Journal of Universal Computer Science, vol. 10, no. 5 (2004), 509-539
submitted: 1/4/04, accepted: 10/4/04, appeared: 28/5/04 © J.UCS

Population P Systems

Francesco Bernardini, Marian Gheorghe
(University of Sheffield, UK
{F.Bernardini, M.Gheorghe}@dcs.shef.ac.uk)

Abstract: This paper introduces a notion of population P systems as a class of tissue
P systems where the links between the cells can be modified by means of a specific set of
bond making rules. As well as this, cell division rules which introduce new cells into the
system, cell differentiation rules which change the set of rules that can be used inside
of a cell, and cell death rules which remove cells from the system are also considered by
introducing a particular notion of population P systems with active cells. The paper
mainly reports universality results for the following models: (a) population P systems
where cells are restricted to communicate only by means of the environment but never
forming any bond; (b) population P systems with bond making rules with restricted
communication rules; (c¢) population P systems possessing only the cell differentiation
operation; and (d) population P systems equipped with cell division rules and bond
making rules.

Key Words: Membrane computing, Cell bonding, Cell division, Cell differentiation,
Turing computability

Category: F.1.1, F.4.3

1 Introduction

Membrane computing represents a new and rapidly growing research area which
is part of the natural computing paradigm. Already a monograph has been ded-
icated to this subject [Pdun 2002] and some fairly recent results can be found
in [Paun et al. 2003], [Martin-Vide et al. 2004]. Membrane computing has been
introduced with the aim of defining a computing device, called P system, which
abstracts from the structure and the functioning of living cells [P&un 2000].
Membranes are among the main elements of the living cells; they separate the
cell from its environment and split the content of the cell into small compart-
ments by means of internal membranes. Each compartment contains its own
enzymes and their specialized molecules. Therefore, a membrane structure has
been identified as the main characteristic of every P system that is defined as
a hierarchical arrangement of different membranes embedded in a unique main
membrane that identify several distinct regions inside the system. Each region
gets assigned a finite multiset of objects and a finite set of rules either modifying
the objects or moving them from a place to another one. The structure of a P
system is usually represented as a tree describing the hierarchical architecture
based on membranes.

510 Bernardini F., Gheorghe M.: Population P Systems

A natural generalization of the P system model can be obtained by consider-
ing P systems where the structure of the system is defined as an arbitrary graph.
Each node in the graph represents a membrane, which gets assigned a multiset of
objects and a set of rules for modifying these objects and communicating them
alongside the edges of the graph [Paun 2002]. These networks of communicating
membranes are also known as tissue P systems because, from a biological point
view, they can be interpreted as an abstract model of multicellular organisms. In
such organisms, cells are specialized members of a multicellular community. They
collaborate with each other to form a multitude of different tissues, arranged
into organs performing various functions [Alberts et al. 2002]. This model may
be also regarded as an abstraction of a population of bio-entities aggregated
together in a more complex bio-unit. In this respect the model addresses not
only the cellular and tissue levels, but also the case of various colonies of more
complex organisms like ants, bees etc. We have to use in this paper the notion of
population instead of tissue in order to cover both modelling aspects mentioned
above, although the tissue context will predominantly be used throughout the
paper. These populations of individuals are usually far from being stable; mech-
anisms enabling new individuals to be introduced, to update the links between
them or to remove some individuals play a fundamental role in the evolution of
a biological system as a population of interacting/cooperating components. By
starting from these observations, a framework to develop population P systems
has been recently proposed in [Bernardini and Gheorghe 2004a] as a class of tis-
sue P systems relying on cell division as a mechanism to modify the structure
of the underlying graph.

In this paper we present a variant of population P systems by considering a
model where the structure of the underlying graph is continuously modified after
each step of transformation-communication according to a specific set of bond
making rules, which are able to add/remove edges from the graph defining the
current structure of the system. A transformation-communication step mainly
consists in applying rules for modifying the objects and communicating them
from a cell to another one. In particular, communication rules are of the forms
considered in [Bernardini and Gheorghe 2004b], which are inspired by the gen-
eral mechanism of cell communication based on signals and receptors. As well
as this, cell division rules for duplicating the existing nodes in the graph, cell
differentiation rules for changing the type of the cells associated with the nodes
in the graph, and cell death rules for removing nodes from the graph can also be
applied in a transformation-communication step. Finally, another important fea-
ture of the model considered here is the notion of environment as a repository of
objects that are sent out from the cells. The objects in the environment can sub-
sequently re-enter the cells, and this provides a form of undirect communication
among the system’s cells.

Bernardini F., Gheorghe M.: Population P Systems 511

The power of population P systems is here investigated by considering sep-
arately the case when the stucture of the underlying graph cannot be modified
by any rule, the case when only the edges of the graph can be modified by using
a finite set of bond making rules, and the case when both the edges and the
nodes in the graph can be modified by allowing the cells to use cell division
rules, cell differentiation rules, and cell death rules. In the former case, the main
result obtained here shows the universality for completely unstructured P sys-
tems where cells can communicate only indirectly by means of the environment
without never forming any bond. Next, when bond making rules are considered,
population P systems are proved to be computationally complete even when
simple communication rules where objects can be moved from a cell to another
one without any restriction are considered. Finally, we provide an universality
result for population P systems that use only the operation of cell differentia-
tion and an universality results for population P systems that use cell division
in combination with bond making rules.

2 Preliminaries

We recall here some basic notions and notation commonly used in membrane
computing and the few notions of formal language theory we need in the rest of
the paper. We refer to [Pdun 2002], [Rozenberg and Salomaa 1997] for further
details.

An alphabet is a finite non-empty set of abstract symbols. Given an alpha-
bet V', we denote by V* the set of all possible strings over V', including the empty
string A. The length of a string € V* is denoted by |z| and, for each a € V,
|z|, denotes the number of occurrences of the symbol a in z. A multiset over V'
is a mapping M : V —» N such that, M (a) defines the multiplicity of a in the
multiset M (N denotes the set of natural numbers). Such a multiset can be rep-
resented by a string aiw(al) ag/j((m e anM(a") € V* and by all its permutations
with a; € V, M(a;) # 0,1 < j <n. In other words, we can say that each string
x € V* identifies a finite multiset over V defined by M, = {(a,|z|,)|a € V }.
Moreover, given two strings z,y € V*, we denote by zy their catenation, which
corresponds to the union of the multiset represented by string z and the multiset
represented by string y.

In the following proofs we will use the notion of counter machines in the form
considered in [Bernardini and Paun 2004], [Frisco and Hoogeboom 2003]. Infor-
mally, a counter machine is a finite state machine that has a finite number of
counters able to store values represented by natural numbers; the machine runs
a program consisting of instructions which can increase or decrease by one the
contents of registers, changing at the same time the state of the machine; starting
with each counter empty, the machine performs a computation; if it reaches a ter-
minal state, then the number stored in a specified counter is said to be generated

512 Bernardini F., Gheorghe M.: Population P Systems

during this computation. It is known that counter machines (of various types) are
computationally universal in the sense that they can generate the whole family
of Turing computable sets of natural numbers [Hopcroft and Ulmann 1979).

Definition 1. A counter machine is a construct
M = (Q, F,po, A, cout, 1),

where:

1. @ is the set of states,

2. F C @ is the set of final states,

3. po € @ is the initial state,

4. A is the set of counters,

5. Ccout € A is the output counter,

6. I is a finite set of instructions of the following forms:

(a) (p = q,+c), with p,q € @, ¢ € A: add 1 to the value of the counter ¢
and move from state p into state g;

(b) (p— q,—c), with p,q € Q, ¢ € A: if the current value of the counter ¢ is
not zero, then subtract 1 from the value of the counter ¢ and move from
state p into state ¢; otherwise the computation is blocked in state p;

(c) (p— q,c=0), with p,q € @, c € A: if the current value of the counter ¢
is zero, then move from state p into state ¢; otherwise the computation
is blocked in state p.

(d) (p— q,¢€), with p, ¢ € Q: move from state p into state ¢ without changing
the value of any counter.

A transition step in such a counter machine consists in updating/checking the
value of a counter according to an instruction of one of the types presented
above and moving from a state to another one. Starting with the number zero
stored in each counter, we say that the counter machine computes the value n if
and only if, starting from the initial state, the system reaches a final state after
a finite sequence of transitions, with n being the value of the output counter
Cout at that moment. Without loss of generality, we may assume that in the
end of the computation the machine makes zero all the counters but the output
counter as well as that there are no transitions that start from a final state. As
we have mentioned above, such counter machines when equipped with at least
three counters are computationally equivalent to Turing machines, and we will

Bernardini F., Gheorghe M.: Population P Systems 513

make below an essential use of this result. In this respect, we denote by NRFE the
family of recursively enumerable sets of natural numbers that can be computed
by Turing machines or counter machines.

As well as this, we need the notion of extended tabled OL system (ETOL
system), which is a construct G = (V,T,w, Py,..., Pp), m > 1, where V is an
alphabet, T C V, w € V* and P;, 1 < i < m, are finite sets of rules (tables)
of context-free rules over V of the form a — z. In a derivation step, all the
symbols present in the current sentential form are rewritten using one table.
The language generated by G, denoted by L(G), consists of all the strings over
T which can be generated in this way by starting from w. An ETOL system
with only one table is called an EOL system. We denote by FOL and ETOL
the families of languages generated by EOL systems and ETOL systems, respec-
tively. Furthermore, we denote by NEOL and NETOL the families of length
sets associated with languages in ET0L and EOL, respectively. It is known from
[Rozenberg and Salomaa 1980] that NCF C NEOL C NETOL C NCS, with
NCF the family of length sets of context-free languages, and NCS the fam-
ily of length sets of context-sensitive languages. Moreover, according to Theo-
rem 1.3 in [Rozenberg and Salomaa 1980], for each language L € ETOL there
is an ETOL system that generates L, that contains only two tables, that is,
G = (V,T,w, P, P,), and where, after having used P;, we can use any of P; and
P, but, after having used P, we always use P;.

Finally, we recall here the notion of P systems with catalysts from [P&dun 2002].

Definition 2. A P system with catalysts is a construct
I =V,Cuw,ws,...,wn,R1,Ray...,Rm,i0),
where:
1. V is a finite set of symbols called objects;
2. C CV is a finite set of objects called catalysts;

3. 1 is a membrane structure consisting of m membranes, with the membranes
(and hence the regions) injectively labeled by 1,2,...,m;

4. for each 1 < i < n, R; is a finite set of evolution rules that is associated with
region i in u; an evolution rule is either of the form a — v, or of the form
ca—cv,witheceC,ae (V-0C),ve ((V—C)x {here,out,in})*;

5.1, € {1,2,..,m} is the label of an elementary membrane that identifies the
output membrane.

The basic feature of a P system with catalysts is the membrane structure p that
has to be considered as a hierarchical arrangement of m distinct membranes em-
bedded in a unique main membrane called the skin membrane. This membrane

514 Bernardini F., Gheorghe M.: Population P Systems

structure is usually represented as a string of pairs of matching square brackets,
which are labeled in an one-to-one manner by 1,2,...,m. Each pair of square
brackets represents a membrane (membrane i) with its corresponding region
(the region delimited by membrane 4, or region ¢). Moreover, this representation
makes possible to point out the relationships of inclusions among membranes
and regions: we say a region i contains a membrane j if and only if the pair of
square brackets labeled by i embraces the pair of square brackets labeled by j.

Then, each region i gets assigned a finite multiset of objects w;, which defines
the initial content of the membrane 4, and a finite set of evolution rules R;. An
evolution rule in R; is either of the form a — wv, or of the form ca — cv
(catalytic rules). In the former case, the rule specifies that, inside region ¢, an
object a can be consumed in order to produce a new multiset v. A catalytic rule
instead specifies that, inside region 4, an object a can be consumed in order to
produce a new multiset v only in the presence of an occurrence of the catalyst c.
A particular occurrence of a catalyst can be used only by one catalytic rule at a
time, and catalysts are never modified by any rule in R;. However, an evolution
rule in R; always produces a new multiset v that contains pairs of the form (b, ¢),
with b € (V —C) an object that is not a catalyst, and t € {here,in, out} a target
indication that specifies where the object b has to be moved. Specifically, here
means the object b has to stay in the region where the rule is applied, out means
that the object b has to exit from the region where the rule is applied, and in
means the object b has to enter one of the membranes contained in the region
where the rule is applied; that membrane is non-deterministically chosen.

As usual, by starting from the initial configuration, a computation is obtained
by applying to the objects contained in the various regions the corresponding set
of rules in a maximally parallel manner. A computation is said to be successful
if it reaches a configuration where no more rules can be applied to the objects in
the system. The result of successful computation is given by the natural number
obtained by counting the objects that are present in the output region i, in
the final configuration. The set of natural numbers generated in this way by all
the successful computations occurring in a P system IT is denoted by N (IT).
Moreover, we denote by NOP,,(Cat,), with n,m > 0, the family of sets of
natural numbers generated by P systems with at most m membranes and that
use at most n different catalysts.

The main result concerning the power of P systems with catalysts is the
following one [Freund et al. 2003].

Theorem 3. NOP»(Cat;) = NRE.

This means P systems with at most 2 membranes that use at most 2 different
catalysts are computationally complete in the sense that they are able to generate
the whole family of sets of natural numbers generated by Turing machines or
counter machines.

Bernardini F., Gheorghe M.: Population P Systems 515

A particular class of P systems is represented by the class of P systems with
no catalysts where all the rules are of the form a — v. These systems are also
called non-cooperative P systems and the families of sets of natural numbers
generated by non-cooperative P systems are usually denoted by NOP,, (nCoo),
with m > 0. In this case, the main result from [Paun 2002] concerning the power
of non-cooperative P systems is:

Theorem 4. NOP,.(nCoo) = NOP;(nCoo) = NCF.

The proof of this result can be found in Therefore, in the case of non-cooperative
P systems, the hierarchy on the number of membranes collapses at level one
and systems of this form are able to generate only length sets of context-free
languages.

3 Population P Systems

We introduce here a notion of population P systems as a finite collection of
different cells that are able of forming/removing bonds according to a finite set
of bond handling rules.

Definition 5. A population P system is a construct
P = (V’77a7w€7017027 N ,Cn,CO),
where:

1. V is a finite alphabet of symbols called objects;

2. v=({1,2,...,n},E), with E C {{i,j}|1 <i# j <n},is a finite undi-
rected graph;

3. « is a finite set of bond making rules (i,z1;x2,J), with z1,22 € V*, and
1<i#j<mn;

4. w, € V* is a finite multiset of objects initially assigned to the environment;

5. C; = (wi,Si,Ri), for each 1 < i < n, with:

(a) w; € V* a finite multiset of objects,

(b) S; is a finite set of communication rules; each rule has one of the following
forms: (a;b,in), (a;b, enter), (b,exit), for a € VU{A}, beV,

(c) R; is a finite set of transformation rules of the form a — y, for a € V,
andy € VT;

6. ¢, is the (label of the) output cell, 1 < ¢, <n.

516 Bernardini F., Gheorghe M.: Population P Systems

A population P system P is defined as a collection of n cells where each cell C;
corresponds in an one-to-one manner to a node i in a finite undirected graph =,
which defines the initial structure of the system. Cells are allowed to communi-
cate alongside the edges of the graph -, which are unordered pairs of the form
{i,j}, with 1 <i # j < n. The cells C;, 1 < i < n, are associated in a one-to-one
manner with the set of nodes {1,2,...,n}. For this reason, each cell C; will be
subsequently identified by its label 7 from the aforementioned set.

Then, each cell C; gets assigned a finite multiset of objects w;, a finite set of
communication rules S;, and a finite set of transformation rules R;.

Each set R; contains rules of the form z — y that allow cell i to consume a
multiset x in order to produce a new multiset y inside cell .

Communication rules in S; of the form (a;b,in) are instead used by cell i to
receive objects from its neighbouring cells. In fact, a rule (a;b,in) in S; means
that, in the presence of an object a inside the cell ¢, an object b can be moved
from a cell j non-deterministically chosen to the cell 7, given that {i,j} € A. In
particular rules of the form (); a,in) allow a cell to receive an object b from any
of the cells linked to cell i at any moment without any restriction. Moreover, for
each cell 4, rules of the form (a, exit) are also considered in S;; these rules allow
the cell i to release an object a in the environment. Objects from the environment
can enter the cell ¢ by means of rules of the forms (a; b, enter) (i.e., an object b
in the environment can enter cell ¢ only in the presence of another object a), and
(X\; b, enter) (i.e., at any time an object b can enter cell i without any specific
restriction). The objects that are currently associated with the environment are
kept in a distinct multiset that is initially defined by w,.

Cell capability of moving objects alongside the edges of the graph is then
influenced by particular bond making rules in a that allow cells to form new
bonds. In fact, a bond making rule (i, z1; 22, j) specifies that, in the presence of
a multiset z; in the cell 7 and a multiset 5 inside the cell 7, a new bond can be
created between these two cells. This means a new edge {i,j} can be added to
the graph that currently defines the structure of the system.

Therefore, a population P system is basically defined as a tissue P system
in the form introduced in [Bernardini and Gheorghe 2004b] with the important
difference that now the underlying structure of the system can be changed by
using a specific set of bond making rules. As well as this, cells in a population P
system are also allowed to communicate indirectly by means of the environment.

As the reader can easily notice, there are several similarities and differences
between our systems and the so-called evolution-communication P systems intro-
duced in [Cavaliere 2002]: evolution-communication P systems also use separate
rules for multiset rewriting and object communication, but the latter rules are
usual symport/antiport rules, the framework is that of cell-like P systems, and
the membrane structure is rigid.

Bernardini F., Gheorghe M.: Population P Systems 517

A step of a computation in a population P system P is defined as being
performed in two separate stages: the content of the cells is firstly modified by
applying the communication rules in S;, and the transformation rules in R;, for
all 1 <4 < n; the structure of the system is then modified by using the bond
making rules in «. Specifically, a configuration of a population P system P at
any time is given by a tuple X such that:

_ i ! ! i
Y= <7aweaw17w27---7wn>a

with v = ({1,2,...,n}, E"), for E' C {{i,j}|1 <i # j < n} (the graph that
defines the current structure of the system P), w, € V* (the multiset of objects
that are currently associated with the environment) and, for all 1 < i < n,
w} € V* (the multiset of objects that defines the current content of cell ¢). Thus,
given three configurations X/, X" X' such that:

1 ! ! ! i !
D)) _<77weaw17w27---7wn>7
" o__ " " " " "
X _<’Y 7wevw17w25---7wn>7
"o__ " nr nr nr nr
X _<’Y 7weawlvw27"'awn>7

we write X' é'p X" and X" %p X" if and only if the following conditions
hold.

— 9" =4", and w/,w{,wy,...,w) are multisets of objects obtained by ap-
plying, in a non-deterministic maximal parallel manner, the communica-
tion rules in Sy, S2,...,Sy, and the transformation rules in Ry, Ry, ..., Ry,
to the multisets wl, w},w}, ..., wh; ép is meant to be a transformation-
communication relationship.

mn __
e

"o
= w,, W;

—w " =wl, for all 1 <4 < n,and +" is obtained by removing all
the edges from "' and adding an edge {i,j}, for each 1 < i # j < n such
that there exists a bond making rule (i,z1;22,j) € «, with x; a multiset
that is contained in w}', and 2 a multiset that is contained in w; b:%p is

meant to be a bond making relationship.

In this way, by combining the relations t:Cp, b=m>7>, we say the population P
systems P is able to transit from a configuration X' to a configuration X"’ in a
single step of a computation, and we write X/ —>p X",

A successful computation in P is then defined as a finite sequence of transi-
tions of the form

Yo=p X1 =p...=p Y1 =p X,

where k£ > 1, Y is the initial configuration of the system P as specified in
Definition 5, and X} is a final configuration such that there does not exist any

518 Bernardini F., Gheorghe M.: Population P Systems

configuration X' # Xy, with Xy, %p X', In other words, a successful compu-
tation is a computation that halts in a configuration where, after a last bond
making stage, the content of the cells cannot be modified anymore by means of
some communication or transformation rules. The result of a successful compu-
tation is given by the number of objects that are placed inside the output cell
¢, in the final configuration. The set of natural numbers that are generated in
this way by all the successful computations in P is denoted by N (IT).

The generative capacity of population P systems is investigated in the next
two subsections by considering separately the case when the feature of bond
making is not considered and the case when it is. To this aim, we introduce the
families of sets of natural numbers NOPP,, r(c,b), withn >k > 1, c € {nR, R},
and b € {na,a; | t > 0}, which are generated by population P systems where:

— the number of cells in the system is less than or equal to n;

— in each step of a computation, the number of cells in each connected com-
ponent of the graph defining the structure of the system is always less than
or equal to k; a connected component of a graph is any subset of nodes
such that, given any two nodes in that subset, there always exists a path
that connects them, and there does not exists any path from these nodes to
nodes that are not in that subset;

— ¢ = nR specifies that all the communication rules that are associated with
the cells in the system are of the form (A;b,in), (A; b, enter), (b, exit);

— ¢ = R specifies that communication rules of any form are allowed to be used
inside the cells;

— b = na specifies that bond making rules are not considered and the structure
of system is given by the initial graph, which is never modified during a
computation;

— b = «ay, for some t > 0, specifies that all the bond making rules in the system
are of the form (i,z1;x2,7), with |z1| < t and |z2| < t; as well as this, we
say that a bond making rule (i,x;x2,) is of size h = max{|z1|, |z2|}

Finally, if the value of n, k, or ¢ is not specified, then it is replaced by the
symbol *.

3.1 The Power of Evolution-Communication

Here we present some results concerning the power of population P systems
as evolution-communication P systems where the underlying structure is never
modified during a computation.

Bernardini F., Gheorghe M.: Population P Systems 519

In the case of simple communication rules of the forms (A; b, in), (\; b, enter),
(b, exit), the hierarchy on the number of membranes collapses at level one. More-
over, the corresponding family of sets of natural numbers coincides with the
family of length sets of context-free languages (i.e., the family of semilinear sets
of numbers).

Lemma6. NOPP, .(nR,na) = NOPP, ;(nR,na) = NCF.

Proof. The proof can be derived in a straightforward manner from the proof of
Theorem 4 that concerns the power of non-cooperative P systems. In fact, let P
be a population P system such that:

P = (V,’)/,U}e, (whSlaRl)a (w27527R2)7 teey ('U)n,Sn,Rn),CO),

with n > 1, and all the symbols as in Definition 5. For each 1 < i < n, we define
the set T; that contains all the symbols a € V' such that:

— there does not exist any rule a = y € R;, and there does not exist any rule
(X\; a, exit) € S;;

— for all edges in v of the form {7, j}, with 1 <i # j < n, there does not exist
any rule (X;a,in) € S;.

Thus, for each 1 < i < n, the set T; contains all the symbols that cannot be
used in any rule once introduced in cell ¢. In a similar way, we define the set T,
that contains all the symbols a € V' such that, for all 1 <4 < n, there does not
exist any rule (}\;a,enter) € R;.

Next, let T be a new symbol that is not in V. For each 1 <14 < n, we define
the homomorphism h; such that: h;(a) = a;, if a € (V =T;), hi(a) =1, if i # ¢,
and a € T;, hi(a) = a, if i = ¢, and a € T,,. As well as this, we define the
homomorphism h, such that: he(a) = a., if a € (V —T¢), he(a) =1, if a € T,.

Now, we can construct a population P systems P’ that is able to simulate
the behaviour of P such that

Pl = (Vla')/a >\7 (wlla S{v Rll)a CO),
where:

V={ailae (V- (T.UThUTU...UTy,)),1<i<n}UT, U{t},
v =({1}0),
w) = he(we)hi (wy)ha(ws) .. . hy(wy),
Sp = {(f, ezit)},
Ri={a;—> hiy)|la—>yeR;,1<i<n}
U {a; = he(a)]|(a,exit) € S;,1 <i<n}

520 Bernardini F., Gheorghe M.: Population P Systems

U {ac— hi(a)|(\;a,in) € S;,1<i<n}
U {a; = hj(a)|(A\;a,in) € S;,1 <i# j<m,
there exists an edge {i,j} in v},

c, = 1.

Now, with this construction, it is easy to see that N(P') = N(P). Moreover,
it appears clearly that the population P systems P’ is equivalent to a basic
P system with one membrane that uses non-cooperative rules. On the other
hand, it is obvious that any basic P system with one membrane that uses non-
cooperative rules can be simulated by a population P system with one cell. This
means the same result stated in Theorem 4 holds for population P systems with
one cell that use restricted communication rules. O

The next result instead shows that, when communication rules of any form are
allowed to be used inside the cells, population P systems are computationally
complete and the hierarchy on the number of cells collapses at level two.

Theorem 7. NOPP; »(R,na) = NRE.

The proof of this result can be found in [Bernardini and Gheorghe 2004b]. How-
ever, in the context of population P systems where there are no bonds among the
cells, which are therefore limited to communicate by means of the environment
only, the problem of establishing the power of these systems is not obvious. This
means considering systems where the number of cells in a connected component,
of the graph is always one. In order to answer this problem, we show that these
particular unstructured population P systems are enough powerful to simulate
P systems with catalysts.

Theorem 8. NOP.(Cat,) C NOPP,121(R,na), for all n > 0.

Proof. This result states that the number of cells that are necessary to simulate
a P system with catalysts does not depend on the number of membranes but it
depends only on the number of different catalysts that are considered. There-
fore, for the sake of simplicity, we just consider the case of P systems with two
membranes that use two different catalysts. It is then left to the reader the task
of generalising the present construction to the case of an arbitrary number of
membranes and an arbitrary number of catalysts.
Let IT be a P system with catalysts as specified in Definition 2 such that

=W, {d, "} il2]2]1,wi,wa, R, Ry, 2),

with {¢/, "} C V. For each 1 < i < 2, we define the set T; that contains all the
symbols a € (V — {c,¢"}) such that there does not exist any rule a — v € R;,
or any rule ca — cv € R;, with ¢ € {¢/,¢"}. This means, for each 1 < i <2, the

Bernardini F., Gheorghe M.: Population P Systems 521

set T; contains the objects that cannot evolve anymore once introduced into the
region delimited by membrane ¢.
Next, we consider the set of symbols

N ={ai,a; [ae (V- ({c,"}UT1 UTy)),i € {1,2}} U {f},
and we introduce the following homomorphisms:

— hy1: V. — NU{A}, with hi(a) = a1, ifa € (V- ({c,"}UTL)), hi(a) = A,
ifa €Ty, and hi(c) = N\, if c€ {c,c"};

- h2 :V — NU T2 U {A}, with h2((1) = a3, ifa € (V - ({CI,C”} U Tz)),
ha(a) = a, if a € Ty, and ha(c) = A, if c € {¢,"};

— g1V —{c|} U{A}, with gi(a) =\, if a # ¢, and ¢{ () = ¢};
— g5V — {ch} U{A}, with gh(a) = A, if a # ¢/, and g5(c') = ¢b;
— gV —{c|} U{A}, with g{(a) = A, if a # ", and ¢} (') = ¢};
— g4V — {cb} U{A}, with ¢f(a) = A, if a # ", and ¢5(c") = cf;

—t1: (V={d,d"}) x {here,in,out}) —» N, with

o t1((a,here)) = t,if a € T},

o t1((a,here)) = d}, ifa € (V — ({¢', "} UTY)),
e ti1((a,out)) =1,

o t1((a,in)) = a,if a € Ty,

e t1((a,in)) =dl, ifa € (V- ({c, "} UTy));

— ta: (V= A{c,"}) x {here,out}) — N UT>, with
o t5((a,here)) = a, if a € Ty,
e ty((a,here)) =ah, ifa e (V- ({d,d"}UTy)),
o ty((a,out)) =1, if a € Ty,
e t3((a,out)) =aj,ifae (V- ({d,d"UTY)).

At this point, we can construct a population P system P that is able to simulate
the P system II such that

P = (VI7’Y7’LU€70170270370474)7

522 Bernardini F., Gheorghe M.: Population P Systems

where:

VI=NUTyU{c],ch, e b},
v=({1,2,3,4},0),

we = hy(wy)he(ws),

C1 = (g1 (w1)g5(w2), S1, Ry),

Sy = {(c}; a;,enter) | c'a — c'v € R;,i € {1,2}}
U {(a},exit) Jae (V — ({c,"}UTH UTy)),i € {1,2}}
U {(a,exit) |a € T } U {(1, exit)},

R ={a; = ti(v)|ca— c'v e R;i € {1,2}},

C2 = (g1 (w1)g5 (w2), S2, Ry),

Sy = {(c!;a;,enter)| c"a — v € Ry,i € {1,2}}
U {(a},exit) |lae (V — ({,"}UTL UTy)),i € {1,2}}
U {(a,exit) |a € T> } U{({, exit)},

Ry ={a; = t;(v)|c"a— "v e Ry, i € {1,2}},

Cs; = {\, S3,R3}

S3 = {(A; a4, enter)|a — v € R;,i € {1,2}}
U {(a},exit) |ae (V — ({c,"}UTLH UTy)),i € {1,2}}
U {(a,exit) |a € To } U {(1, exit)},

Ry ={a; = t;(v)]a—v e R;ie{1,2}},

Cy = {\, S4, Ry}

Sy ={(\;al,enter)lae (V- ({c,"}UTLUTR)),i € {1,2}},
U {(as,exit) Jae (V — ({c,"}UTy UTy)),i € {1,2}}
U {(A;a,enter)|a € Ty },

Ry={a, = a;lac(V-({d,'}UTLUTy)),i e {1,2}}.

The simulation of the P system IT by means of the population P system P is
done in the following way.

Initially, the environment gets assigned the multiset of objects hy (w;)ha(w2),
which contains: an object a;, with i € {1,2}, for each object a € (V — {c',c"})
that is assigned to region ¢ in the P system IT and that can evolve by means of
some rule in R;; an object a for each object a € (V —{c/,¢"'}) that is assigned to
region 2 (the output one) in the P system II and that cannot evolve by means
of any rule in R». These latter objects are immediately moved into cell 4 (the
output one) during the first step of any computation in P where they remain as
part of the result of the computation in 7. Moreover, for each occurrence of the
catalyst ¢’ that is present inside region i, with i € {1,2}, cell 1 gets assigned an

Bernardini F., Gheorghe M.: Population P Systems 523

occurrence of the object ¢}; for each occurrence of the catalyst ¢ that is present
inside region i, with i € {1,2}, cell 2 gets assigned an occurrence of the object
cf. In this ways, cell 1 and cell 2 are respectively used to simulate the activity
of catalyst ¢', and catalyst .

Specifically, for each i € {1,2}, a rule c’'a — ¢'v € R; is simulated in two
steps of computations by first using the rule (¢}; a;, enter) from S; and then the
rule a; — t;(v) from Rf. For each i € {1,2}, arule ¢'a — ¢'v € R; is simulated
in two steps of computations by first using the rule (¢}';a;, enter) from S, and
then the rule a; — ¢;(v) from R, . For each i € {1,2}, arule a — v € R; is
simulated in two steps of computations by first using the rule (); a;, enter) from
S3 and then the rule a; — t;(v) from Rj. In this process, the homomorphism
t;, with i € {1,2}, is responsible for assigning to each object produced by a
transformation rule the label of the region where the object has to be moved
according to the target specified in the corresponding rule in R;. Furthermore,
each object a € T7 that has to be assigned to region 1 is replaced by the object
; each object a € T, that has to be assigned to region 2 is replaced by an object
a.

As usual, all these operations are performed in a non-deterministic maximally
parallel manner by simulating in this way a step of computation in IT by means of
two steps of computation in P. Thus, after having applied some transformation
rules in cell 1, cell 2, and in cell 3, these cells always contain some objects of
the form a}, with a € (V — {c,"}), i € {1,2}, some objects a € T, and some
occurrences of the object . All these objects, once produced inside cell 1, cell
2, and cell 3, are immediately released into the environment and then, except
for the objects T, they reach cell 4. Each object a € T remains in cell 4 as part
of the result of the computation in P whereas each object of the form a}, with
ae (V—-{d,c"}),ie€{1,2},is replaced by the corresponding object a;, which
is eventually released into the environment. In this way, the computation in P
can continue by simulating another step of a computation in I7 and so on up
until no more rules can be applied to the objects placed inside the cells.

Therefore, the population P system P correctly simulates the P system IT
by generating a set of natural numbers N (P) such that N(P) = N(II). O

Thus, as an immediate consequence of Theorem 3 and Theorem 8, we obtain the
following universality result.

Corollary 9. NOPP,;(R,na) = NRE.

Notice that, from a structural point of view, population P systems of the form
considered in Theorem 8 are equivalent to P systems (tissue P systems) with
a number of membranes placed at the same level (a number of cells) that are
embedded in an unique main membrane (that are connected to an unique distinct
cell), which turns to be the environment in population P systems. On the other

524 Bernardini F., Gheorghe M.: Population P Systems

hand, from a functional point of view, the environment in population P systems
is restricted to act as a simple buffer used by the cells to exchange objects.

3.2 The Power of Bond Making

In this section we investigate the power of population P systems where bond
making rules are used and where restricted communication rules of the forms
(X\;b,in), (A; b, enter), (b, exit) are considered. This is to show that bond making
rules really increase the power of P systems.

Lemma10. (i) NOPP, .(nR,ap) = NOPP, ;(nR,na) = NCF, and
(ii) NETOL C NOPP»2(nR,).

Proof. (i) Consider a population P system P with N(P) € NOPP, .(nR,ap).
This means all the bond making rules in P are of the form (i, A; A, j) and the
bond making process does not depend on the content of the cells. Thus, as the
population of cells is fixed, the structure of the system P will become completely
known after the first step of any computation. In other words, after the first step
of any computation, the population P system P will behave as a population P
system that does not use any bond making rule. Therefore, by straightforwardly
adapting the construction used in Lemma 6, we can easily construct a population
P system with one cell and without bond making rules that is able to simulate
the P system P.

(ii) As pointed out in Section 2, for every language L € ETOL there exists
an extended tabled OL system G with only two tables that generates L, that is,
G = (V,T,w, P;, P»). Moreover, after having used the table P;, we can use both
P, and P, but, after having used the table P, we always use the table P;. The
table used in the first step of a computation is P;. Thus, in order to simulate
the L system GG, we construct the following population P system

P = (VI,')/,Oé,’LUe, Cla 027 037 0454);
where:

V'={a,a' | a € V}U{p1,pi,p2, 05, f},

v=({1,2,3,4},0),
a={3,pi;A,1),(3,p2;7,2), (3, f3 X, 4), (1,p15 A, 3), (2, P53 A, 3)
Wwe = A,

Cy = (\,S1,Ry),

S1={(\d,in)la eV IU{(\;p1,in)},
Ry ={d —wv|ja—>veP }U{p =},

Bernardini F., Gheorghe M.: Population P Systems 525

C2 = (A, Sz, Ra),

Se ={(\;d,in) |a € VU {(A;p2,in)},

Ry={d =wvla—>veP}U{p —ph},

Cs = (wph, S3, Rs),

Ss = {(Asa,in) |a € VYU{(X;p),in), (\;ph,in)},

Ry ={a—dlaeV}U{p, = p1,p| = p2,05 = p1,01 = f,ps = f},
Cy = (), S4, Ra),

Sy ={(\;ad,in)|aeV},

Ry={d —dlac(V-T)}.

The population P system P simulates the L system G in the following way.

The axiom w is initially placed inside cell 3 together with the object p. The
use of the table P; is then simulated by applying the rule p), — p; from Rj,
and a rule a — a' from R3, for each symbol a € V' contained in cell 3. Now, the
presence of the object p; makes possible to form a bond between cell 3 and cell
1, which allows all the object o', with a € V', to be moved from cell 3 into cell 1
together with the object p;. In cell 1, the simulation of the table P; is completed
by applying in a maximal parallel manner all the rules ' — v from R;, with
a — v arule in P;. As well as this, we apply the rule p; — p). Next, a bond
between cell 1 and cell 3 is created, which allows all the objects a € V in cell 1
to get back to cell 3 together with the object p}. At this point, the simulation of
the L system can continue by applying either the rule p{ — p; from Rj3 (i.e., we
want to use the table Py), or the rule pj — ps from Rj3 (i.e., we want to use the
table P»). The use of the table P is simulated in a very similar way by using
cell 2 instead of cell 1. In particular, when the simulation of P; is finished, an
object ph is produced inside cell 3 in order to specify that, after having used P,
we have to use the table P;.

At any time, we can stop simulating tables in G by applying either the rule
p} — f from Rs, or the rule p) — f from R3 depending on the table that has
been used in the previous step of computation. Anyway, in the presence of an
object f, a bond between cell 3 and cell 4 (the output one) is created, which
allows all the objects a’ placed inside cell 3 to be moved from cell 3 into cell
4. Now, the computation can halt if and only if cell 4 does not contain any
non-terminal object. This is because of the presence of a rule a’ — o', for each
ac(V-T).

In conclusion, the population P system P correctly simulates the L system
G. O

Therefore, population P systems that use bond making rules are able to
generate (at least) the whole family of length sets of extended tabled OL systems.
This means they are able to generate non-semilinear sets of natural numbers,

526 Bernardini F., Gheorghe M.: Population P Systems

and such sets are not in the family of length sets of context-free languages. Next,
we provide an universality result for population P systems that use bond making
rules of size two by showing they are able to simulate counter machines. On the
other hand, finding an upper bound for the power of population P systems with
bond making rules of size at most one remains an open problem.

Theorem 11. NOPPs2(nR,as) = NRE.

Proof. Let M = (Q, F, po,{a1,a2,a3},as, I) be a three counter machine as spec-
ified in Definition 1.

In order to simulate the counter machine M, we construct a population P
system P such that

P= (V777a7w870170270370470570673)7
where:

V={¢,qd,q"lqeq}U{a,alac A}y U{dsy,d, , €aq e, lac€AqgeQ}
U{dj,e;j|1<j<5}U{de, f,# #1},
v=({1,2,3,4,5,6},0),
a={(4,ds; q;0;,1) |1 <i<3,g€ Q}U{(4,aa;\,5),(4,a;d5,6)|a € A}
U {(4, e, 430i1), (4, g, 43€5,6) [1 <i < 3,0 € QIU{(6, f; A, 5)},
We = A,
Ci = (M A{(X a4, enter), (X ey, ,,in)}, {eq, , = #,# = #1),
for each 1 <4 < 3,
Cy = (#, 54, Ra),
Sy = {(a, exit), (X; a,in), (X; dq.q, enter), (X; eq,q, enter) |a € A,q € Q },
Ry={dsy > d, ;€09 — € a—>ala€AqgeQ},

a,q’ a,q’
Cs = (X, S5, Rs),
Ss = {(/\a #7in)7 ()‘) #hin)a (/\a fa Zn)}a

Rs = {# — #},

Cs = (po #1,Se, Re),

Ss = {(a, exit), (a, exit), (X;a,in), (da,q, exit), (\; d,, ,,in) |a € A,q € Q}
U {(eq,q, exit), (s e;, ,,in) |a € A,q € Q } U{(ds, exit), (es, exit)},

R ={p—q"al(p—q,+a) e[} U{p— dday|(p— ¢ —a) €I}
U{p—=qlp—q,e) eItU{p—oeesq|(p—qa=0)€el}
U{d"—=d.d —qlaeQIU{g— flaeF}
U{d,, = a.en, > ala€AqeQ}
U{d; = dji1,ej > ejp1|1<j<4}u{d—di,e >ei,#1 = #1}

Bernardini F., Gheorghe M.: Population P Systems 527

Now, after some steps of computation, we can suppose the population P system
P to have reached a configuration of the form:

<({17 273747 57 6}7 w)aw‘hwlaw27w3aw47w57w6>’ (1)

with wy € V*, a multiset of objects that are in the environment and that cannot
enter the cells anymore, w; € {a;}*, for each 1 < i < 3, |w;| the current value
of the counter a; € A, wy = #,ws = X\, wg = p#1, and p € @, the current state
of the counter machine M. Initially, we have wy = A, wi = A, wa = A, w3 = A,
and p = py. Thus, by starting from a configuration like (1), the simulation of
the instructions in I is done in the following way.

Simulation of an instruction (p — ¢q,+a) € I. In cell 6, we apply the rule
p — ¢"a, which produces an object ¢, with ¢ €), and an object a € A. In two
further steps of computation, the object a reaches the cell i such that a = a;,
1 < < 3, by passing through the environment. At the same time, the new state
q is produced inside cell 6 by applying in sequence the rules ¢ — ¢, ¢ — ¢
from Rg. In this way, we add 1 to the current value of the counter a; and we
move the machine from state p to state gq.

Simulation of an instruction (p — q,¢) € I. We just apply the rule p — ¢
from Rg in order to produce the new state ¢ inside cell 6.

Simulation of an instruction (p — q,—a) € I. In cell 6, we apply the rule
p — dd,, 4, which produces an object d and an object d, 4, with a € 4, ¢ € Q.
In two further steps of computation, the object d, 4 reaches cell 4 by passing
through the environment. At the same time, the object ds» is produced inside
cell 6. In cell 4, the object d, 4 is used to check whether the cell ¢ such that
a = a;, 1 <14 < 3, contains some objects a; or not (i.e., to check whether the
current value of the counter a; is greater than or equal to 1 or not). In the
former case, a bond between cell 4 and cell i can be created by using the rule
(4,dq; 45 a4,7) from «, and the simulation of the current instruction can continue;
in the other case, this bond cannot be created and the simulation of the current
instruction will stop after having produced the object ds inside cell 6. Never-
theless, the computation in P will not halt because of the rule #; — #i in
Re.

Thus, after having produced a bond between cell 4 and cell i, the whole
content of cell i is moved from cell i to cell 4 by applying in a maximally parallel
manner the rule (A;a;,in) from Sy. At the same time, the object d» is replaced
by d3 inside cell 6 while the object d, 4 is replaced by dj, , inside cell 4. Now,
without loss of generality, we assume ¢ = 1 as the simulation proceeds exactly
in the same way irrespectively of the value of i.

528 Bernardini F., Gheorghe M.: Population P Systems

Next, the object ds is replaced by d4 in cell 6 while, for each object a; in
cell 4, we can use either a rule (a,exit) € Sy or a rule a; — @, € R4. This
means the system is able to reach a configuration of the form

(({17 27 3747 576}7 @)7“}’[wlla)‘aw2aw37wld;1,q#a /\7d4#1>7 (2)

with wi € {a1}*, w1 € {a1}*, and |wi| + |@1| = |w1|- Now, we show that the
simulation of the instruction (p — ¢, —a) € I can be successfully completed if
and only if |@w;| = 1 (i.e., we have subtracted 1 from the current value of the
counter ay). To this aim, we consider the following cases.

1. |w1| = 0. The simulation of the current instruction will stop after having pro-
duced d5 inside cell 6 and having returned wj in cell 1, but the computation
will not halt because of the rule #; — #; in Rg.

2. |w1| > 2. This means a bond between cell 4 and cell 5 is created by using
the bond making rule (4,a1a1;\,5) € a. Then, in the next step, the object
is moved from cell 4 to cell 5 where an infinite computation is generated
by means of the rule # — # € Rs.

3. |w1] = 1. No bonds between cell 4 and cell 5 can be created and the simu-
lation of the current instruction continues by producing the object d5 inside
cell 6 and by moving the multiset w] from the environment into cell 1. Next,
a bond is created between cell 4 and cell 6 by using the rule (4,a,;ds,6) € a,
which makes possible to move the objects d;hq, ay from cell 4 to cell 6. In

the meanwhile, the object d is released in the environment and it will not

be able to enter the cells anymore. Finally, in cell 6, the object dfth is used
to produce the new state ¢ while the object dy is removed from cell 6 by re-

leasing it in the environment. In this way, we obtain a configuration like (1)

where the multiset w- is replaced by a multiset w] such that |w]| = |wi|—1.

Simulation of an instruction (p — q,a = 0) € I. In cell 6, we apply the rule
P — eeq q, which produces an object e and an object e, 4, with a € A4, ¢ € Q.
In two further steps of computation, the object e, , reaches cell 4 by passing
through the environment. In cell 4, the object e, 4 is then replaced by eﬁLq. At
the same time, the object e3 is produced inside cell 6. Next, the object e], , is used
to check whether the cell ¢ such that a = a;, 1 < ¢ < 3, contains some objects a;
or not (i.e., to check whether the current value of the counter a; is greater than
or equal to 1 or not). In the former case, a bond between cell 4 and cell i can be
created by using the rule (4,e;, ;a;,i) from a, which makes possible to move
the object ef, , from cell 4 to cell i. As a consequence of this fact, an infinite com-
putation is generated because of the rules e’%q — #, # — # in R;. Otherwise,
if cell ¢ does not contain any object a; (i.e., the current value of the counter a;
is 0), the system is able to reach a configuration where cell 6 contains an object

Bernardini F., Gheorghe M.: Population P Systems 529

es and cell 4 still contains the object ela,q' At that point, a bond between cell 4
and cell 6 is created by using the bond making rule (4, ej,, ,;es,6), which allows
the object e’mq to be moved from cell 4 to cell 6 while the object e; is released
into the environment. Finally, in cell 6, the object e, , is replaced by the state ¢

and this completes the simulation of the instruction (p — q,a =0) € I.

At any moment, when a final state p € F' is produced inside cell 6, we have
to apply a rule p — f from Rg, which makes possible to form a bond between
cell 6 and cell 5. Thus, the object f can be moved from cell 6 to cell 5 together
with the object #1, and the computation halts by having correctly simulated a
sequence of instructions in M.

Therefore, as a consequence of the universality of three counter machines, we
obtain immediately the universality of population P systems with bond making
rules of size at most 2. O

4 Population P systems with Active Cells

The model of population P systems is now augmented with an operation of
cell division as a mechanism to introduce new cells in the system, and with an
operation of cell death as a mechanism to remove cells from the system. As well
as this, an operation of cell differentiation is considered that allows the types of
the cells to be changed by varying in this way the sets of rules that can be used
inside the cells.

Definition 12. A population P system with active cells is a construct
P=(V,K,vy,a,we,C1,Cs,...,Cp, R),
where:
1. V is a finite alphabet of symbols called objects;
2. K is a finite alphabet of symbols, which define different types for the cells;

3. vy=({1,2,...,n},E), with E C {{i,j}|1 <i#j <n}, is a finite undi-
rected graph;

4. o is a finite set of bond making rules (¢, z1;x2,p), with z1,22 € V*, and
t,p e K;

5. w, € V* is a finite multiset of objects initially assigned to the environment;

6. C; = (w;, t;), for each 1 < i < n, with w; € V* a finite multiset of objects,
and t; € K the type of cell ¢;

7. R is a finite set of rules of the forms:

530 Bernardini F., Gheorghe M.: Population P Systems

(a) (a;b,in)s, (a;b, enter), (b, exit)s, fora € VU{A},be V,t € K (commu-
nication rules that allows a cell to exchange with its neighbouring cells
or the environment according to the cell type and the existing bonds
among the cells; the meaning of these rules is exactly the same as the
meaning of communication rules considered in Definition 5),

(b) (a = y), foraeV,y e VT, te K (transformation rules: an object a
can be replaced by a non-empty multiset y inside a cell of type ¢),

() (a)r — (b)p, witha,b eV, t,p € K (cell differentiation rules: an object
a can be used inside a cell of type t to change the type of the cell from
t to p; as a consequence of this operation, the object a is replaced by an
object b),

(d) (a)e = (b)e(c)e, with a,b,c € V., t € K (cell division rules: an object a
can be used inside a cell of type ¢ to produce a new cell of type ¢, which
contains the same objects as the originating one except for the object
a that is replaced by c; the originating cell is retained with the same
content except for the object a that is replaced by b),

(e) (a) — T, with a, t € K (cell death rule: an object a can be used inside
a cell of type t to cause the removal of the cell from the system; as a
consequence of this operation, the objects contained in the dying cell are
removed from the system).

Now, with respect to Definition 5, a population P system with active cells P is
defined as a finite collection of n > 1 cells where each cell is characterized by
a multiset of objects defining its initial content and a symbol from a distinct
alphabet K, which defines the type of the cell. At any time, many different
cells of the same type can be present in the population system P. All these
cells evolve according to the rules in R, which allow them to exchange objects
with the environment or with their neighbouring cells (communication rules), to
modify the objects defining their content (transformation rules), to change the
type they have got assigned (cell differentiation rules), to divide by introducing
new cells in the system (cell division rules), and to be removed from the system
(cell death rule). In particular, for each cell that is present in the system, the set
of rules that can be used depends on the type the cell has got assigned. Moreover,
as in Definition 5, the structure of the system is given by a finite directed graph
where the nodes correspond in an one-to-one manner to the cells in the system
and the edges define the bonds that exist among these cells. Yet again, these
edges influence cell capability of achieving direct communication and they can
be modified by the bond making rules in a.

Bernardini F., Gheorghe M.: Population P Systems 531

A configuration of a population P system with active cells P at any time is
given by a tuple X such that:

E = (’Y”wle7ci7cé7"‘7c7l'l>7

with v = ({1,2,... ,n}, E'), for E' C {{i,j}|1 < i # j < n} (the graph that
defines the current structure of the system P), w, € V* (the multiset of objects
that are currently associated with the environment) and, for all 1 < i < n,
C! = (wi,t;), for w, € V* (the multiset of objects that defines the current
content of cell 7) , t; € K (the current type of cell 7). Then, in a similar way to
Section 3, we define a single step of a computation in P (denoted by =>p) as
being formed by two separate stages: a stage of transformation-communication
(denoted by é}p) and a stage of bond making (denoted by b=m>p)

During the stage of transformation-communication, rules of the forms (a), (b)
are applied to the objects contained in the cells in a non-deterministic maximally
parallel manner but with the restriction that at most one rule of the form (c), (d),
or (e) per each cell can be used at a time that is non-deterministically chosen. In
this respect, we assume the objects to be first communicated /modified by means
of rules of the forms (a), (b) and the population of cells to be then modified by
means of rules of the forms (c), (d), or (e). However, objects are assigned to rules
of the forms (c), (d), (e) before any communication/modification of these takes
place. Specifically, if a cell C] = (w{,t;) evolves by means of a rule (a); = (b),,
then it is replaced by a cell C}' = (wf,p;) where w} is the multiset obtained by
replacing in w} an occurrence of a with an occurrence of b. The structure of the
system is not changed by this particular operation as the new cell C/' is associated
with the same node i in the graph defining the structure of the system that was
previously associated with cell C}. If a cell C} = (w/,t;) evolves by means of
arule (a); — (b):(c)s, then it is replaced by two new cells C}' = (w},t;),
and C}] = (w},ty) where w! is the multiset obtained by replacing in w} an
occurrence of a with an occurrence of b, and wj, is the multiset obtained by
replacing in w} an occurrence of a with an occurrence of c. As a consequence
of this particular operation, cell C{' is associated with the same node 7 that
was previously associated with cell C} in the graph defining the structure of the
system, while cell CJ/ is associated with a new node ¢’ that is now added to the
graph defining the structure of the system without being connected to any other
node in that graph. If a cell C} = (w}', ;) evolves by means of a rule (a); — T,
then it is removed from the system together with the corresponding node i in the
graph defining the structure of the system and all the edges of the form {3, j},
with i # j.

During the stage of bond making, the set of edges in the graph defining
the structure of the system is modified by using the bond making rules in a.
Obviously, we have here to consider the graph that results from the application

532 Bernardini F., Gheorghe M.: Population P Systems

of rules of the forms (c), (d), (e) in the previous transformation-communication
stage. Specifically, an edge {i,j}, with ¢ # j, is added to the graph defining the
structure of the system if there exists a bond making rule (¢, z1; z2,p) € @, with
t the type of cell i, z; a multiset that is contained in cell 7, x> a multiset that is
contained in cell 7, and p the type of cell j.

Finally, after this process of bond making, we assume the nodes in the graph
to be labelled in a one-to-one manner with values in {1,2,...,m}, for m > 0 the
number of cells in the system.

A successful computation in P is then defined as a finite sequence of transi-
tions of the form

Yo=p X1 =p...=p Y1 =p X,

where k > 1, Y is the initial configuration of the P system P as specified in
Definition 12, and X is a final configuration such that there does not exist
any configuration X’ # X}, and X, é}‘p X', In other words, a successful
computation is a computation that halts in a configuration where, after a last
bond making stage, the current population of cells in the system cannot be
modified anymore by means of any rule. This time the result of a computation
is given by the number of objects that are associated with the environment in
the final configuration X. The set of natural numbers that are generated in this
way by all the successful computations in P is denoted by N (II).

At this point, we can introduce the families of sets of natural numbers
NOPP, j(tm,0,b),withn >k >1,m >1,0 C {a,b,c,d,e} oro C {a',b,c,d, e},
and b € {na,a; | t > 0}, which are generated by population P systems where:

— in each step of a computation, the number of cells in the system is always
less than or equal to n;

— in each step of a computation, the number of cells in each connected com-
ponent of the graph defining the structure of the system is always less than
or equal to k;

— the number of different types that are considered for the cells is at most m;

— rules of the forms indicated in o are considered; for rules of the form (a)
we consider also the case of restricted communication rules denoted by a/,
which corresponds to the case nR considered in the previous sections;

— b specifies the kind of bond making rules that can be used inside the system
as described in Section 3.

4.1 The Power of Cell Division/Differentiation

Here, we provide some results that concern the computational power of popula-
tions P systems with active cells.

Bernardini F., Gheorghe M.: Population P Systems 533

Lemma13. NETOL C NOPP, ;(ts,{a’,b,c},na).

Proof. Consider an extended tabled OL system G with only two tables, that
is, G = (V,T,w, Pi, P,) such that, after having used the table P;, we can use
both P, and P, but, after having used the table P, we always use the table
P,. Moreover, the table used in the first step of a computation is table P;. As
already mentioned before, extended tabled OL systems of this form are able to
generate the whole family of length sets of extended tabled OL system.

Thus, we construct a population P system with active cells P that simulates
the L system G such that

P =" A{p1,p2, f},({1},0),0, (wpr,p1), R)

with V! = VUT U {p1,p2, f}, and R is a finite set of rules that contains: a
rule (a — v),,, for each a - v € P;, 1 < i < 2, the rules (p1)p;, = (P1)p1s
(pl)pl - (p2)p27 (p2)p2 - (pl)p17 (pl)p1 - (f)fv (p2)p2 - (f)fv a rule
(a—=a)ys, for each a € V —T, and a rule (a,exit), for each a € V.

Now, it is easy to see that the population P system P correctly simulates the
L system @. In fact, at any moment, the type of cell 1 corresponds to the table
of rules that must be applied in the next step of a computation; each rule in
the table is then simulated by applying the corresponding transformation rules
inside cell 1 in a non-deterministic maximally parallel manner. As well as this,
we always apply a cell differentiation rule that changes the type of cell 1 in such
a way to pass to another table of the L system G. Moreover, at any moment,
we can decide to finish a computation by applying a cell differentiation rule that
assigns the type f to cell 1. In that case, if cell 1 contains only terminal symbols,
then the computation halts by releasing all these objects in the environment;
otherwise, an infinite computation is generated because of the rule (a — a)y,
withaeV —T. O

The previous result shows that population P systems with active cells are
quite powerful computational devices. In fact, population P systems with one
cell equipped with the sole operation of cell differentiation are able to generate
(at least) the whole family of length sets of tabled extended OL systems, which
contains non-semilinear sets of natural numbers. Next, we show that population
P systems of this form turn to be computationally complete once at least two
cells are considered.

Theorem 14. NOPP,1(t.,{a’,b,c},na} = NRE.

Proof. This universality result is again obtained by simulating a counter ma-
chines. Let M = (Q, F,po, A, I) be a three counter machine as specified in Def-
inition 1. We construct the following P system with active cells that is able to

534 Bernardini F., Gheorghe M.: Population P Systems

simulate the counter machines M

P = (V7 K7 ({172}7$)v>‘7 (pO #1 — #1:0)7 (>‘7 1)7R)

In this case we do not enter the details of the formalisation of the P system P
but we just provide the rules that are necessary to simulate each instruction of
the machine M.

Simulation of an instruction (p — ¢,+a) € I. We use the following rules in
order to simulate an instruction of this form.

1. (p—=q"a)o,

2. (a,ezxit)o,

4. (¢" = ¢)o,

(
(

3. (X;a,enter);,
(

5. (

q = q)o.

In this way, we add an object a to the content of cell 2 of type 1.

Simulation of an instruction (p — ¢,€) € I. We just need a rule (p — ¢q)o
in order to simulate an instruction of this form.

Simulation of an instruction (p — ¢,—a) € I. We use the following rules in
order to simulate an instruction of this form.

1. (p— aq)o,

2. (agq, exit)o,

3. (A aq, enter)y,
4. (ag) = ($)a,;
5. (a)e, = ()1,
6. (g exit):,

7. (g enter)o,
8. (#1 — #1)o-

In this case, when the object a, enters cell 2 of type 1, the type of this cell is
changed into a, and a dummy object $ is produced, which cannot be used in any
rule in the system. Next, if cell 2 contains an object a, then the simulation of the

Bernardini F., Gheorghe M.: Population P Systems 535

current instruction can be completed by first applying the rule (a)., = (¢)1,
then the rule (g, exit),, and finally the rule (A; g, enter)o. Instead, if cell 2 does
not contain any object a, the simulation of the current instruction cannot be com-
pleted and an infinite computation is generated because of the rule (#1 — #1)o-

Simulation of an instruction (p — ¢q,a = 0) € I. We use the following rules
in order to simulate an instruction of this form.

L. (p— a;d)o,

2. (al, exit)o,

3. (d,exit)o,

4. (A;al, enter)y,
5. (A d, enter)s,

6. (d—d),

7. (a1 = ($)a
8. (d' = d"),
9. (a)ar — (#)#,
10. (d")a;, = (g)
1L (# = #)s,

12. (g, exit),

13. (\; q,enter)o,

In this case, when the objects a , d enter cell 2 of type 1, the type of this cell
is changed into aq while the obJect d is replaced by d'. Next, if cell 2 contains
some objects a, then an infinite computation is generated because of the rules
(a)a, = (#)g, (# — #)% Instead, if cell 2 does not contain any object a, then
the simulation of the current instruction can be completed by first applying the
rule (d")a; — (q)1, then the rule (g, exit);, and finally the rule (X; g, enter)o.

Finally, we need the following rules in order to produce the output in the
environment,.

1. (plo—= (f)y, withpe F,

2. (f,exit),
3. (\; f, enter)y,

536 Bernardini F., Gheorghe M.: Population P Systems

4. (f)= (s
5. (a,exit)y.
In particular, the first rule is used to stop cell 1 using the rule (#1 — #1)o. O

Finally, we show the universality of population P systems that use the oper-
ations of cell division and cell death in combination with bond making rules of
size at most 1 where the types of the cells are never changed.

Theorem 15. NOPP; »5(ts,{a,b,d,e},a1) = NRE.

Proof. In a sense, this result is a consequence of Theorem 11 that provides the
universality of population P systems with bond making rules of size two. In fact,
in the proof of Theorem 11, a bond making rule of size two is used only in the
process of simulating instructions of the form (p — ¢, —a) in a counter machine
M. This is necessary in order to control the parallelism and make sure that just
one object a is removed from the cell containing the current value of the counter
a. Here, the control on the parallelism can be achieved by using the operation
of cell division that allows a cell to pick up a single occurrence of an object to
be used for cell division purposes. Furthermore, with respect to Theorem 11, we
need now to produce the output as a multiset of objects that is associated with
the environment in the final configuration rather than with a specific output
cell. Therefore, let P be the population P system used in the proof of Theorem
11. We construct a population P system with active cell P’ with the same initial
configuration in terms of cells and multisets of objects associated with the cells.
Specifically, each cell i in P, 1 < i < 6, gets assigned i itself as type of cell i.
Moreover, cell 5 in P’ is used to produce the output at the end of a successful
computation by collecting the objects that are contained in cell 3 (the output
one in P) and releasing them in the environment in such a form that cannot be
rentered in any cell anymore.

However, we do not enter here in all the details of the population P system
P’ but we just show how to simulate instructions of the form (p — ¢, —a) in a
given counter machine M by using cell division and bond making rules of size
1. The simulation of the other instructions in the machine M is done exactly in
the same way as in the population P system P of Theorem 11.

— (X a;,enter);, for each 1 < i < 3; each cell i of type i in P’ is used to hold the
current value of the counter a; and when objects of the form a; are produced
in the environment they have to enter cell 7.

— (a,exit)y, (A;a,in)y, (A;daq,enter)s, (dag — dy ,)a, (a)s = (a')s(a)a,
(a')s — T, with a a counter in the machine M and ¢ a state of the machine
M ; these rules correspond to the rule used in cell 4 of the system P, which
are now augmented with a rule of cell division and a rule of cell death.

Bernardini F., Gheorghe M.: Population P Systems 537

— (a,exit)s, (da,q,exit)s, (X;a,in)6, (A;dy, ,,in)s, (@ — 8)6, (ds = §)s,
(p = ddag)e, (dyy = s, (d = di)e, (dj = dj1)e, (F#1 — #1),
with a a counter in the machine M, ¢ a state of the machine M, $,d two
new symbols, and 1 < j < 4; these rules correspond to the rules used in
cell 6 in the system P; here, communication rules that are used to remove
objects from the system by releasing them in the environment are replaced

by transformation rules that produce the dummy object $.

As well as this, we consider the bond making rules (4, dq; 4; @i, 1), with 1 <i < 3,
and (4,a;ds,6).
Now, as in the proof of Theorem 11, consider a configuration of the form

(({17 27 3747 576}7 @)7)\,wl,wg,wg,)‘7 Aap#1w$>7 (3)

with w; € {a;}*, for each 1 < i < 3, |w;| the current value of the counter a; € A,
p € @, the current state of the counter machine M, and wg € {$}*.

In order to simulate an instruction of the form (p — ¢,a—), in the cell of
type 6, we apply the rule (p — dd,,q)¢, which produces an object d and an
object dg 4. In two further steps of computation, the object d, , reaches cell 4
(of type 4) by passing through the environment. At the same time, the object
dy is produced inside cell 6 (of type 6). In cell 4, as in the proof of Theorem
11, the object d, , is used to create a bond between cell 4 and the cell ¢ such
that @ = a;, 1 < ¢ < 3. This makes possible to move the whole content of
cell 4 into cell 4. Next, for each object a that has been moved inside cell 4, we
apply a rule (a,exit), in parallel with a cell division rule (a)s — (a’)4(@)sq,
which can be used by just one occurrence of the object a. This means we always
produce in the environment a multiset w] such that |wj| = |wi| — 1, which is
eventually returned to cell i. At the same time, we obtain two cells of type 4
that respectively contain an object a’ and an object @. The cell that contains
the object a’ is immediately removed from the system by using the cell death
rule (a’)4 — t while the object @ in the remaining cell of type 4 is used to form
a bond with cell 6 when the object d5 is produced inside that cell. In this way,
we can complete the simulation of the instruction (p — ¢,a—) by producing the
new state ¢ inside cell 6 as illustrated in the proof of Theorem 11. O

5 Conclusions

In this paper we have introduced a notion of population P systems as a class
of tissue P systems where the links between the cells can be modified by means
of a specific set of bond making rules. As well as this, cell division rules which
introduce new cells into the system, cell differentiation rules which change the
set of rules that can be used inside of a cell, and cell death rules which remove

538 Bernardini F., Gheorghe M.: Population P Systems

cells from the system are also considered by introducing a particular notion of
population P systems with active cells. The paper mainly reports universality
results for the following models:

1. unstructured population P systems where cells are restricted to communi-
cate only by means of the environment and being equipped with commu-
nication rules of the form introduced in [Bernardini and Gheorghe 2004b]
(Corollary 9);

2. population P systems equipped with bond making rules of size at most two
and simple communication rules where objects can be moved from a cell to
another one without any control mechanism (Theorem 11);

3. unstructured population P systems where cells are restricted to communicate
only by means of the environment equipped with the sole operation of cell
differentiation (Theorem 14);

4. population P systems equipped with bond making rules of size at most one
and the operation of cell division (Theorem 15).

These last two results are of particular interests if compared with similar results
obtained for P systems with active membranes [Paun 2002]. In fact, Theorem 14
proves the universality for P systems that use an operation for changing the labels
of the cells (i.e., the types of the cells) when communication rules are applied
in a maximally parallel manner and not in a sequential manner as in P systems
with active membranes [Padun 2002]. Then, Theorem 15 povides an universality
result for systems where the labels of the cells (i.e., the types of the cells) are
never changed by just considering a separate mechanism for modifying the bonds
among the cells. However, alongside this direction of comparing population P
systems and P systems with active membranes, it remains to be investigated the
efficiency of population P systems in solving hard problems like NP-complete
problems. Anyway, we expect efficient solutions to these problems to be found
in the context of population P systems as well by using different combinations
of rule types considered in this paper.

Acknowledgements

This research was supported by the Engineering and Physical Science Research
Council (EPSRC) of United Kingdom, Grant GR/R84221/01, and by Molecular
Computing Network (MolCoNet), European Union Contract IST-2001-32008.

References

[Alberts et al. 2002] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Wal-
ter, P.: “The Molecular Biology of The Cell. Fourth Edition”; Garland Publ. Inc.,
London (2002)

Bernardini F., Gheorghe M.: Population P Systems 539

[Bernardini and Gheorghe 2004a] Bernardini, F., Gheorghe, M.: “Cell Communication
in Tissue P systems and Cell Division in Population P Systems”; Second brainstorm-
ing week on membrane computing, Seville, 2-7 February 2004, Tech. Rep. 01/2004,
Dept. Comp. Sci. & Art. Int., University of Seville (2004), 74-91

[Bernardini and Gheorghe 2004b] Bernardini, F., Gheorghe, M.: “Cell Communication
in Tissue P systems: Universality Results”; Submitted (2004)

[Bernardini and Paun 2004] Bernardini, F., Paun, A.: “Universality of Minimal Sym-
port/Antiport: Five Membranes Suffice”; Membrane Computing. International
Workshop, WMC 2003, Tarragona, Spain, July 2003. Revised Papers, Lecture Notes
in Computer Science 2933, Springer, Berlin (2004), 43-54

[Cavaliere 2002] Cavaliere, M.: “Evolution-Communication P Systems”; Membrane
Computing. International Workshop, WMC-CdeA 2002, Curtea de Arges, Roma-
nia, August 19-23, 2002. Revised Papers, Lecture Notes in Computer Science 2597,
Springer, Berlin (2003), 134-145

[Freund et al. 2003] Freund, R., Kari, L., Oswald, M., Sosik, P.: “Computationally
Universal P Systems without Priorities: Two Catalysts are Sufficient”; Submitted
(2003)

[Frisco and Hoogeboom 2003] Frisco, P., Hoogeboom, J., H.: “Simulating Counter Au-
tomata by P Systems with Symport/Antiport”; Membrane Computing. Interna-
tional Workshop, WMC-CdeA 02, Curtea de Arges, Romania, August 19-23, 2002.
Revised Papers, Lecture Notes in Computer Science 2597, Springer, Berlin (2003),
288-301

[Hopcroft and Ulmann 1979] Hopcroft, J., Ulmann, J.: “Introduction to Automata
Theory, Languages, and Computation”; Addison-Wesley (1979)

[Martin-Vide et al. 2004] Martin-Vide, C., Mauri, G., Pdun, Gh., Rozenberg, G., Salo-
maa, A. (eds.): “Membrane Computing. International Workshop, WMC 2003, Tar-
ragona, Spain, July 2003. Revised Papers”; Lecture Notes in Computer Science
2933, Springer, Berlin (2004)

[Piun 2000] Paun, Gh.: “Computing with Membranes”; Journal of Computer and Sys-
tem Sciences, 61, 1 (2000), 108-143

[Piun 2002] Piaun, Gh.: “Membrane Computing. An Introduction”; Springer, Berlin
(2002)

[Pdun et al. 2004] Paun, Gh., Riscos-Nuiiez, A., Romero-Jiménez, A., Sancho-
Caparrini, F. (eds.): “Second brainstorming week on membrane computing, Seville,
2-7 February 2004”; Technical Report 01/2004, Research Group on Natural Com-
puting, University of Seville (2004) http://www.gcn.us.es

[Paun et al. 2003] Paun, Gh., Rozenberg, G., Salomaa, A., Zandron, C.(eds.): “Mem-
brane Computing. International Workshop, WMC-CdeA 02, Curtea de Arges, Ro-
mania, August 19-23, 2002. Revised Papers”; Lecture Notes in Computer Science
2597, Springer, Berlin (2003)

[Rozenberg and Salomaa 1980] Rozenberg, G., Salomaa, A.: “The Mathematical The-
ory of L Systems”; Academic Press, New York (1980)

[Rozenberg and Salomaa 1997] Rozenberg, G., Salomaa, A. (eds.): “Handbook of For-
mal Languages”; 3 volumes, Springer, Berlin (1997)

