instance δ̂i

is the same as evaluating the EPTA expression V at the temporal instance (δ 0, . . . , δi)
at instant i, i.e., the auxiliary relations ri

α contain essential historical information to
evaluate the temporal expression V .

Theorem 4.1 Given a database schema R and a set T of auxiliary relations, let δ =
(δ0, . . . , δn) be a temporal instance over R and (δ̂0, . . . , δ̂n) the associated extended
instance over S= R ∪ T . If V is an EPTA expression over R and Vt is its translation
into an ERA expression over S, then for all i ∈ {0, . . . , n}: {u | u is an answer of Vt

on instance δ̂i} = {u | u is an answer of V on (δ, i)}.

Proof: We can view δ̂ as a non-temporal instance containing all the relations over S =
R∪T from instant 0 to instant i+1. We affirm that for any pure temporal sub-expression
α of V and any i, 0 ≤ i < n, we have:
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(∗) {u | u is an answer of αi+1,i+1 on δ̂} = {u | u is an answer of αi,i+1 on δ̂}
The left side of (*) represents the set of answers of the non-temporal expression α i+1,i+1

on instance δ̂. The right side of (*) represents the set of answers of the non-temporal
expression αi,i+1 on instance δ̂. However, we notice that the evaluation of α i,i+1 on δ̂

uses only the relations of δ̂i and the relations of δi+1.
This can be proved without difficulty, by double induction on the structure of the sub-
expression α and on i, using the Table 4.1 The details of this proof is omitted here,
since it is a straightforward adaptation of a similar proof in [Chomicki 1995] for the
temporal logic counterpart of the algebraic expressions α i,i and αi,i+1. As we know
[Clifford and Tuzhilin 1990], the past fragment of temporal logic is equivalent to the
temporal algebra TA (without aggregate and set-valued operators). The only new fea-
tures introduced here are the aggregate, pack and unpack operators which do not have
equivalent counterparts in the temporal logic described in [Chomicki 1995]. However,
as these are snapshot operators, i.e., their evaluation at instant i+1 does not involve past
instants, the induction step for this case is carried out without any difficulty. The proof of
the theorem is obtained by induction on the structure of the temporal expression V , us-
ing the result (*) in the induction step corresponding to the case where V = V 1 since V2

or V = prev V1 or V = �V1 or V = �V1. �

4.1.2 Constructing the partial views ∂V
We have just seen that each temporal view of our warehouse, initially specified by an
EPTA expression, can be translated into an ERA expression involving only relations
in T and relations in the source databases. However, we want to refine this translation
in order to obtain an ERA expression where no source relations appear. We do this by
defining the two other types of relations that compose Wm: the partial views and com-
plementary views. In this section we consider only the definition of the partial views.

Considering an ERA expression that defines a non-temporal view V t, resulting from
the translation of a temporal view V , partial views are sub-expressions containing only
the join operator in it. They define the parts of V t we decide to materialize due to
two main reasons: (i) complementary views are computed with respect to them and
(ii) they compose a rather large kernel which is good for answering many queries. It
may be possible to define more “sophisticate” partial views (involving the selection, for
instance), however they usually imply a less “uniform” algorithm - one whose goal is to
distinguish and treat different kinds of views. We consider that this optimization should
be analyzed, but, in this paper, we discuss the maintenance of temporal warehouses
more generally and we build a uniform algorithm.

Definition 4.1 - Partial View: Given a database schema R and a temporal view V over
R, let T be the set of auxiliary relations derived from V . Let V t be the translation of V

into ERA expressions over R ∪ T (as described in Section 4.1.1). Let R 1, . . . , Rs ∈ R
and Rα1 , . . . , Rαl

∈ T . A partial view of Vt is a sub-expression of Vt of the form

∂V = R1 � . . . � Rs � Rα1 � . . . � Rαl
(5)
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which is maximal, i.e., there is no sub-expression V ′ of Vt respecting the form (5) and
having ∂V as a proper sub-expression. �

Obviously, Vt can contain several partial views ∂V1, . . . ∂Vm. The expression that
defines Vt is an ERA expression over these partial views as we can see in the example
below.

Running Example 4.2 We consider the view
V = PI:SetProf(ΠC(UNIV � �EMP ) � PROF )

of the Running Example 4.1. We have seen that it can be translated into the ERA expression

Vt = PI:SetProf(ΠC(UNIV � Rα) � PROF ) (6)

Vt contains two partial views: ∂V1 = UNIV � Rα and ∂V2 = PROF . Thus, we can rewrite
the expression (6) to obtain:

Vt = PI:SetProf(ΠC∂V1 � ∂V2). � (7)

4.1.3 Constructing the complement C
We now introduce complementary views to assure that the warehouse maintenance is
accomplished without querying source databases. Definition 4.1 still uses source rela-
tions to specify partial views. In this section, we continue to refine the definition of V t

in order to obtain an expression involving only relations in T and relations in C (the set
of complementary views for W).

Definition 4.2 - Complementary views : Given a set V of EPTA expressions over a
database schema R, consider the translation of these expressions into ERA expressions
(as described in Section 4.1.1) and let ∂V be the set of partial views associated to them
(according to Definition 4.1). For each R ∈ R we define CR to be a complementary
view of R with respect to ∂V if CR is a (non-temporal) view such that sort(CR) =
sort(R) and such that it is possible to compute R from CR and the partial views in ∂V
(by means of a relational expression). �

Informally, the complementary views CR of a relation R ∈ R is a view containing
the information related to R which is missing in the warehouse. Keeping complemen-
tary views of source relations in the warehouse assures its self-maintenance. We would
like (if possible) to define complementary views as being views containing the mini-
mum amount of information to achieve self-maintenance. In order to understand what
we mean by minimum, one notion of view ordering is necessary:

Definition 4.3 - View Ordering [Laurent et al. 2001]: Let U and V be two views over
a database schema R with sort(U) = sort(V ). We say that U ≤ V if for every database
instance δ, the inclusion δ(U) ⊆ δ(V ) holds. We say that U < V if U ≤ V and there is
an instance δ′ such that δ′(U) ⊂ δ′(V ) and δ′(U) �= δ′(V ). This definition is extended
to sets of views in the obvious way: If U = {U1, . . . , Uk} and V = {V1, . . . , Vk} are
sets of views over R then U ≤ V if Ui ≤ Vi for each i ∈ {1, . . . , k}. �
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A complement is minimal if there is no smaller one. Before presenting a method for
building complementary views, we should point out a problem we can find during their
computation.

In our approach, complementary views are always computed w.r.t. partial views.
Partial views are defined by a relational expression containing only the join opera-
tor. At a first glance, we could imagine that, due to this fact, the computation pre-
sented in [Laurent et al. 2001] could be applied to all source relations. However, in
some cases, the join expression corresponding to a partial view can involve auxiliary
relations whose translation into ERA expression contains the union operator. Unfor-
tunately, the definition of complement introduced in [Laurent et al. 2001] is not valid
for views involving union. Thus, in several cases, this definition cannot be applied to
compute complementary views of source relations embedded in a pure temporal sub-
expression of the original temporal view specifying the data warehouse. To illustrate
this drawback, we consider Running Example 4.1 and 4.2. We have auxiliary relation
Rα associated to the pure temporal sub-expression α = �EMP and partial views ∂V1

= UNIV � Rα and ∂V2 = PROF . It is clear, from Table 4.1 that the translation of
α involves the union operator. Let us assume that a complementary view for EMP is
calculated as in [Laurent et al. 2001]. In that case, CEMP is EMP \ΠN,J∂V1 and we
are expected to re-calculate the source relation EMP using the relational expression
EMP = CEMP ∪ ΠN,J∂V1. However, this is not possible. Indeed, at instant i = 1,
the complementary view c1

emp is:
emp1 \ (ΠN,J∂v1

1) = {〈john, waiter〉 , 〈jane, bookseller〉 , 〈manuel, teacher〉} \
{〈john, waiter〉 , 〈manuel, teacher〉 , 〈mary, nurse〉} = {〈jane, bookseller〉}.

However, c1
emp ∪ (ΠN,J∂v1

1) = {〈jane, bookseller〉 , 〈john, waiter〉 , 〈manuel, tea-
cher〉 , 〈mary, nurse〉} and thus c1

emp ∪ (ΠN,J∂v1
1) �= emp1.

We say that relations having this “misbehavior” are hidden. The problem behind
their “misbehavior” can be analyzed (i) if we consider the complementary view defini-
tion of R w.r.t. V , proposed in [Laurent et al. 2001]: CR = R \ Πsort(R)V and (ii) if
we assume that V = R ∪ S. Then, in general, we have R �= CR ∪ Πsort(R)V because
V may contain tuples of sort(R) that do not belong to R.

In the following, we formally define a hidden relation, illustrating it by an example.

Definition 4.4 - Hidden Relations: Given a set of partial views ∂V , let ∂V ∈ ∂V be a
partial view whose expression R1 � . . . � Rs � Rα1 � . . . � Rαl

involves a relation
R ∈ R. We say that R is a hidden relation with respect to ∂V , if all the following
conditions hold: (i) R �= Ri for all 1 ≤ i ≤ s, (ii) there exists 1 ≤ j ≤ l such that
R appears in αj and (iii) sort(R) ⊆ sort(∂V ). If R is not hidden, we say that R is
normal with respect to ∂V . �

Running Example 4.3 As in Running Example 4.2, let us consider the temporal view
V = PI:SetProf(ΠC(UNIV � �EMP ) � PROF )

and its associated partial views ∂V1 = UNIV � Rα and ∂V2 = PROF . For each relation, we

1053de Amo S., Halfeld Ferrari Alves M.: Incremental Maintenance of Data ...



consider, firstly, the set of partial views involving them. UNIV and EMP are involved in ∂V1

(notice that EMP appears in α), while PROF is involved in ∂V2. From Definition 4.4, we can
see that UNIV and PROF are normal relations w.r.t. ∂V1 and ∂V2, respectively (none of them
respect condition (i) of Definition 4.4). However, EMP is hidden w.r.t. ∂V1 because: (i) it does
not appear explicitly in ∂V1, (ii) it appears in the expression α = �EMP associated to ∂V1 and
(iii) sort(EMP ) ⊆ sort(∂V1). �

We slightly change the complement computation proposed in [Laurent et al. 2001]
in order to calculate complementary views for “exclusively hidden relations”, i.e., rela-
tions that are hidden with respect to all partial views they are involved in.

Theorem 4.2 Given a set V of EPTA expressions over a database schema R and their
translation into ERA expressions, let ∂V be the set of partial views associated to them.
For each relation R ∈ R involved in some partial view ∂V ∈ ∂V , let VR = {∂V | ∂V ∈
∂V and R is normal w.r.t. ∂V }. Let CR be the view defined as follows:

if VR = ∅
then CR = R /*Complementary view of a “exclusively hidden relation´´
else CR = R \

⋃
∂V ∈VR

Πsort(R)∂V (and each relation R is re-computed by
R = CR ∪

⋃
∂V ∈VR

Πsort(R)∂V )

Then the view CR is a complementary view of relation R and it is minimal for source
relations for which VR �= ∅.
Proof: For each relation R, the view CR is its complementary view: Relations for which
VR = ∅ are re-computed in the obvious way (R = CR) and relations for which VR �= ∅
are re-computed by R = CR ∪

⋃
∂V ∈VR

Πsort(R)∂V . For each relation R such that
VR �= ∅ we know that (i) CR is computed only from the partial views ∂V w.r.t. which
R is normal, (ii) a partial view ∂V is defined by an expression containing only join
operators and (iii) in [Laurent et al. 2001] it is proved that complementary views of SJ
views (in the normal form [Abiteboul et al. 1995]) are minimal. Therefore, we conclude
that complementary views of relations for which VR �= ∅ are minimal. �

We refer to [Lechtenborger and Vossen 2003] for a good discussion concerning the
problem of determining the minimal complement of a relation R w.r.t. a set of views
defined by general algebra relational expressions.

The following example illustrates the computation of complementary views. Given
a temporal instance δ over R, we denote by c i

R and ∂vi, respectively, the evaluation of
the complementary view CR and partial view ∂V over the extended temporal instance
δ̂ at instant i.

Running Example 4.4 We consider the same situation described in the Running Example 4.3.
According to Theorem 4.2, we have: CEMP = EMP (since EMP is hidden w.r.t. ∂V1),
CUNIV = UNIV \ ΠC,N∂V1 and CPROF = PROF \ ΠI,C∂V2 = ∅. �

It is interesting to analyze why normal relations w.r.t. at least one partial view are
“well-behaved” concerning the computation of complementary views. Suppose that R
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is a normal relation w.r.t. a partial view ∂V = R1 � . . . � Rs � Rα1 � . . . � Rαl
.

The complementary view of R is given by CR = R \ Πsort(R)∂V . Then, one of the
following cases holds:

• R is a relation in the join expression R1 � . . . � Rs. Even if R also appears in one
αi, for i = 1, . . . , l, the view ∂V contains the intersection between the result computed
by αi and R. In that way, when we re-compute relation R from its complementary view
(via the formula R = CR ∪ Πsort(R)∂V ) there is no way to introduce in R tuples not
coming from R (contrary to what happens to hidden relations).
• R is not a relation that appears explicitly in the expression R1 � . . . � Rs, it appears
in one αi but sort(R) �⊆ sort(∂V ). In this case, CR is always equal to R, since the
projection Πsort(R)∂V = ∅.

The next definition puts together all the concepts introduced so far.

Definition 4.5 - Materialized Component of a Temporal Data Warehouse: Given a
database schema R and a set of temporal views V specifying a temporal data warehouse
W, we define Wm, the materialized component of W, as a triple Wm = (T , ∂V, C)
where:
• T is the finite set of auxiliary relations associated to V as described in Section 4.1.1
Each relation Rα ∈ T corresponds to a pure temporal sub-expression α of a view V ,
for V ∈ V .
• ∂V is the finite set of partial views associated to V . Each view ∂V ∈ ∂V is given by
Definition 4.1.
• C is the set of complementary views w.r.t. partial views in ∂V computed as shown in
Theorem 4.2. �

We finish this section by stressing the importance of the materialized component,
i.e., the importance of storing auxiliary views in the warehouse. In fact, the materialized
component allows not only the reduction of the temporal setting to a non-temporal one
but also the warehouse self-maintenance. Besides, the materialized component gives a
flexibility to our warehouse, since it represents a kernel over which ad-hoc queries can
be formulated, which resembles the concept of query-independent concept discussed
in [Laurent et al. 2001].

4.2 Defining the virtual component Wv

In the previous sections we have defined the three kinds of views that compose the ma-
terialized component of a temporal data warehouse W: auxiliary relations, partial views
and complementary views. In this section, we shall use the partial views and the ERA
expressions corresponding to the translations of the the EPTA expressions, which spec-
ify the temporal data warehouse W (as discussed in Section 4.1.1), to build the virtual
component Wv . We call Wv a virtual component because it represents views that do not
need to be materialized - they can be computed by ERA expressions over the material-
ized relations in Wm. However, it is important to emphasize that a virtual component,
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despite its name, may be materialized, depending on the cost of its calculation. This
dichotomy between materialized and virtual components aims at giving more flexibility
concerning the storage and representation of the different types of information compos-
ing a temporal data warehouse. We refer to [Gupta and Mumick 2004] for a theoretical
formulation of the general view-selection problem in a warehouse.

Definition 4.6 - Virtual Component of a Temporal Data Warehouse: Let V be a set
of EPTA expressions over a database schema R and consider its translation into ERA
expressions, as discussed in Section 4.1.1. We define Wv , the virtual component of
W, as the set of views V resulting from this translation and respecting the following
grammar:

V ::= ∂V | β(V ) | V γV

where ∂V is a partial view (Definition 4.1), β is an unary ERA operator and γ is a
binary operator of the relational algebra. �

Running Example 4.5 The materialized and virtual components of the warehouse in our
running example are given by: Wm = ({Rα}, {∂V1, ∂V2}, {CEMP , CUNIV , CPROF}) and
Wv = {PI:SetProf(ΠC∂V1) � ∂V2} �

As we said in the beginning of this section, given a temporal instance δ = (δ 0,

. . . , δn), there is a correspondence between the evolution of the database and the evolu-
tion of the warehouse w = (w0, . . . , wn): wi is the warehouse corresponding to δ i , for
each i = 0, . . . , n. It is important to notice that the contents of w i corresponds exactly
to the contents of the virtual views in Wv at instant i, which depends essentially on the
contents of the partial views in ∂V .

In the next section, we will describe how a current state w i of the data warehouse is
maintained, when δi is updated. We will see that the new state wi+1 is built taking into
account: (i) the partial views ∂vi, (ii) the complementary views ci

R of each relation R ∈
R, (iii) the auxiliary relations ri

α and (iv) the updates over the source relations R ∈ R.

5 Maintaining the Temporal Data Warehouse

Given a temporal data warehouse W = (Wm, Wv), let δ = (δ0, . . . , δn) be a temporal
database over the database schema R and w = (w0, . . . , wi) the corresponding tempo-
ral instances of W. In response to a set of updates u applied to the instance δ i to obtain
δi+1, the current warehouse state wi is modified to produce wi+1. We denote by wi

m

the set of materialized views at instant i. The following algorithm computes w i+1
m from

u and wi
m. From wi+1

m it is possible to calculate wi+1
v (and so wi+1) since the virtual

views in Wv depend only on the contents of the partial views, which are stored in the
data warehouse.

In the following we present the algorithm responsible for the maintenance of all
three kinds of relations composing the materialized component Wm = (T , ∂V, C) and
we explain the procedures used in it.
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Algorithm 5.1 - Maintenance Algorithm
Input: (u, wi

m) where u = {�ri | R ∈ R} ∪ {�ri | R ∈ R} and wi
m is the materialized

component at instant i
Output: wi+1

m

Main procedure:

for each auxiliary relation Rα in T do FindChangeAuxRel(�ri
α,�ri

α);

/∗Compute changes over each auxiliary relation Rα

for each each partial view ∂V ∈ ∂V do FindChangePartialV iew(�(∂vi),�(∂vi));

/∗Compute changes over each partial view ∂V ∈ ∂V
for each relation R in R do ComputeComplement(ci+1

R );

/∗Compute new complementary views of the source relations

for each each partial view ∂V ∈ ∂V do ComputePartialV iew(∂vi+1);

/∗Compute new partial views

for each auxiliary relation Rα ∈ T do ComputeAuxRel(ri+1
α );

/∗Compute new auxiliary relations �

We consider the procedures used in Algorithm 5.1. Firstly we recall that ERA ex-
pressions without parenthesis are evaluated from left to right. Secondly, we introduce,

for each R ∈ R, a relation
∗
R defined below. To indicate that

∗
R is computed over join

view instances at instant i (resp. i + 1), we write
∗
r

i
(resp.

∗
r

i+1
).

for each R ∈ R involved in some partial view ∂V ∈ ∂V do
Let VR = {∂V | R is normal w.r.t. ∂V }
if VR = ∅ then

∗
R is empty / ∗ R is hidden w.r.t. all partial views it is involved in*/

else
∗
R =

S
∂V ∈VR

Πsort(R)∂V ,

Procedures used in Algorithm 5.1:

1. FindChangeAuxRel(�ri
α,�ri

α)
At instant i, compute the update applied to each auxiliary relation Rα: �ri

α = ri+1
α \ ri

α

and �ri
α = ri

α \ ri+1
α

To compute ri+1
α , use Table 4.1 to find the relational algebra query αi,i+1. Then, for all

source relation R ∈ R appearing in αi,i+1 replace instance ri by [ ci
R ∪ ∗

r
i
] and ri+1 by

[ ci
R ∪ ∗

r
i
\ �ri ∪�ri ]

Remark: The computation of ri+1
α in two steps, (i.e., by using FindChangeAuxRel before

ComputeAuxRel) is explained by the fact that an auxiliary relation can correspond to a tem-
poral expression α2 that involves another temporal expression α1. Thus, to find ri+1

α2 we may
need to know the value of ri

α1 . For this reason we defer the “update” of auxiliary relations.
2. FindChangePartialV iew(�(∂vi),�(∂vi))

At instant i, compute the modifications applied to each partial view ∂V = R1 � . . . �

Rs � Rα1 � . . . � Rαl :

�(∂vi) = [ (�1≤k≤s( ci
Rk

∪ ∗
r

i

k \�ri
k ∪�ri

k)) � (�1≤h≤l(r
i
αh

\�ri
αh

∪�ri
αh

)) ]\∂vi

�(∂vi) = ∂vi \ [ (�1≤k≤s( ci
Rk

∪ ∗
r

i

k \�ri
k∪�ri

k)) � ( �1≤h≤l(r
i
αh

\�ri
αh

∪�ri
αh

)) ]
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3. ComputeComplement(ci+1
R )

Compute complement instances at instant i + 1 from complement at instant i: At instant
i = 0 complementary views are computed using source relations (Theorem 4.2) and at

instant i ≥ 1 we have ci+1
R = [ci

R ∪ ∗
r

i
\ �ri ∪�ri] \ ∗

r
i+1

4. ComputePartialV iew(∂vi+1): ∂vi+1 = ∂vi \ �(∂vi) ∪�(∂vi)
5. ComputeAuxRel(ri+1

α ): ri+1
α = ri

α \ �ri
α ∪�ri

α

The following theorem shows that Algorithm 5.1 correctly maintains the material-
ized views stored in Wm.

Theorem 5.1 Given a temporal database δ = (δ0, . . . , δi) and its associated temporal
warehouse w = (w0, . . . , wi), let u be the set of updates that we apply to the instance
δi to obtain instance δi+1. Let wi+1 be the temporal data warehouse obtained by eval-
uating the EPTA expressions which specify it, over (δ0, . . . , δi, δi+1) at instant i + 1.
On the other hand, let wi+1 be the result of evaluating the virtual views in wi+1

v , where
the partial views ∂vi+1 occurring in them are calculated by applying Algorithm 5.1 on
wi

m. Then wi+1 = wi+1.

Proof: We want to prove that the virtual views in w i+1
v , computed by evaluating ERA

expressions over the partial views in wi+1
m correspond to the virtual views we obtain

by evaluating the original EPTA expressions over the temporal database instance at
instant i + 1. To this end, we have to prove that Algorithm 5.1 correctly computes the
materialized views stored in wi+1

m from wi
m and u.

Firstly, we prove the correctness of the procedures FindChangeAuxRel and ComputeAux-
Rel. The goal of the procedure FindChangeAuxRel is to compute the changes �r i

α and
�ri

α over auxiliary relations due to updates on the source relations. The procedure
ComputeAuxRel just applies these changes to r i

α. In fact, the most important point is
the computation of the auxiliary relation r i+1

α in the procedure FindChangeAuxRel by
using Table 4.1. Due to the recursiveness of this computation, we cannot at this point
update the relation ri

α by replacing it by ri+1
α , because the old state may be necessary

in later induction steps to calculate ri+1
β , if α is a sub-expression of β. So, the updates

of the auxiliary relations are deferred to the final procedure ComputeAuxRel. More pre-
cisely, the computation of ri+1

α in FindChangeAuxRel, corresponds to the evaluation of
an ERA expression given by Table 4.1 involving the previous instance r i

α (available in
wi

m) and source instances at instants i and i + 1. By Theorem 4.2, we know that each
source relation ri (resp. ri+1) appearing in the ERA expression can be computed by

using the complement available in w i
m, that is, by computing the expression ci

R ∪ ∗
r

i

(resp. ci
R ∪ ∗

r
i
\ �ri ∪�ri).

Secondly, we prove the correctness of the procedures FindChangePartialView and Com-
putePartialView. The procedure FindChangePartialView aims at computing the changes
�∂vi and �∂vi over partial views consequent upon the updating on source relations.
The procedure ComputePartialV iew just applies these changes to ∂v i. We know that
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�∂vi = ∂vi+1 \ ∂vi and �∂vi = ∂vi \ ∂vi+1 . Moreover, ∂vi is one of the material-
ized views stored in wi

m. According to Definition 4.1, a partial view at instant i + 1 is
defined by the following join expression:

∂vi+1 = (ri+1
1 � . . . � ri+1

s ) � (ri+1
α1

� . . . � ri+1
αl

)
For each instance ri

k (1 ≤ k ≤ s) of a source relation, the new instance r i+1
k is obtained

by applying the corresponding updates on r i
k, that is, ri+1

k = ri
k \ �ri

k ∪ �ri
k. We

remind that �ri
k ∩ �ri

k = ∅ for any source relation Rk. Theorem 4.2 assures that we

can replace ri
k by ci

Rk
∪ ∗

r
i

k to obtain ri+1
k = ci

Rk
∪ ∗

r
i

k \ �ri
k ∪�ri

k. Thus, to compute
ri+1
k we need to know the values of: (i) the complementary view c i

Rk
, available in wi

m

and (ii)
∗
r

i

k, computed from the partial view ∂v i which is stored in wi
m. The auxiliary

relations ri+1
αh

(1 ≤ h ≤ l) are computed by using the result of FindChangeAuxRel (that
uses Table 4.1).

The proof of the correctness of procedure ComputeComplement is straightforward
(just an application of Theorem 4.2). Theorem 4.1 assures that the virtual views ob-
tained by evaluating an ERA expression over a partial view ∂v i+1 ∈ wi+1

m , correspond
to the virtual views obtained by the evaluation of the original EPTA expressions over
the temporal database instance at instant i + 1. �

We illustrate the execution of Algorithm 5.1 by considering an update over sources
of our running example. We refer to [Amo and Halfeld-Ferrari 2002] for examples over
warehouses whose specification includes set-valued operators, aggregate functions and
the union operator.

Running Example 5.1 We consider the temporal data warehouse W of our running example
and the temporal instance presented in the Running Example 4.1. Following the explanations
given so far we can verify that, at instant i = 2 the materialized component of W contains the
following materialized views:

r2
α {〈manuel, teacher〉, 〈john, waiter〉, 〈mary, nurse〉, 〈jane, bookseller〉}

∂v2
1 {〈cs, manuel, teacher〉, 〈cs, john, waiter〉}

∂v2
2 {〈cs, pr1〉 , 〈cs, pr2〉 , 〈math, pr2〉 , 〈law, pr3〉 , 〈law, pr4〉}

c2
emp {〈paul, clerk〉, 〈jane, bookseller〉}

c2
univ ∅

c2
prof ∅

Now we suppose that, at instant i = 2, the Algorithm 5.1 is executed, having as input the set of
materialized views w2

m given above and a set of updates u, composed of the following updates:

– On EMP : �emp2 = {〈charles, teacher〉} and �emp2 = ∅
– On UNIV :�univ2 = {〈biology, mary〉 , 〈math, joe〉} and �univ2 = {〈cs, manuel〉}
– On PROF : �prof2 = ∅ and �prof2 = {〈math, pr2〉 , 〈law, pr3〉 , 〈law, pr4〉}

The result obtained after the execution of each procedure is the following

– The procedure FindChangeAuxRel returns :
�r2

α = {〈paul, clerk〉} and �r2
α = ∅.

– The procedure FindChangePartialV iew returns :
�∂v2

1 = {〈biology, mary, nurse〉} and �∂v2
1 = {〈cs, manuel, teacher〉}

�∂v2
2 = ∅ and �∂v2

2 = {〈math, pr2〉 , 〈law, pr3〉 , 〈law, pr4〉}.
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– The procedure ComputeComplement returns :
c3
emp = {〈jane, bookseller〉 , 〈paul, clerk〉 , 〈charles, teacher〉}

c3
emp = {math, joe} and

c3
prof = ∅

– The procedure ComputePartialV iew returns :
∂v3

1 = {〈cs, john, waiter〉 , 〈biology,mary, nurse〉}
∂v3

2 = {〈cs, pr1〉 , 〈cs, pr2〉}
– The procedure ComputeAuxRel returns :

r3
α = {〈manuel, teacher〉, 〈john, waiter〉, 〈mary, nurse〉, 〈jane, bookseller〉, 〈paul, clerk〉}�

From the above example, it is clear that the partial views ∂v 3
1 and ∂v3

2 computed by
the Algorithm 5.1 verifies ∂v3

1 = univ3 � r3
α and ∂v3

2 = prof3 and that the answer of
the EPTA expression V at instant 3 is exactly w3

v , as it was expected, due to the correct-
ness of Algorithm 5.1. Notice that our approach is independent of the particular way
complements are computed. If another kind of computation (respecting Definition 4.2)
is used we just need to adapt some procedures of Algorithm 5.1 (to prove the correct-
ness of such a new algorithm we would use the same arguments used in this paper).

We emphasize here that to know the contents of our warehouse at an instant i, we
just need to evaluate ERA expressions over the partial views. The auxiliary views in
T and the complementary views in C are important only during the maintenance step,
(i.e., to compute the new partial views ∂V at instant i+1). Thus, the set of partial views
represents the kernel of the materialized component Wm.

6 Related Work

Temporal view maintenance is considered in papers such as [Baekgaard and Mark 1995,
Jagadish et al. 1995, Yang and Widom 2000]. In [Yang and Widom 2000] the underly-
ing model is time-explicit and the language specifying the temporal views allows past
and future operators (both the temporal model and temporal query language are based
on [Bohlen et al. 1995]) and retroactive updates. Their approach is closely related to
ours, but aggregate function and set-valued relations are not considered there. Our ma-
jor contribution with respect to [Yang and Widom 2000] is that our temporal views can
be expressed by first order expressions over non-temporal relations.

The paper [Jagadish et al. 1995] addresses the view maintenance problem in the
chronicle model. Temporal views are snapshot-reducible [Bohlen et al. 1995], i.e., they
are defined by temporal operators which correspond very closely to their non-temporal
counterparts, which is not the case, concerning some EPTA operators. An incremental
algorithm is developed in [Baekgaard and Mark 1995] to treat the temporal view self-
maintenance problem for time-varying selections. More precisely, they consider time-
varying queries in which selection predicates refer to the state of a clock and whose
results may change just because time passes. In our approach, time is treated in an
abstract context, and can be interpreted in different ways. For instance, it could refer to
valid-time, the time when the information was satisfied in the real-world, or transaction-
time, the time when the information was actually entered in the database.
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The problem of maintaining temporal aggregate views is treated in some recent
work [Yang and Widom 2001, Zhang et al. 2001]. Both papers consider implementa-
tion aspects concerning the computation of temporal aggregates in a time-explicit un-
derlying model. To deal with the computation of temporal aggregates and the incre-
mental maintenance of temporal aggregate views, a new kind of index structure, called
SB-tree, is introduced in [Yang and Widom 2001]. This structure contains enough in-
formation to construct the contents of temporal aggregates that it indexes. In our ap-
proach, the underlying model is time-implicit and thus we do not deal with the problem
addressed in [Yang and Widom 2001, Zhang et al. 2001]. In fact, in their approaches a
database tuple is accompanied by a time interval during which its attribute values are
valid. Consequently, the value of a tuple attribute affects the aggregate computation for
all those instants included in the tuple’s time interval. In our work, the computation of
temporal aggregates is similar to its non-temporal counterpart. An aggregate function
applied on a relation Q assembles all tuples belonging to Q at instant i and having the
same values for a set of attributes X . Then, it executes an operation (such as sum, avg,
etc) over a specified column of the resulting set of tuples.

In spite of important results obtained in the research area of incremental view main-
tenance [Blakeley et al. 1986, Gupta et al.1993, Griffin and Libbin 1995] the mainte-
nance of materialized views in a warehouse environment represents a difficult problem
[Agrawal et al. 1997, Laurent et al. 2001, Quass et al. 1996, Zhuge et al. 1995]. The no-
tion of view self-maintainability has attracted the attention of several authors (see,
for instance [Laurent et al. 2001, Mohania and Kambayashi 2000, Quass et al. 1996]).
In [Laurent et al. 2001] the authors consider the problem of maintaining non-temporal
SPJ views in warehouses and propose a method where, by adding complements in the
warehouse, it is possible to re-compute all source relations whenever necessary. They
develop this idea and generalize self-maintainability to query and update independence.

In [Mohania and Kambayashi 2000], the maintenance of non-temporal aggregate
views is considered. To allow self-maintenance, auxiliary relations are stored in the
warehouse. The authors propose a method based on the analysis of the optimized tree
expression corresponding to each view. Firstly they compute the auxiliary relations (one
for each node) necessary to make a view self-maintainable. Secondly, they consider the
problem of updates to nodes, which are propagated in a bottom-up fashion: the update
to each node in the tree is derived from the updates to its children and the auxiliary
relations materialized for the children and the node itself. The self-maintainability of
the view is achieved by materializing those base relations which are children of a join
node in the view expression tree.

In our approach, different kinds of auxiliary relations are kept in the warehouse
not only to assure self-maintenance but also to allow the construction of temporal
views without storing the entire history of the sources. To assure self-maintenance,
we have two types of materialized views, namely, the complements and the partial
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views. View complements have been introduced in [Bancilhon and Spyratos 1981]. In
[Lechtenborger 2003] we find an interesting discussion on its impact over view up-
dating. [Lechtenborger and Vossen 2003] shows minimality results concerning comple-
ments for relational views w.r.t. information content. The authors argue that it may not
be necessary to look for minimal complements in practice.

The idea of using complements in a non-temporal data warehouse environment has
been explored in [Laurent et al. 2001] but in our paper we extend this notion to a tem-
poral framework, where we also deal with aggregate functions and set-valued attributes.
The partial views are join views used not only to compute complements but also to cal-
culate the pre-defined views that specify a warehouse. In this way, we do not follow the
idea of [Mohania and Kambayashi 2000] and instead of storing base relations taking
part into a join, we store join views. As in [Mohania and Kambayashi 2000], we can
argue that partial views represent a flexibility of our approach, since they can be used
as the kernel of potential ad-hoc queries.

Our method is based on the techniques introduced in [Chomicki 1995]. It general-
izes the work proposed in [Amo and Halfeld-Ferrari 2000] where the relational algebra
expression defining Vt involves only one partial view and is specified by a special re-
lational algebra expression containing only the selection, the projection and the join
operator. In the present paper, we treat general expressions which may contain sev-
eral partial views and any relational algebraic operator. We would like to highlight that
the restriction to set-valued attributes, instead of treating general complex-typed at-
tributes [Abiteboul et al. 1995], is a choice aiming at simplifying the presentation. Our
approach can be adapted to a more general context where the underlying data model
allows complex-typed attributes.

7 Conclusions
We have proposed an incremental method for maintaining a temporal data warehouse
originating from multiple, autonomous, heterogeneous and non-temporal sources. Our
approach combines in a uniform way two previously unrelated techniques based on
auxiliary views. The materialization of auxiliary relations is used successfully not only
to reduce the temporal setting to a non-temporal one but also to get around the de-
coupling of non-temporal data sources and temporal data warehouse (which can cause
update anomalies). In our method, there is no need to store the entire history of source
databases and the warehouse maintenance is performed without consulting the sources.
Although we have only presented the theoretical aspects of our approach, its importance
can be justified by the fact that in a warehouse environment the cost of recomputing
views from scratch is high since it involves consulting different sites, and thus implies
a large overhead in terms of communication cost.

The computation of complementary views used in this paper derives directly from
the one introduced in [Laurent et al. 2001]. We notice that an interesting research topic
consists in analyzing the application of other kinds of complementary view computation
to our context. In particular, some ideas proposed in [Lechtenborger and Vossen 2003]
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(such as the non-minimal super-key based complements) may result in improvements to
our approach. Moreover, in this paper we have only considered the algebraic counterpart
of the past temporal logic fragment. Although we have not treated the future operators
Until and Next, it would be interesting to investigate such an extension, in order to
generalize the retroactive updates of [Yang and Widom 2000].
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