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Abstract: Additive diagrams are used by several interactive lattice layouters. We
discuss a method to avoid unwanted incidences when working with additive diagrams.
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1 Introduction

Ordered sets and lattices, in particular in their interpretation as concept lattices,
have become rather popular recently. One of their nice aspects is that they can
be represented by means of very instructive and intuitive diagrams. There are
computer programs available for making such diagrams automatically, some of
which are based on standard graph drawing techniques. But their results are
not fully satisfactory. Experience shows that diagrams made manually often are
considerably better. It is therefore of interest to find additional strategies for
automatic or semiautomatic diagram drawing. One such method is discussed
here. We cannot present extensive tests of the new methods, because our im-
plementations still are rather preliminary, but the results obtained so far are
promising.

2 Additive line diagrams

By a line diagram we mean a graph diagram of the simplest kind, with small
circles representing the vertices and with line segments for the edges. To draw
such a diagram (in the plane R

2) we need as input a graph (V, E) and a placement
function

pos: V → R
2,

that associates coordinates to each vertex.
An additive representation of such a placement map pos consists of a set D,

a map rep: V → P(D), and a map vec: D → R
2 with

pos(v) =
∑

d∈rep(v)

vec(d).
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{r, s, t, u, v}

{r, s, u, v}

{r, s, t}

{r}

{t, u, v}

{v}{s, u}

{s} {t} {u}

∅

d ∈ D vec(d)
r (−2, 1)
s (−1, 3)
t (1, 2)
u (3, 2)
v (1, 3)

Figure 1: An example of an additive line diagram. The representing set is D :=
{r, s, t, u, v}, the value of the rep function is displayed next to each vertex, and
vec is given by the table on the right hand side.

A line diagram with a given additive representation is called an additive line
diagram [3]. An example is shown in Figure 1.

Every placement function has an additive representation, with D := V ,
rep(v) := {v} and vec(v) := pos(v) for all v ∈ V . So, in a sense, every dia-
gram is additive. But much more interesting additive representations are those
where D is small compared to V .

When an additive diagram is to be modified, a natural strategy is to keep
the rep function fixed and to manipulate only the vec mapping. If only a single
value, say vec(d), is changed by adding a vector a, then the diagram changes as
follows: all vertices v with d ∈ rep(v) are shifted by a, all other vertices remain
fixed, see Figure 2.

3 Order diagrams

Ordered sets, lattices (i.e., ordered sets with infima and suprema), and more
generally directed acyclic digraphs can be represented by “upward drawings”
(also called Hasse diagrams), where the direction of an edge is indicated by an
increasing y-coordinate. A random placement function for such a diagram may
be not admissible for two reasons:

“conflicts”: vertices colliding with other vertices or with edges they are not
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d ∈ rep(v)
d �∈ rep(v)

a

Figure 2: Changing vec(d) corresponds to shifting those vertices v with d ∈
rep(v).

incident with,

“inversions”: edges that should be upward but are not.

Additive diagrams offer an easy way to avoid inversions. If the mapping rep is
chosen to be order preserving1, then it suffices to use for vec(d) only values with
a positive y-coordinate. The resulting diagram then is free of inversions.

For example, let D := J(L) be the set of all join-irreducible elements of a
finite lattice L. Since every lattice element is the join of join-irreducible elements,

rep(v) := {j ∈ J(L) | j ≤ v}
defines an order embedding of L into P(J(L)). Figures 1 and 3 gives a small
example. The join-irreducible elements are those with a unique lower neighbor.
The edge connecting this lower neighbor with the respective element d represents
the vector vec(d). The position of an arbitrary lattice element is determined by
the sum of such vectors below it. Since the vectors vec(d) are directly visible
in the diagram, they can easily be modified in an interactive layout program:
Join-irreducible elements may be dragged, and the placement function is mod-
ified accordingly. The effect on the diagram is that with a join-irreducible el-
ement, the order filter it generates is moved. It turns out that such restricted
modifications often lead to better results than unrestricted ones. This technique
was successfully used by several popular implementations, for example by the
Anaconda lattice layouter of Navicon AG2. In practice the method is usually
1 That is, if v ≤ w always implies rep(v) ≤ rep(w). Such a mapping is also called a set

representation.
2 www.navicon.de
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dualized and meet-irreducible elements are used instead, because this is more
intuitive. Confer [3] for examples and further references.

j

Figure 3: Left: Additive lattice diagram in which the join-irreducible elements
(black circles) are used for the set representation. Right: The same lattice after a
slight shift of the join-irreducible element j and the filter generated by it (shaded
vertices).

4 Conflict charts

The additive method avoids inversions in order diagrams, but contributes noth-
ing to the problem of possible conflicts. We discuss this issue next, assuming an
additive diagram3. Again we concentrate on a single d ∈ D and describe the
conflicts that can occur when vec(d) is changed by adding a vector a. All values
of a that lead to a conflict, i.e., to an unwanted collision in the line diagram,
will be displayed in a conflict chart for d, which we will introduce next.

Let v1 be a vertex of the graph (V, E) and let {v2, v3} be an edge not con-
taining v1. Let pi := pos(vi), i ∈ {1, 2, 3}, be the points where v1, v2, v3 are
drawn by a given placement map pos. The edge {v2, v3} is then represented by

3 This condition is not essential.
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the undirected line segment p2, p3. Finally, let εi be a flag indicating if d is
contained in rep(vi), thus

εi :=
{

0 if d �∈ rep(vi),
1 if d ∈ rep(vi).

A conflict arises when

p1 + ε1a ∈ p2 + ε2a, p3 + ε3a.

There are eight possible choices for (ε1, ε2, ε3) to consider. But clearly
(ε1, ε2, ε3) = (0, 0, 0) and (ε1, ε2, ε3) = (1, 1, 1) cannot cause any new conflict.
Moreover, we may w.l.o.g. assume ε2 ≤ ε3. This leaves four possible incidences
between a point and a line segment:

1. p1 ∈ p2 + a, p3 + a , 2. p1 ∈ p2, p3 + a ,

3. p1 + a ∈ p2, p3 , 4. p1 + a ∈ p2, p3 + a .

Solving these for a, we get the cases displayed in Table 1.

(ε1, ε2, ε3) q := r := conflict if for some λ with
(0, 1, 1) p1 − p2 p1 − p3 a = q + λ(r − q) 0 ≤ λ ≤ 1
(0, 0, 1) p2 − p3 p1 − p3 a = q + λ(r − q) 1 ≤ λ

(1, 0, 0) p2 − p1 p3 − p1 a = q + λ(r − q) 0 ≤ λ ≤ 1
(1, 0, 1) p2 − p3 p2 − p1 a = q + λ(r − q) 1 ≤ λ

Table 1: These conflicts can occur.

The values of a for which a conflict occurs are the “conflict lines” (actually,
line segments and rays) for the chosen d ∈ D. Together, they form the conflict
chart of d. Again, this is only the simplest version. There are other aspects that
may be included in the conflict chart, for example the actual size of the circles
that represent the vertices.

It is convenient to display the conflict chart when a diagram is being manip-
ulated. Figure 4 (left) shows such a situation: a diagram with a join-irreducible
element selected, superimposed with a rectangular part of the conflict chart for
that element. It is apparent that in the upper left half of the diagram there is
a large “conflict free” zone. Thus moving the selected element into this zone
will not cause new conflicts. This is demonstrated in the right part of Figure 4.
The new diagram is slightly better, even after shrinking it to the height of the
previous diagram.
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Figure 4: Left: An additive diagram (solid lines) superimposed with the conflict
chart for the blackened join-irreducible element (dotted lines). Right: A slightly
better diagram obtained by first moving the blackened element into a conflict
free zone and then adjusting size.

5 Modified Voronoi diagrams

For a given conflict chart and an arbitrary point p of the plane let the conflict
line distance of p be the shortest distance of p to a conflict line. Figure 4 suggests
an automated method for improving additive diagrams: Move the selected join
irreducible lattice element to a point with largest possible conflict line distance
(within given limits, say). With other words: look for a largest circle that does
not intersect any conflict line, and move the irreducible to its midpoint.

This can easily be realized graphically by coloring the plane with one color,
say, grey, such that the color intensity expresses small conflict line distance. Then
dark areas contain positions close to conflicts, while white areas are safe. In an
interactive layout program, such color charts can be useful because they very
intuitively “give recommendations” how to avoid conflicts.

Computationally, a largest circle that fits into (the interior of) a conflict
chart can be determined using its Voronoi diagram (defined as follows: a point
p of the plane belongs to the Voronoi diagram boundary of a conflict chart if
its conflict line distance is the distance of p to more than one conflict line). It
is evident that the center of a circle touching three conflict lines is a branching
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point (“vertex”) of the Voronoi diagram boundary. The algorithmic problems of
efficiently constructing the Voronoi diagram and its vertices are well studied, see
de Berg et al [1] for an introduction. In our setting however, efficiency is not the
main problem anyway, since the input size is small and discretization is possible.

A more important problem is that our notion of “conflict line distance” needs
to be revisited, for two reasons:

1. We have suggested to move the selected element to a point of “largest possi-
ble conflict line distance”. However, there is no such point, because conflict
charts of finite graphs consist of finitely many conflict lines only. Therefore
there will always be points of arbitrary large conflict line distance “far out”.
This corresponds to the trivial fact that all non-zero distances always can
be enlarged simply by magnifying the diagram as a whole.

2. The conflict line distance does not always represent the distance to a conflict.
This is explained in Figure 5 by means of an example: On the left hand side,
we see a diagram of a very small graph having three vertices u, v and w and
only one edge {v, w}. p1, p2, and p3 shall denote the positions of u, v, w. For
simplicity we assume p3 = (0, 0).

Let d ∈ D be some element of the representation set and assume that d ∈
rep(w), but d /∈ rep(u), d /∈ rep(v). If we change vec(d) by, say, a, then the
position of the vertex w will be moved to p3 + a, which is equal to a. The
other two vertices remain where they are. The only possibility for a conflict
with this choice of d is to move w in such a way that the edge {v, w} goes
through u. Therefore this conflict chart has only one conflict line. It is a ray
starting at p1 in the direction away from p2.

Now suppose that we change vec(d) by a vector a as indicated on the right
hand side. The conflict line distance for this choice of a is δ2. The distance
δ1 between p1 and the edge is shorter.

Both problems can simultaneously be solved by modifying our notion of
conflict distance. A first modification is suggested by Figure 5: we redefine the
distance to be δ1 instead of δ2. This has to be done in all instances of the cases
(2) and (4) from Section 3, that is, for all conflict rays. The modified distance
can always be expressed as the Euclidian distance of a point to a line segment,
see Table 2. The following proposition describes the outcome.

Proposition 1 Let v1 be a vertex and let {v2, v3} be an edge of (V, E), v1 �∈
{v2, v3}. Let an additive diagram of (V, E) be given by rep : V → P(D) and
vec : D → R

2, and let pi := pos(vi) for i ∈ {1, 2, 3}. Moreover, let

p0
i :=

{
pos(vi) if d /∈ rep(vi)
pos(vi) − vec(d) if d ∈ rep(vi)
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p2

p1

p3 = (0, 0)

p3 + a

δ1δ2

a

Figure 5: The distance δ1 between p1 and the edge p2, p3 + a is different from
the distance δ2 between a and the dotted conflict line.

be the placement for vec(d) = o.
Then the point-edge distance between p1 and p2, p3 is given in Table 2, pro-

vided it depends on the choice of a := vec(d).

Proof In the first case we have p1 = p0
1, p2 = p0

2 + a, p3 = p0
3 + a. Then

dist(p1, p2, p3) = dist(p0
1, p

0
2 + a, p0

3 + a)

= dist(p0
1 − p0

1 − a, p0
2 + a − p0

1 − a, p0
3 + a− p0

1 − a)

= dist(−a, p0
2 − p0

1, p0
3 − p0

1)

= dist(a, p0
1 − p0

2, p0
1 − p0

3).

The other cases are similar. �

Taking the minimum of this value over all appropriate v1, v2, v3, we obtain, for
arbitrary a ∈ R

2, the conflict distance of a. Note that, although the difference to
the previous definition seems to be small, the change is remarkable. The conflict
distance is, except for trivial cases4, bounded and never exceeds the diameter,
i.e., the maximal distance between two vertices of the diagram. This is true
because dist(q, a, r) is bounded above by dist(q, r).

Although the conflict distance is bounded above, we propose a second mod-
ification to compensate for the increase in distance that is caused by plainly
magnifying the diagram. This can be done by dividing the conflict distance of
any given point a by the diagram growth that is caused by letting vec(d) := a.
There is no canonical definition of a diagram’s size, but a natural choice is the
4 when there are no conflict rays at all.
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d ∈ rep(v1) d ∈ rep(v2) d ∈ rep(v3) q := r := distance to conflict
− × × p0

1 − p0
2 p0

1 − p0
3 dist(a, q, r)

− − × p0
1 − p0

3 p0
2 − p0

3 dist(q, a, r)
× − − p0

2 − p0
1 p0

3 − p0
1 dist(a, q, r)

× − × p0
2 − p0

1 p0
2 − p0

3 dist(q, a, r)

Table 2: Edge-vertex distance between a vertex at p1 and an edge at p2, p3 caused
by letting vec(d) := a. W.l.o.g. only the cases with d ∈ rep(v2) ⇒ d ∈ rep(v3)
are listed. p0

i denotes the respective position for vec(d) = 0.

diameter. Then

growth(a) :=
diameter when vec(d) = a
diameter when vec(d) = 0

,

assuming the denominator to be non-zero.
For a given additive diagram and a fixed d ∈ D we define the conflict avoid-

ance parameter of an arbitrary point a to be the conflict distance of a divided
by growth(a). We speak of a variable edge-vertex distance for those edge-vertex
pairs where the distance depends on the choice of rep(d).

Theorem 1 Except for trivial cases, there are points a of maximal conflict
avoidance. These are the points where the minimal variable edge-vertex distance,
relative to the diameter, is maximal.

Proof The second sentence simply rephrases the definition of the conflict avoid-
ance parameter: it is the conflict distance divided by the growth. That is, it is
equal to the minimal variable distance, times the diameter δ0 for rep(d) = 0 (a
positive constant), divided by the diameter δa for rep(d) = a.

The growth function is bounded below by some positive constant5. Therefore
the avoidance is bounded above. δa is at least |a| − δ0. Thus the avoidance
parameter goes to zero whenever |a| goes to infinity, and takes its maximal
values on some compact neighborhood of the origin. �

How to find the points of maximal conflict avoidance? This could be done
with a “modified Voronoi diagram”, defined as above but with the conflict avoid-
ance parameter replacing the conflict line distance. Such diagrams are no longer
5 We have excluded trivial cases.
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Figure 6: Low conflict avoidance values correspond to darker grey. A spot of
highest conflict avoidance can be found on the left. Its coordinates are marked
at the boundary. Only points with positive y-coordinate were considered, in order
to avoid inversions.

linear and can be quite complicated. It is not yet clear how to handle them
algorithmically. Note that already in our simple example there are one hundred
conflict lines (only a few of them intersecting the window printed in Figure 4).

We have only first experiences with an automatic search. Bernhard Schmidt
[4] has developed an algorithm that effectively finds the points of maximal con-
flict avoidance. His proof is based on the Lipschitz continuity of the parameter.
His implementation, however, was experimental and not fast enough for practical
use. Christian Zschalig [5] has combined these ideas with a standard technique
in Graph Drawing [2] and has used the conflict avoidance parameter as a force
in a Force Directed Placement Algorithm. The results are promising, but his
implementation is also not yet ready for general use.

Color maps are easier to use. An example is shown in Figure 6. For the
growth function we have used height instead of diameter, because this is easier
to compute. Other variations of the growth function may be introduced to reward
integer coordinates, few slopes, etc.

Figure 6 suggests dragging the blackened point to the white spot on the left.
This does in fact result in a diagram with a slightly better minimum distance. It
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is shown in Figure 7. No better minimum distance can be achieved in an additive
diagram of this height without moving other points. The new diagram is wider
than the previous ones, but its diameter is only slightly larger.

Figure 7: Positioning the marked join-irreducible at the position suggested by
Figure 6 does lead to an additive diagram in which the shortest nonzero dis-
tance between an edge and a vertex is larger than in Figure 4, even after height
adjustment.

6 A concluding remark

The reader should be warned that, although the technique presented here may
be useful, it does not by itself provide a way to good lattice diagrams. The
automated lattice drawing problem still appears to be difficult, although some
progress has been made. Figure 8 shows a reasonably good diagram, as it would
be intuitively be drawn by hand. Repeated application of the methods described
above does not necessarily converge to such a “nice” diagram, unless supported
by further considerations. This is subject of ongoing research.
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Figure 8: A better additive diagram for the lattice in Figures 1, 3, 4, and 7.
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