
LuaInterface: Scripting the .NET CLR with Lua

Fabio Mascarenhas
(Pontifical Catholic University of Rio de Janeiro, Brazil

mascarenhas@acm.org)

Roberto Ierusalimschy
(Pontifical Catholic University of Rio de Janeiro, Brazil

roberto@inf.puc-rio.br)

Abstract: We present LuaInterface in this paper, a library for scripting the .NET
CLR with Lua. The .NET Common Language Runtime (CLR) aims to provide inter-
operability among objects written in several different languages.

LuaInterface gives Lua the capabilities of a full CLS consumer. The Common Language
Specification (CLS) is a subset of the CLR specification, with rules for language inter-
operability, and CLS consumers are languages that can use CLS-compliant libraries.
LuaInterface lets Lua scripts instantiate and use CLR objects, and even create new
CLR types. CLR applications may also use LuaInterface to embed a Lua interpreter,
using Lua scripts to extend the application.

LuaInterface is implemented as a bridge between the Lua interpreter and the CLR. The
implementation required no changes to the interpreter, and the level of integration is
the same that a Lua compiler would have.

Key Words: scripting, language interoperability, reflection

Category: D.3.3

1 Introduction

The Microsoft .NET Framework aims to provide interoperability among
several different languages, through its Common Language Runtime
(CLR) [Meijer and Gough, 2002]. The CLR specification is an ISO and ECMA
standard [Microsoft, 2002], and implementations for non-Windows platforms
already exist [Stutz, 2002, Ximian, 2003]. Several languages have compilers
for the CLR, and compilers for many other languages are under develop-
ment [Bock, 2003].

Lua [Ierusalimschy, 2003, Ierusalimschy et al., 1996] is a scripting language
widely used in the game industry. Lua is easy to embed, small, fast, and flexible.
It has a simple syntax, is interpreted, dynamically typed, and has several reflexive
facilities. Lua also has first-class functions, lexical scoping, and coroutines.

Scripting languages are often used for connecting components written in other
languages (“glue” code). They are also used for building prototypes, and as
languages for configuration files. The dynamic nature of these languages allows
the use of components without previous type declarations and without the need

Journal of Universal Computer Science, vol. 10, no. 7 (2004), 892-909
submitted: 16/2/04, accepted: 21/6/04, appeared: 28/7/04 © J.UCS



for a compilation phase. Nevertheless, they perform extensive type checking at
runtime and provide detailed information in case of errors. The combination of
these features can increase developer productivity by a factor of two or more
[Ousterhout, 1998].

This paper presents LuaInterface, a library for the CLR that allows Lua
scripts to access the object model of the CLR, the Common Type System (CTS).
With LuaInterface, Lua becomes a scripting language for components written in
any language that runs in the CLR. LuaInterface provides all the capabilities of
a full CLS consumer. The Common Language Specification (CLS) is a subset of
the CLR specification that establishes a set of rules for language interoperabil-
ity [Microsoft, 2002, CLI Partition I Section 7.2.2]. Compilers that generate code
capable of using CLS-compliant libraries are called CLS consumers. Compilers
that can produce new libraries or extend existing ones are called CLS extenders.

A full CLS consumer must be able to call any CLS-compliant method or
delegate, even methods with names that are keywords of the language; to call
distinct methods of a type with the same signature but from different interfaces;
to instantiate any CLS-compliant type, including nested types; to read and write
any CLS-compliant property; and access any CLS-compliant event.

With LuaInterface, Lua scripts can instantiate CTS types, access their fields,
and call their methods, all using the standard Lua syntax. CLR applications can
also use LuaInterface, to run Lua code, access Lua data, call Lua functions, and
register CLR methods as functions. Applications can also use Lua as a language
for their configuration scripts, or as an embedded scripting language, and Lua
scripts can glue together different components. Besides these consumer facilities,
LuaInterface also provides support for creating new CTS types, with restrictions.

Lua is dynamically typed, so it needs no type declarations to instantiate
or use CLR objects. It checks at runtime the correctness of each operation.
LuaInterface makes extensive use of the reflexive features of the CLR, and does
not need any preprocessing or creation of stubs for each object that a script uses.
Its implementation required no changes to the Lua interpreter: the interpreter
is compiled to a dynamically linked library that the CLR interfaces with, using
P/Invoke (the native code interface of the CLR).

Porting scripting languages to the CLR has been hard. ActiveState
has tried to build Perl and Python compilers, but abandoned both
projects [ActiveState, 2000, Hammond, 2000]. Smallscript Inc. has been work-
ing on a Smalltalk compiler for the CLR since 1999, and “preparation for release
is in progress” since early 2003 [Inc., 2000]. LuaInterface, on the other hand, is
just a bridge between the Lua interpreter and the CLR, so was much simpler to
implement than a compiler. Nevertheless, LuaInterface has full CLS consumer
capabilities; the integration is seamless, and we achieved the same level of inte-
gration that a Lua compiler would have.

893Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



The rest of this paper is structured as follows: Section 2 shows how applica-
tions can use LuaInterface and the methods it exposes, with examples. Section 3
describes particular issues of the implementation. Section 4 presents some re-
lated work and compares them with LuaInterface, and Section 5 presents some
conclusions and future developments.

2 Interfacing Lua and the CLR

Lua is an embeddable language, so it has an API that allows an application
to instantiate and control a Lua interpreter. LuaInterface wraps this API into
a class named Lua, which provides methods to execute Lua code, to read and
write global variables, and to register CLR methods as Lua functions. Auxiliary
classes provide methods to access fields of Lua tables and to call Lua functions.
Instantiating an object of class Lua starts a new Lua interpreter. Multiple in-
stances may be created, and are completely independent. Methods DoFile and
DoString of class Lua execute a Lua source file and a string of Lua code, respec-
tively. Scripts can read or write global variables by indexing an instance of class
Lua with the variable name. The following C# code shows how to use instances
of class Lua:

// Start a new Lua interpreter

Lua lua = new Lua();

// Run Lua chunks

lua.DoString("num = 2"); // create global variable ’num’

lua.DoString("str = ’a string’");

// Read global variables ’num’ and ’str’

double num = (double)lua["num"];

string str = (string)lua["str"];

// Write to global variable ’str’

lua["str"] = "another string";

Functions are first-class values in Lua; Lua objects are just tables, with
functions stored in fields as their methods. By convention, these functions re-
ceive a first argument called self that holds a reference to the table. There
is syntactic sugar for accessing fields and methods. The obj.field="foo"

statement is the same as obj["field"]="foo", for example. An expres-
sion as obj:foo(arg1,arg2) is a method call, and syntactic sugar for
obj["foo"](obj,arg1,arg2), that is, the receiver goes as the first argument
to the call.

2.1 Type conversions

Lua has seven types: nil, number, string, boolean, table, function and userdata.
The nil type has only one value, nil, and represents an uninitialized (or in-

894 Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



valid) reference; values of the number type are double-precision floating point
numbers; values of the string type are character strings; the boolean type has two
values, true and false; values of the table type are associative arrays; functions
belong to the function type; and the userdata type is for arbitrary data from
the embedding application.

The CLR is statically typed, so whenever a Lua value is passed to the CLR,
LuaInterface converts the Lua value to the type the CLR expects, if possible;
otherwise LuaInterface throws an exception. If the CLR is expecting a value of
type object, LuaInterface uses the default mapping: nil to null, numbers to
System.Double, strings to System.String, and booleans to System.Boolean.
LuaInterface converts Lua tables to instances of LuaTable. Indexing an instance
of this class accesses a field of the table with the corresponding key. Functions
are converted to instances of LuaFunction. This class defines a call method
that calls the corresponding Lua function and returns an array with the return
values of the function.

If the CLR expects a numeric type, LuaInterface converts numbers to the
expected type, rounding the number, if necessary. LuaInterface also converts
numerical strings to CLR numbers. Likewise, LuaInterface converts numbers to
strings, if the CLR is expecting a string. If the CLR expects a boolean value,
LuaInterface converts any Lua value, except false and nil, to true. If the CLR
expects a delegate, and the Lua value is a function, LuaInterface also converts
the function to a delegate of the expected type. LuaInterface creates a delegate
that executes the Lua function, with the arguments to the delegate becoming
arguments to the function.

Whenever a value is passed from the CLR to Lua, LuaInterface converts
the CLR value to the closest Lua type: null to nil, numeric values to numbers,
System.String instances to strings, System.Boolean instances to booleans. Lu-
aInterface converts instances LuaTable and LuaFunction to the corresponding
tables and functions, respectively. LuaInterface converts all other CLR values to
proxies to the actual value. Section 2.4 covers this.

2.2 Methods, constructors and overloading

The CLR supports method overloading. Whenever a Lua script calls an over-
loaded method, LuaInterface must select which method to actually call. LuaIn-
terface goes through each of the methods, first checking whether the number of
parameters match the number of arguments to the call. If the numbers match,
LuaInterface checks whether each argument can be converted to the type of its
corresponding parameter, according to the rules outlined in Section 2.1. LuaIn-
terface throws an error if it does not find a suitable method to call. Constructors
can also be overloaded (and usually are). LuaInterface uses this same procedure
to select which constructor to use, when instantiating an object.

895Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



LuaInterface uses the first method that matches, and does not try to check if
other methods could be a better match. This is simpler, faster, and unambiguous.
Using the first match has consequences, though: there can be overloaded methods
that cannot be directly called. If the first method takes a Double parameter, and
the second takes a Int32 parameter, the second method is never selected; any
value that can be converted to Int32 can also be converted to Double. Section 2.6
presents a workaround for this issue.

2.3 Loading CTS types and instantiating objects

Lua scripts need a type reference to instantiate new CLR objects. They need two
functions to get a type reference: first they must use load assembly, which loads
an assembly, making its types available for importing as type references; then
they must use import type, which searches all loaded assemblies for a type and
returns a reference to it. The following excerpt illustrates how these functions
work:

load_assembly("System.Windows.Forms")

load_assembly("System.Drawing")

Form = import_type("System.Windows.Forms.Form")

Button = import_type("System.Windows.Forms.Button")

Point = import_type("System.Drawing.Point")

Scripts can use import type to get type references for structures (e.g. Point)
and enumerations, as well as classes. To instantiate a new CLR object, a script
calls the respective type reference as a function. The following example extends
the previous one to show how objects are instantiated:

form1 = Form()

button1 = Button()

button2 = Button()

Expressions like Form() and Button(), in the example above, are regular
Lua syntax; Lua code can call any value. Lua has extensibility features that
allow libraries to control how these operations are carried; Section 3 explains
how LuaInterface uses these features.

A script can also use a type reference to call static methods from the type.
The syntax is the same syntax used to call methods of a Lua object; for example,
the expression Form:GetAutoScaleSize(arg) calls method GetAutoScaleSize

from type Form. LuaInterface dynamically searches the type for the desired static
method. Scripts can also use a type reference to read and write the static fields
from the type. For example, var=Form.ActiveForm assigns to variable var the
value of the ActiveForm property from type Form.

896 Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



2.4 Accessing other CTS types

Some CTS types have a direct mapping to Lua. These types are null, numeric
types, Boolean, String, and the types LuaTable and LuaFunction presented
on Section 2.1. LuaInterface maps values of all the other CTS types to proxies
to those values. In the object instantiation example in Section 2.3, for instance,
the values assigned to the form1, form2, button1 and button2 variables are all
proxies to the actual CLR objects. Scripts can use these proxies as they use any
other Lua object: they can read fields, assign to fields, read properties, assign to
properties, and call methods. The following example continues the two previous
ones, showing how to use properties and methods:

button1.Text = "Ok"

button2.Text = "Cancel"

button1.Location = Point(10,10)

button2.Location = Point(button1.Left,button1.Height+

button1.Top+10)

form1.Controls:Add(button1)

form1.Controls:Add(button2)

form1:ShowDialog()

In the previous example, the button1.Text="Ok" statement as-
signs the string "Ok" to the Text property on object button1. The
form1.Controls:Add(button1) statement reads property Controls on
object form1, then calls method Add on the value of this property, passing
object button1 as the argument to the method call. The three previous
examples combined, when run, show a form with two buttons.

LuaInterface passes to Lua, as an error, any exception that occurs during
execution of a CLR method. The exception object is the error message (Lua
“error messages” are not restricted to strings). Then the script can use Lua
mechanisms to capture and treat those errors.

2.5 Event handling

Events are a CLR facility to implement callbacks. To support an event, a type
declares two methods: one method to add a handler to the event and another
to remove a handler. The metadata for the type declares the event name, the
type of the event handlers, and the methods to add and remove handlers. An
application can use the reflection API of the CLR to discover what events a
type declares, and to add or remove event handlers; the reflection API gets this
information from the metadata of the type.

LuaInterface represents events as objects that define two methods: Add and
Remove. These methods respectively add and remove a handler for the event.

897Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



Method Add receives a Lua function, converts the function to a delegate of the
type the event expects, and adds the delegate as a handler to that event. Method
Remove, in turn, receives a delegate registered as an event handler and removes
it.

For example, if an object obj defines an event Ev, the expression obj.Ev

returns an object that represents the event Ev. If func is a function, the
obj.Ev:Add(func) statement registers func as a handler to event Ev. Each time
event Ev fires, the CLR calls the delegate, which in turn calls function func. The
following Lua code extends the previous examples to add event handlers to both
buttons:

function handle_mouseup(sender,args)

print(sender:ToString() .. " MouseUp!")

end

button1.MouseUp:Add(handle_mouseup)

button2.Click:Add(os.exit)

In the previous example, the button1.MouseUp:Add(handle_mouseup)

statement registers the handle mouseup function as a handler to event
MouseUp on object button1. This function prints a message on the con-
sole. The CLR provides the sender and args parameters; they are, respec-
tively, the object that fired the event and data specific to the event. The
button2.Click:Add(os.exit) statement registers the os.exit function, from
the Lua standard library, as a handler to event Click on object button2. This
function ends the script. It has no parameters, but this is not a problem: the
Lua interpreter will discard the two arguments passed to the function.

2.6 Additional full CLS consumer capabilities

The features already presented cover most uses of LuaInterface, and most of
the capabilities of a full CLS consumer. The following paragraphs present the
features that cover the rest of the capabilities that a full CLS consumer must
provide.

The CLR offers both call-by-value and call-by-reference parameters. Call-by-
reference parameters come in two types: out parameters can only be assigned
to, and ref parameters can be both read from and assigned to. Lua offers only
call-by-value parameters, so LuaInterface supports out and ref parameters us-
ing multiple return values (functions in Lua can return any number of values).
LuaInterface returns the values of out and ref parameters after the return value
of the method, in the order they appear in its signature.

The standard method selection of LuaInterface uses the first method that
matches the number and type of the arguments to the call, so some methods

898 Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



of an object may never be selected (as discussed in Section 2.2). To call those
methods, LuaInterface provides the get method bysig function. It takes an ob-
ject, the method name, and a list of type references. Calling get method bysig

returns a function that, when called, executes the method that matches the
provided signature. The first argument to the call must be the receiver of the
method. Scripts can also use get method bysig to call instance methods of the
CLR numeric and string types, and to call static methods. Constructors can be
overloaded, too, so there is also the get constructor bysig function.

To call a method named after a Lua keyword, a script can use the fact
that the obj:method(...) and obj["method"](obj,...) forms are equiva-
lent in Lua. For example, the obj:function(...) statement invalid in Lua,
as function is a Lua keyword. The script should use the equivalent statement
obj["function"](obj,...).

To call distinct methods with the same signature, but belonging to differ-
ent interfaces, scripts can prefix the method name with the interface name
(this InterfaceName.MethodName notation is used by the reflection API of the
CLR). To call method foo of interface IFoo, for example, a script should use
the obj["IFoo.foo"](obj,...) expression.

Finally, to get a reference to a nested type, a script calls import type

with the name of the nested type following the name of the containing type
and a plus sign. Again, this notation is used by the reflection API of the
CLR. An example of importing a nested type using this notation is the
import_type("ContainingType+NestedType") statement.

2.7 Creating new CTS types

LuaInterface provides the make object function to create new types. The func-
tion takes a Lua object and a CTS interface. LuaInterface automatically creates
a new class that implements the interface. The constructor of this class receives
a Lua object, storing it. The methods of this class delegate their execution to
methods of the stored Lua object. After creating the class, LuaInterface instan-
tiates it, passing the Lua object to the constructor. The make object function
returns the newly instantiated object. For example, let IExample be an interface
defined by the following C# code:

public interface IExample {

float Task(float arg1, float arg2);

}

The IExample interface defines a method called Task that takes two float

arguments and returns a float. Now, let tab be a Lua table defined by the
following Lua code:

899Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



tab = { mult = 2 }

function tab:Task(arg1, arg2)

return self.mult * arg1 * arg2

end

The tab table also defines a method called Task, which takes two arguments,
multiplies them, then multiplies the result by a field of tab called mult and
returns the final result. Let’s now define a class that uses IExample instances,
with the C# code:

public class TestExample {

public static void DoTask(IExample ex, float arg1,

float arg2) {

Console.WriteLine(ex.Task(arg1, arg2));

}

}

The TestExample class defines a static DoTask method that takes an
IExample instance and two float values as arguments, then calls method Task

on the IExample instance, passing both float values, and prints the result on
the console. We finish this example with the following Lua code:

ex = make_object(tab, IExample)

TestExample:DoTask(ex, 2, 3)

This code assumes that references to the IExample interface and the
TestExample class have already been imported. The call to make object creates
an instance of the IExample interface that delegates its Task method to tab. The
last line calls method DoTask of class TestExample, passing the instance that
make object created, plus numbers 2 and 3. Inside DoTask, the Task method
of this instance is called with numbers 2 and 3. This calls method Task on tab,
and the result (12) is returned to DoTask and printed on the console.

Whenever a script passes a Lua object where the CLR is expecting an inter-
face instance, LuaInterface automatically calls make object with the Lua object
and the interface type, and passes the object make object returns instead. In
the previous example, the last excerpt of Lua code could be rewritten as the
following code, with the same result:

TestExample:DoTask(tab, 2, 3)

The make object function can actually take any class, not just interfaces. It
creates a new subclass of this class. This feature is not fully implemented, and
has some issues. The LuaInterface manual [Mascarenhas, 2000] provides more
details.

900 Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



3 Implementation of LuaInterface

We wrote LuaInterface mostly in C#, with a tiny (less than 30 lines) part in C.
This part needs minimal changes for each platform. The library depends on Lua
version 5.0, and assumes the existence of a DLL or shared library containing the
implementation of the Lua API, and a library containing the implementation of
the Lua library API.

3.1 Wrapping the Lua API

LuaInterface accesses the Lua API functions through Platform/Invoke (P/Invoke
for short), the native-code interface of the CLR. Access is straightforward, with
each function exported by the Lua libraries corresponding to a static method in
the C# code of LuaInterface. For example, the C prototype

void lua_pushstring(lua_State *L, const char* s);

translated to C# becomes

static extern void lua_pushstring(IntPtr L, string s);

P/Invoke automatically marshals basic types from the CLR to C. It marshals
delegates as function pointers, so passing methods to Lua is almost straight-
forward; almost, because the application must remember to keep references to
all delegates passed to C, otherwise they may be collected and their function
pointers invalidated. Pointers are marshalled as instances of IntPtr, an opaque,
immutable type that can be passed back to C as the original pointer.

Another small difficulty is a conflict of function calling conventions. C compil-
ers use the CDECL calling convention by default (caller cleans the stack), while
the Microsoft .NET compilers use the STDCALL convention (callee cleans the
stack). This means P/Invoke marshals delegates as STDCALL function point-
ers, while Lua expects CDECL function pointers, leading to program crashes.
The solution was to write an extension to the Lua API, a function that wraps a
STDCALL function pointer inside a CDECL function, and passes a pointer to
the CDECL function to Lua (this is the reason for the C part in our implemen-
tation).

The API has functions to convert Lua numbers, strings and booleans to C,
and vice-versa. P/Invoke converts from C to the CLR, so the implementation
of the Lua class just calls the Lua API functions when converting to (or from)
numbers, strings and booleans. Instances of the LuaTable class contain a ref-
erence to the actual Lua table, and use the API functions to access its fields.
Functions are converted in a similar fashion.

901Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



3.2 Passing CLR objects to Lua

Lua has a data type, called userdata, that lets an application pass arbitrary data
to the interpreter. When an application creates a new userdata the interpreter
allocates space for it, then returns a pointer to the allocated space. The behavior
of an userdata is extensible; the application can attach functions to the userdata
so Lua can call them when it is garbage-collected, indexed as a table, called as
a function, or compared to other values.

When LuaInterface needs to pass a CLR object to Lua, it stores the object
inside a CLR vector, creates a new userdata, stores the index of the object (in
the vector) inside this userdata, and passes it instead. LuaInterface also stores a
reference to the userdata inside a Lua table. This table lets LuaInterface reuse
an userdata it already created. It stores weak references to the userdata, so
the interpreter can eventually collect them. When the interpreter collects an
userdata, its finalizer function removes the original object from the vector.

3.3 Using CLR objects from Lua

A Lua method call, such as the obj:foo(arg1,arg2) expression, is syntactic
sugar for obj["foo"](obj,arg1,arg2). Suppose obj is an userdata that rep-
resents a CLR object; because obj is not a table, the obj["foo"] operation
triggers a function to handle it. This function searches in the type of object,
using the reflection API of the CLR, for methods called foo. If one or more
methods are found, LuaInterface returns a delegate that represents those meth-
ods. It returns nil if no method is found. The Lua interpreter then calls the
delegate returned by LuaInterface. The arguments to the call are obj, arg1 and
arg2. The delegate converts arg1 and arg2 to the types the method expects,
and calls the method foo on object obj. If foo is overloaded, the delegate first
checks which method accepts two arguments with compatible types, and then
calls that method.

Using reflection to look for a method, and then creating a delegate for it,
are costly operations. So, LuaInterface caches the delegates, to pay the cost only
once, when the method is first called. Objects belonging to the same type share
the same cache. If a method is overloaded, there is also the cost of checking for
the method that matches the arguments. In any case, there is also the cost of
deciding how the arguments are converted to the types the method expects. So,
LuaInterface has a second cache, inside the delegate, that stores the last version
called, as well as the functions it uses to convert the arguments. The delegate
first tries the method in its cache; the delegate goes back to check for a matching
method if there is a problem.

Returning to the obj["foo"] example, suppose foo is a field, instead of
a method. In this case, the obj["foo"] operation will find a field called foo,

902 Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



instead of a method, inside the type of the object. The operation then returns
the value of the field. LuaInterface also stores the field in a cache, so the cost of
looking for the field is paid only once. This cache is also shared by all instances
of a type. If foo is a property or an event the operation is similar. If a script
tries to assign to a field, as in obj.foo=val, the assignment triggers another
function to handle it. This function receives obj, "foo" and val as arguments.
LuaInterface searches for a foo field in the type of the object, converts the value
to be assigned to the type of the field, and completes the assignment. Assignment
to properties proceeds similarly. LuaInterface also uses, for this operation, the
same cache it uses when reading fields and properties.

Type references returned by the import type function are instances of class
Type; their reflexive searches (for methods, fields, etc.) are limited to static
members, but otherwise they are just like other object instances. When a script
calls a type reference (to instantiate a new object), LuaInterface calls a function
that searches in the constructors for the type, calling the one that matches the
arguments.

3.4 Delegates, events, and interfaces

Every time a Lua function is passed where the CLR expects a delegate, LuaIn-
terface dynamically creates a subclass of LuaDelegate. This subclass defines a
method with the signature of the delegate, and a constructor that receives a Lua
function as its argument. LuaInterface then creates an instance of this subclass,
and creates a delegate from this instance. The newly created delegate is passed
to the CLR. The subclass of LuaDelegate is created using the Reflection.Emit
API of the CLR. The Reflection.Emit API has classes to generate assemblies,
types, and emit Common Intermediate Language bytecodes. The types created
by the API can be kept in memory or committed to disk. The class that Lu-
aInterface generates are kept only in memory. LuaInterface stores the class in
a cache, and it is reused if LuaInterface needs another delegate with the same
signature.

LuaInterface returns events as objects that implement an Add and a Remove

method. The Add method receives a Lua function and creates a delegate with
the same signature as the handlers of the event, then registers this delegate as
a handler, returning the delegate. Method Remove receives a delegate that was
previously registered by Add and removes it. The make object function also uses
the Reflection.Emit API of the CLR to generate its classes.

4 Related Work

The LuaPlus distribution is a C++ interface for the Lua interpreter that includes
a CLR wrapper to the Lua API [Jensen, 2003]. The CLR wrapper is similar to

903Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



the LuaInterface API wrapper: it has methods to run Lua code, to read and
write Lua globals, and to register delegates as Lua functions. Arbitrary CLR
objects are passed to the interpreter as userdata, but Lua scripts cannot use their
properties and methods. The delegates that LuaPlus registers as Lua functions
also cannot have an arbitrary signature, as they can in LuaInterface. LuaPlus
does not offer the same level of integration that LuaInterface offers.

LuaOrb is a library, implemented in C++, for scripting CORBA objects and
implementing CORBA interfaces [Cerqueira et al., 1999] in Lua. As LuaInter-
face, LuaOrb uses reflection to access properties and to call methods of CORBA
objects, using Lua syntax. LuaOrb can register Lua tables as implementations
of CORBA interfaces, through the CORBA Dynamic Skeleton Interface. This
interface has no similar in CLR, although a similar feature was implemented for
LuaInterface by runtime code generation through Reflection.Emit.

LuaJava is a scripting tool for Java. It allows Lua scripts to use Java objects
and create classes from Lua tables [Cassino et al., 1999]. On the consumer side,
LuaJava uses Java reflection to find properties and methods and the Java native
code API to access the Lua C API, an approach very similar to the one in
LuaInterface. On the extender side, it uses dynamic generation of bytecodes to
create Java classes from tables. LuaJava generates a class that delegates method
calls to the Lua table, and this class is loaded by a custom class loader. The
Reflection.Emit API of the CLR makes this task much easier, with its utility
classes and methods for generating and loading memory-only classes.

The Script for the .NET Framework [Clinick, 2001], by Microsoft, is a set
of script engines that a CLR application can host. It provides two engines by
default, a Visual Basic engine and a JScript engine. Scripts have full access to
CTS classes and the application can make its objects available to them. The
scripts are compiled to the CLR Intermediate Language (IL) before they are
executed.

PerlNET [Dubois, 2002] is a commercial library, by ActiveState, that in-
tegrates the Perl interpreter to the CLR. Like LuaInterface, PerlNET uses
P/Invoke to bridge the Perl 5.6 interpreter and the CLR. On the consumer side,
Perl scripts can instantiate CLR objects and call their methods using Perl syn-
tax. On the extender side, PerlNET packages Perl classes and modules as CTS
classes, with their functions and methods visible to other objects. The classes
that PerlNET generates are permanent, and can define new methods that are
visible from the CLR. The classes generated by LuaInterface are temporary, and
can only override methods of their base classes.

Dot-Scheme [Pinto, 2003] is a bridge between PLT Scheme and the CLR.
Dot-Scheme is similar to LuaInterface on the consumer side; Scheme programs
can instantiate and use CLR objects using the Scheme syntax. It is not a full
CLS consumer, though, offering no way for Scheme code to define CLR delegates

904 Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



or handle CLR events.
LuaInterface is also related to other bridges between scripting languages and

the Java Virtual Machine, such as Tcl Blend [DeJong and Redman, 2003] and
the Java-Python Extension [Giacometti, 2003]. These bridges use the Java Na-
tive Interface and Java reflection to instantiate and use JVM objects. The bridge
between the Hugs98 Haskell interpreter and the CLR [Finne, 2003] is yet another
example of related work.

The following section presents an evaluation of the performance of LuaIn-
terface, comparing its performance to the performance of PerlNET. We only
compare LuaInterface with PerlNET; LuaPlus does not offer the feature we are
comparing, LuaORB and LuaJava do not use the CLR, the Script for the .NET
Framework uses a completely different approach (the scripts are compiled to
IL), and Dot-Scheme has, according to its author, not yet been optimized for
performance.

4.1 Performance evaluation

We focused the performance tests on CLR method calls from Lua scripts, as this
is the main feature of LuaInterface. We evaluated times for calls to six distinct
methods. They vary by the number and types of their parameters. Three of the
methods have all parameter and return values of type Int32, and vary by the
number of parameters (zero, one or two). The times for these method calls, in
microseconds, are shown on Figure 1. The other three methods in this evaluation
have object types as parameter and return values, and also vary by their number
of parameters. Figure 2 shows the times for these method calls. All the times were
collected in the same machine, under the same conditions, and are an average
of ten different runs of a million method calls each1.

The MethodBase.Invoke column shows the minimum possible times for re-
flexive method calls. The Cache column shows the time for a method call from
Lua, when the method is already in cache. The Partial cache column shows the
time with the internal cache of the delegate disabled (which is also the time for
a call when there is a type mismatch), and the No cache column shows the time
with both caches disabled (which is the time for the first call of a method). The
PerlNET column shows the time for a method call from the Perl language, using
the PerlNET bridge.

Both figures show how it is costly to search for a method and to find how
each argument must be converted, in the difference among method calls from
Lua. The times using the caches are about a fifth of the times without caching.
1 Athlon 1.2GHz, with 256Mb memory, running Windows XP Professional with version

1.1 of the .NET Common Language Runtime. The Lua interpreter was compiled
with the Microsoft VC.NET compiler, with all optimizations turned on. No other
applications were running while the times were being collected.

905Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



0,728 1,335 1,913

5,28
7,278 7,985

11,826

18,127
20,145

27,71

34,04
36,271

50,598

61,603

65,039

0

15

30

45

60

75

0 1 2

Parameters

Ti
m

e 
(s

)

MethodBase.Invoke Cache Partial cache No cache Perl.NET

Figure 1: Times for method calls with System.Int32 parameters

The slight increase in the times for method calls from Lua, when comparing
Figures 1 and 2, comes from the checks that LuaInterface must make on values
of object types. When LuaInterface encounters an argument of type userdata,
it must check whether the userdata really represents a CLR object. Finally, the
P/Invoke API itself brings some overhead. Each P/Invoke call adds ten to thirty
CPU instructions, possibly more, depending on the types used [Microsoft, 2003].
The overhead in each call to the Lua API is small, but each method call involves
several API calls, so they add up to about a fifth of the total time.

5 Conclusions and Future Work

This paper presented LuaInterface, a library that gives Lua the capabilities of
a full CLS consumer. Lua scripts can use LuaInterface to instantiate and use
CLR objects, and CLR applications can use LuaInterface to run Lua code. We
implemented the library in C#, with a tiny part in C. The C part, and the Lua
interpreter, compile in all the platforms where the CLR is available with minimal
changes, so portability was not affected. The Lua interpreter was designed to be
easily embeddable; access to the interpreter was straightforward, through the

906 Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



0,66 1,134 1,476

7,919
9,705 10,618

15,414

25,001

29,39929,852

39,776

44,528

39,107

65,471

72,921

0

15

30

45

60

75

90

0 1 2

Ti
m

e 
(s

)

MethodBase.Invoke Cache Partial Cache No Cache Perl.NET

Figure 2: Times for method calls with object type parameters

P/Invoke library of the CLR. We created an object-oriented wrapper to the Lua
C API functions, providing a more natural interface for CLR applications.

The times for CLR method calls from Lua are about five to eight times the
minimum time for reflexive method calls, except for the first time a method is
called, when times can climb to thirty to forty times the minimum. Yet LuaIn-
terface is five to ten times faster than a similar commercial library, for the Perl
language.

What we learned during the course of this project:

– The extensibility of Lua made it easy to implement the full CLS consumer
capabilities without any changes to the interpreter or language, and without
the need for a preprocessor.

– The dynamic typing of the Lua language and the reflection API of the CLR
were crucial for the lightweight approach to integration that was used in this
project.

– Reflexive calls are not the performance bottleneck for the library, as we
initially thought it would be, although searching for a method using reflection
is;

907Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



– P/Invoke is very easy to use and very clean, but its overhead adds up to
a fifth of the total time for a method call, more than we expected. We use
P/Invoke as little as possible.

The approach we used to build LuaInterface can also be used to build bridges
for other scripting languages. Any language that has a native code interface,
dynamic typing, and a way to dynamically extend the behavior of its objects,
can use the same approach. Most scripting languages have these prerequisites,
by their nature of “glue” languages.

LuaInterface has a public release [Mascarenhas and Ierusalimschy, 2003]. We
are now working on another approach of integration between Lua and the CLR,
through compilation of Lua code directly to the Intermediate Language of the
CLR. There is already a prototype that compiles Lua virtual-machine bytecodes
to IL. Performance tests show that the generated code is faster than similar code
generated by the Microsoft JScript compiler for the CLR.

References

[ActiveState, 2000] ActiveState (2000). Release Information for the ActiveState
Perl for .NET compiler. Available at http://www.activestate.com/Corporate/
Initiatives/NET/Perl release.html.

[Bock, 2003] Bock, J. (2003). .NET Languages. Available at http://www.jasonbock.
net/dotnetlanguages.html.

[Cassino et al., 1999] Cassino, C., Ierusalimschy, R., and Rodriguez, N. (1999). Lu-
aJava — A Scripting Tool for Java. Technical report, Computer Science De-
partment, PUC-Rio. Available at http://www.tecgraf.puc-rio.br/∼cassino/
luajava/index.html.

[Cerqueira et al., 1999] Cerqueira, R., Cassino, C., and Ierusalimschy, R. (1999). Dy-
namic Component Gluing Across Different Componentware Systems. In Interna-
tional Symposium on Distributed Objects and Applications (DOA’99).

[Clinick, 2001] Clinick, A. (2001). Script Happens .NET. Available at http://msdn.
microsoft.com/library/en-us/dnclinic/html/scripting06112001.asp.

[DeJong and Redman, 2003] DeJong, M. and Redman, S. (2003). The Tcl/Java
Project. Available at http://tcljava.sourceforge.net/docs/website/index.
html.

[Dubois, 2002] Dubois, J. (2002). PerlNET — The Camel Talks .NET. In The Perl 6
Conference. Available at http://conferences.oreillynet.com/presentations/
os2002/dubois update.ppt.

[Finne, 2003] Finne, S. (2003). Hugs98 for .NET. Available at http://galois.com/
∼sof/hugs98.net/.

[Giacometti, 2003] Giacometti, F. (2003). JPE – The Java-Python Extension. Avail-
able at http://jpe.sourceforge.net/.

[Hammond, 2000] Hammond, M. (2000). Python for .NET: Lessons Learned. Avail-
able at http://www.activestate.com/Corporate/Initiatives/NET/Python for .
NET whitepaper.pdf.

[Ierusalimschy, 2003] Ierusalimschy, R. (2003). Programming in Lua. Lua.org.
[Ierusalimschy et al., 1996] Ierusalimschy, R., Figueiredo, L. H., and Celes, W. (1996).

Lua — An Extensible Extension Language. Software: Practice and Experience,
26(6):635–652.

908 Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...



[Inc., 2000] Inc., S. (2000). S#.NET Tech-preview Software Release. Available at
http://www.smallscript.com/Community/calendar home.asp.

[Jensen, 2003] Jensen, J. C. (2003). LuaPlus 5.0 Distribution. Available at http:
//wwhiz.com/LuaPlus/index.html.

[Mascarenhas, 2000] Mascarenhas, F. (2000). LuaInterface: User’s Guide. Com-
puter Science Department, PUC-Rio. Available at http://www.inf.puc-rio.br/
∼mascarenhas/luainterface/manual-en.pdf.

[Mascarenhas and Ierusalimschy, 2003] Mascarenhas, F. and Ierusalimschy, R. (2003).
LuaInterface: Scripting .NET with Lua. Available at http://www.inf.puc-rio.
br/∼mascarenhas/luainterface/.

[Meijer and Gough, 2002] Meijer, E. and Gough, J. (2002). Technical Overview of the
Common Language Runtime. Technical report, Microsoft Research. Available at
http://research.microsoft.com/∼emeijer/Papers/CLR.pdf.

[Microsoft, 2002] Microsoft (2002). ECMA C# and Common Language Infrastructure
Standards. Available at http://msdn.microsoft.com/net/ecma/.

[Microsoft, 2003] Microsoft (2003). Managed Extensions for C++ Migration Guide:
Platform Invocation Services. Available at http://msdn.microsoft.com/library/
en-us/vcmxspec/html/vcmg PlatformInvocationServices.asp.

[Ousterhout, 1998] Ousterhout, J. K. (1998). Scripting: Higher Level Programming
for the 21st Century. IEEE Computer, 31(3):23–30.

[Pinto, 2003] Pinto, P. (2003). Dot-Scheme — A PLT Scheme FFI for the .NET frame-
work. In Fourth Workshop on Scheme and Functional Programming.

[Stutz, 2002] Stutz, D. (2002). The Microsoft Shared Source CLI Implementa-
tion. Available at http://msdn.microsoft.com/library/en-us/Dndotnet/html/
mssharsourcecli.asp.

[Ximian, 2003] Ximian (2003). The Mono Project. Available at http://www.go-mono.
com/.

All URLs in these references are valid as of April 12th, 2004.

909Mascarenhas F., Ierusalimschy R.: LuaInterface: Scripting the .NET CLR ...


