
P Systems with Symport/Antiport of Rules

Matteo Cavaliere
(University of Sevilla, Spain)

Daniela Genova
(University of South Florida, Tampa, USA

genova@helios.acomp.usf.edu)

Abstract: Moving “instructions” instead of “data” using transport mechanisms in-
spired by biology is the basic idea of the computing device presented in this paper.
Specifically, we propose a new class of P systems that use both evolution rules and
symport/antiport rules. The idea of this kind of systems is the following: during a
computation, symbol-objects (the “data”) evolve using evolution rules, but they cannot
be moved; on the other hand, the evolution rules (the “instructions”) can be moved
across the membranes using classical symport/antiport rules. We present a number
of results using different combinations of evolution rules (catalytic, non-cooperative)
and the weight of the symport/antiport rules. In particular, we show that using non-
cooperative rules and antiports of unbounded weight makes it possible to obtain at least
the Parikh set of ET0L languages. On the other hand, using catalytic rules (one cata-
lyst) and antiports of weight 2, these system become universal. Several open problems
are also presented.

Key Words: Membrane computing, Communication, Evolution, P system, Symport,
Antiport

Category: F.4.2, F.4.3

1 Introduction

We introduce a new type of P systems that is obtained by joining in an “exotic”
way two well known classes of P systems: the one with evolution rules over
symbol-objects and the one with symport/antiport rules (in what follows we
assume the reader is familiar with the basic concepts of membrane computing,
as for example presented in [Păun 2002]).

In a previous paper, [Cavaliere 2003], a model called evolution-communication
P system has been introduced and studied. There, inspired by what happens in
biology, the computation has been divided in two phases: evolution of symbol-
objects (consisting of the application of simple evolution rules with no target
indications) and communication between the regions of the system (consisting
of the application of symport/antiport rules).

On the other hand, in [Păun 2004] Gh. Păun suggested a model of P sys-
tems where the rules are moved across the membranes rather than the objects
processed by these rules. In the model presented in [Păun 2004] the migration
of the simple evolution rules is governed by metarules existing in all regions.

Journal of Universal Computer Science, vol. 10, no. 5 (2004), 540-558
submitted: 1/4/04, accepted: 10/4/04, appeared: 28/5/04 © J.UCS

Following the ideas of these two models, we propose another way to move
rules across the membranes, by using the most typical transport mechanism of
P systems: symport/antiport. Therefore, a P system with symport/antiport of
rules is a P system with simple evolution rules used to evolve the symbol-objects
in the classical way without communication targets and symport/antiport rules
used to move the evolution rules across the membranes. The output of a com-
putation is defined in the usual way: it is the number of objects produced in the
output region at the end of a halting computation (i.e., when no rules can be
applied anymore in any region).

In this paper we give the formal definition of this new model, some examples
that illustrate the computation process and the proofs of results that we can
consider preliminary.

In particular, we prove that when using non-cooperative evolution rules and
antiports of unbounded weight, our systems can generate (at least) the Parikh
images of ET0L languages. We then obtain the same result with antiports of
bounded weight by using priorities among the transport rules.

On the other hand, if we use non-cooperative evolution rules, antiports of
weight two, and no priorities among the transport rules, then our systems can
generate (at least) the Parikh images of the languages generated by Indian par-
allel grammars.

When using catalytic rules (and in particular one catalyst) then P systems
with symport/antiport of rules become universal: they can generate the Parikh
images of recursively enumerable languages (specifically, we use antiports of
weight two).

The paper is organized as follows. Section 2 contains a formal definition of
a CR P system (P system with communication of rules). Section 3 presents
two examples that illustrate the computation mechanism of a CR P system:
one using antiport of rules and the other using symport of rules. All results
mentioned above except universality are given in Section 4. The universality
result is presented in Section 5. Finally, Section 6 contains concluding remarks
and open problems.

2 Definition

Formally, we define the new variant of P systems as a system that uses evo-
lution rules as defined in [Păun 2002] chapter 3 (but without communication
targets, or equivalently, with all the communication targets fixed as “here”),
and symport/antiport rules as defined in [Păun 2002] chapter 4, used here to
move evolution rules across the membranes of the system. For simplicity, we
often call the evolution rules without communication targets simple evolution
rules (or simple catalytic rules). It should be noted that, unlike classical sym-

541Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

port/antiport defined over a multiset of elements, here these rules are defined
over a set of elements (labels of multiset rewriting rules).

Definition 1. A P system with symport/antiport of rules (a CR P system in
short, where CR comes from “communication of rules”) of degree m ≥ 1 is a
construct

Π = (O, R, l, µ, w1, w2, · · · , wm, R1, · · · , Rm, R′
1, · · · , R′

m, io),

where:

– O is the alphabet of objects;

– R is a finite set of simple evolution rules;

– l is an injective labeling of the rules in R; let L = {l(r) | r ∈ R};
– µ is a membrane structure with m membranes (and hence m regions) injec-

tively labeled with 1, 2, · · · , m;

– wi, 1 ≤ i ≤ m, are strings which represent multisets over O associated with
the regions 1, 2, · · · , m of µ;

– Ri ⊆ R, 1 ≤ i ≤ m, are finite sets of simple evolution rules over O; Ri

is associated with the region i of µ; a simple evolution rule is of the form
u → v, where u and v are strings over the alphabet O;

– R′
i, 1 ≤ i ≤ m, are finite sets of symport/antiport rules; R′

i is associated
with the membrane i of µ. A symport rule is of the kind (x, in) or (y, out),
while an antiport rule is of the kind (x, in; y, out), where x, y are strings that
represent sets of elements in L.

– io ∈ {1, 2, · · · , m} is the output region.

In a P system with symport/antiport of rules objects never pass through
membranes, but they can change to other objects using simple evolution rules. R

is the set of all possible simple evolution rules that the system can use. Each rule
in R is labeled with an unique label. During the computation, symport/antiport
rules constructed over the set of labels L associated with the rules in R are used
to move the simple evolution rules across the membranes.

A configuration is described using the m-tuple of multisets of objects together
with the simple evolution rules present in the m regions of the system. A finite
number of objects and a finite number of simple evolution rules are associated
with each region; a finite set of symport/antiport rules is associated with each
membrane.

542 Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

The rules are present in the regions in the set sense, i.e., we cannot have
more than one copy of a rule in one region, unlike objects where multiplicity is
essential.

A transition between two configurations is governed by the mixed application
of the evolution rules and of the symport/antiport rules. All objects which can
evolve through evolution rules should evolve and all evolution rules that can be
moved by symport/antiport rules should be moved. However, if an evolution rule
acts on an object in a region i, then it cannot be moved in the same step using
the symport/antiport rules associated with membrane i. On the other hand, if
the evolution rule is moved, then it cannot act on the objects of region i in
the same step. Essentially, evolution rules and symport/antiport rules have the
same “priority”: they are chosen and applied in a non-deterministic maximally
parallel way.

Evolution rules act on symbol-objects in the standard way; symport/antiport
rules work in a standard way, as well, except that they move rules (using their
labels) and not objects. If a symport rule (x, in) associated to membrane i is
applied, then the evolution rules represented by the string x pass into the mem-
brane i from the region surrounding the membrane i. If the symport (x, out) is
applied to membrane i, then the evolution rules represented by string x move up
from this membrane to the region (or to the environment) that surrounds the
membrane i.

Finally, if the antiport rule (x, in; y, out) is applied to membrane i, then the
evolution rules represented by x pass into region i from the region surrounding it,
while at the same time the evolution rules represented by y move in the opposite
direction.

For simplicity, in what follows we use the following notation: If S is a set,
then x = 〈S〉 means that x is a string representing S (i.e., x is a string obtained
by concatenating elements of S in an arbitrary order, such that each element
appears exactly once).

A sequence of transitions is called a computation and a computation is con-
sidered successful (or halting) if it starts in the initial configuration and ends
in a halting configuration (a configuration where no evolution rule and no sym-
port/antiport rule can be applied in any region).

The result of a successful computation is the number of objects present at
the end of the computation in an initially designated region (output region).

We use the notation

PsCRPm(i, j, α), α ∈ {ncoo, coo} ∪ {catk | k ≥ 0},

to denote the family of sets of vectors of natural numbers generated by CR P
systems with at most m membranes, using symport rules of weight i, antiport
rules of weight j (as usually, m = ∗, i, j = ∗ if the corresponding a number

543Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

is unbounded), and simple evolution rules that can be cooperative (coo), non-
cooperative (ncoo), or catalytic (catk) using at most k catalysts.

3 Computing with CR P Systems: Two Examples

In this section we illustrate the computation process of a CR P system using
two simple examples. In particular we show how to construct a CR P system
generating the Parikh set of the non-semilinear language {a2n | n ≥ 0}. In Ex-
ample 3.1, antiports of weight 1 are used, while in Example 3.2 we use symports
of weight 2.

3.1 Using Antiport of Rules

We construct the CR P system of degree 2

Π = (O, R, l, µ, w1, w2, R1, R2, R
′
1, R

′
2, 2),

where:

– O = {A, a};
– R = {A → a, A → AA};
– l is an injective labeling of the rules in R;

we use l1 = l(A → a), l2 = l(A → AA); L = {l1, l2};
– µ = [1[2]2]1

– w1 = ∅, w2 = A;

– R1 = {A → a};
– R2 = {A → AA};
– R′

1 = ∅;
– R′

2 = {(l1, in; l2, out)}.
The system Π generates the set of natural numbers {2n | n ≥ 0}. At the

beginning of the computation only the symbol object A is present in region 2.
Moreover, the rule A → AA with label l2 is present in region 2 and the rule
A → a with label l1 is present in region 1. The rule A → AA is applied an
arbitrary number of times in region 2. At some point of time we move the rule
A → a from region 1 to region 2 and the rule A → AA from region 2 to region
1 using the antiport (l1, in; l2, out) associated with membrane 2. Once the rule
A → a is inside region 2 all copies of A are transformed into copies of a and no
rule can be applied anymore in any region. Then the computation halts and we
obtain the result in region 2.

544 Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

3.2 Using Symport of Rules

Let us consider the CR P system of degree 2

Π = (O, R, l, µ, w1, w2, R1, R2, R
′
1, R

′
2, 2),

where:

– O = {A, a, C};
– R = {A → a, A → AA, C → C};
– l is an injective labeling of the rules in R;

let l1 = l(A → a), l2 = l(A → AA), l3 = (C → C) and L = {l1, l2, l3};
– µ = [1[2]2]1

– w1 = ∅, w2 = A;

– R1 = {A → a};
– R2 = {A → AA, C → C};
– R′

1 = ∅;
– R′

2 = {(l3l2, out), (l3l1, in)}.

At the beginning of the computation only one copy of the symbol-object A

is present in region 2. The rules A → AA and C → C are, also, present in region
2. In this region, the rule A → AA is applied an arbitrary number of times
(notice that the rule C → C cannot be applied). At some point of time using
the symport (l3l2, out) ∈ R′

2 the rules A → AA and C → C move from region
2 to region 1. After this step all evolution rules (namely A → AA, C → C, and
A → a) are in region 1. Since the symport rules are applied in a maximally
parallel manner, the symport (l3l1, in) ∈ R′

2 is applied and the rules A → a and
C → C move from region 1 to region 2. Note that, because of the dummy rule
C → C, this symport rule can be applied only after the rule A → AA exits
from region 2. When the rule A → a enters region 2 all symbol-objects A are
changed to a and the computation halts. The result, equal to the Parikh set of
the language {a2n | n ≥ 0}, is obtained in region 2.

4 Using Non-Cooperative Evolution Rules

In this section we present several results for CR P systems using non-cooperative
rules; the results are obtained by simulating parallel grammar devices.

545Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

First we recall the basic notions about Lindenmayer systems (for a compre-
hensive presentation we suggest [Rozenberg and Salomaa 1997]).

An ET0L system is a construct G = (N, T, H, w′), where the components ful-
fill the following requirements: N is the nonterminal alphabet, T is the terminal
alphabet (the two alphabets are disjoint and let V = N ∪ T), H is a finite set
of finite substitutions (tables) H = {h1, h2, · · · , ht} (t is the number of tables)
– each hi ∈ H can be represented by a list of context-free rules A → x, such
that A ∈ V and x ∈ V ∗ (this list for hi should satisfy the requirement that each
symbol of V appears as the left side of some rule in hi) – and w′ ∈ V ∗ is the
axiom.

G defines a derivation relation ⇒ by x ⇒ y iff y ∈ hi(x), for some 1 ≤ i ≤ t,
where hi is interpreted as a substitution mapping. The language generated by
G is L(G) = {w ∈ V ∗ | w′ ⇒∗ w} ∩ T ∗, where ⇒∗ denotes the reflexive and
transitive closure of ⇒.

We denote by ET 0L the family of languages generated by ET0L systems.
It is known (see [Rozenberg and Salomaa 1997]) that for each L ∈ ET 0L there
exist an ET0L system G with only 2 tables, such that L = L(G).

We will use below the following normal form.

Lemma2. For each L ∈ ET 0L there is an extended tabled Lindenmayer system
G = (N, T, H, w′) with 2 tables (H = {h1, h2}) generating L, such that the
terminals are only trivially rewritten: for each a ∈ T if a → α ∈ h1 ∪ h2, then
α = a.

A proof of this lemma can be found in [Alhazov and Cavaliere 2004].
If we use antiports with an unbounded weight, then the simulation of ET0L

systems is rather simple, as shown in the following theorem.

Theorem 3. PsET 0L ⊆ PsCRP2(0, ∗, ncoo).

Proof. Given an extended tabled Lindenmayer system G = (N, T, H, w′) with 2
tables (H = {h1, h2}) in the normal form from Lemma 2, we construct a CR P
system Π generating the Parikh set of L(G) as follows. Consider

Π = (O, R, l, µ, w1, w2, R1, R2, R
′
1, R

′
2, 2),

where:

– O = V ∪ {#};
– R = h1 ∪ h2 ∪ {# → #} ∪ R′′; where R′′ = {Y → # | Y ∈ N};
– l is an injective labeling of the rules in R;

let L1 = {l(r) | r ∈ h1}; L2 = {l(r) | r ∈ h2}, and L3 = {l(r) | r ∈ R′′};

546 Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

– µ = [1[2]2]1;

– w1 = ∅, w2 = w′;

– R1 = h1 ∪ R′′;

– R2 = h2 ∪ {# → #};
– R′

1 = ∅;
– R′

2 = S1 ∪ S2,

where S1 = {(x, in; y, out) | x = 〈L1〉 and y = 〈L2〉} ∪ {(x, in; y, out) | x =
〈L2〉 and y = 〈L1〉},
S2 = {(y, in; x, out) | y = 〈L3〉 and x = 〈L1〉} ∪ {(y, in; x, out) | y =
〈L3〉 and x = 〈L2〉}.
The system works as follows. The rules of the two tables h1 and h2 are moved

between regions 1 and 2 using the antiports in S1. This simulates the application
of the productions of one of the two table over the symbol-objects contained in
region 2 (in the beginning the symbol-objects corresponding to the axiom w′ of
G are present in region 2). These antiports guarantee that it is not possible to
apply rules of the first table mixed with rules of the second table.

The role of the antiports in S2 is to stop the computation (in particular,
the movements of evolution rules across membrane 2). The purpose of these
antiports is twofold: the rules of R′′ are moved into region 2 and in the opposite
direction the rules of the table h1 (or h2) are moved into region 1. If there are
still symbol-objects corresponding to nonterminals of G in region 2, then one of
the rules in R′′ will produce the trash symbol # and then the computation will
never halt, because of the presence of the rule # → # in region 2. Therefore, the
computation halts if and only if all symbol-objects corresponding to terminals of
G are obtained in region 2 and then the system Π generates exactly the Parikh
set of L(G). �

4.1 Using Priority among Transport Rules

The previous result was obtained using antiports of unbounded weight; in par-
ticular, the proof of Theorem 3 indicates that the weight of the antiport used is
the maximum of the cardinality of the two tables of the ET0L system we have
to simulate (and this number can be arbitrarily large).

We present now a way to decrease (and to bound) the weight of the antiport
rules by using a priority relation among the transport rules of the system.

The priority used here is similar to the classical weak priority defined in the P
system area (see [Păun 2002]). The difference is that here the priority is defined
among transport rules in charge of moving evolution rules.

547Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

Given two sets of transport rules R1 and R2, we indicate that R1 has weak
priority over R2 by writing R1 > R2. This means that in the process of assigning
transport rules to “objects” (which in our system are evolution rules) first the
transport rules in R1 are assigned in a non-deterministic, maximally parallel
manner and then the rules in R2 are assigned to the remaining objects (in our
case evolution rules) again in a non-deterministic, maximally parallel manner.

In order to distinguish between this priority and the classical priority among
evolution rules we use the notation pritran.

Using a weak priority among transport rules makes it possible to simulate
an ET0L system using antiports of weight 2 and 5 membranes.

Theorem 4. PsET 0L ⊆ PsCRP5(0, 2, ncoo, pritran).

Proof. Given an extended tabled Lindenmayer system G = (N, T, H, w′) with
2 tables (H = {h1, h2}) in the normal form from Lemma 2, we construct a
CR P system Π generating the Parikh set of L(G). After removing the trivial
productions from h1 and h2, construct another table h3 composed by the rules
{Y → # | Y ∈ N}, where # is a new symbol not in V . Let table h1 have m

rules, table h2 have k rules, and table h3 have n rules. Let max{m, k, n} = p.
Then, if one of the three tables has less than p rules, we add D → D, for D /∈ V ,
as many times as needed to increase the number of rules in that table to p. Then
we can assume that the cardinality of the three tables so adjusted is exactly p.
Moreover, we need different rules in each of the three tables (more precisely, we
need rules with different labels). Therefore, we substitute every rule X → x in
table h1 with the rule X → xd1, where d1 is a new symbol not in V . Similarly,
we substitute every rule X → x in table h2 with the rule X → xd2 where d2 is a
new symbol not in V . In what follows, the tables h1 and h2 changed in the above
described way are called h′

1 and h′
2. For the table h3, we do not change the rules

because they are already different from the ones in the other two tables.
Consider the CR P system

Π = (O, R, l, µ, w1, w2, w3, w4, w5, R1, R2, R3, R4, R5, R
′
1, R

′
2, R

′
3, R

′
4, R

′
5, 3),

where:

– O = V ∪ {#, D} ∪ {d1, d2};
– R = h′

1 ∪ h′
2 ∪ h3 ∪ {# → #};

– l is an injective labeling of the rules in R;
let l1 = l(# → #), let l′i, l

′′
i , l′′′i be the labels associated with the i-th rule in

the tables h′
1, h

′
2 and h3, respectively (the cardinality of the three tables is

p), and let L1 = {l(r) | r ∈ h′
1} = {l′i | i ∈ {1, · · · , p}}; similarly,

L2 = {l′′i | i ∈ {1, · · · , p}}, and L3 = {l′′′i | i ∈ {1, · · · , p}};

548 Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

– µ = [1[2[3[4[5]5]4]3]2]1;

– w1 = ∅, w2 = #, w3 = w′, w4 = #, w5 = ∅;
– R1 = {# → #};
– R2 = h′

2;

– R3 = h′
1 ∪ {d1 → λ, d2 → λ, # → #};

– R4 = h3;

– R5 = {# → #};
– R′

1 = ∅;
– R′

2 = {(l1, in; ij, out) | i ∈ L1, j ∈ L2};
– R′

3 = {(l′i, in; l′′i , out) | i ∈ {1, · · · , p}} ∪ {(l′′i , in; l′i, out) | i ∈ {1, · · · , p}};
– R′

4 = {(l′i, in; l′′′i , out) | i ∈ {1, · · · , p}};
– R′

5 = {(ij, in; l1, out) | i ∈ L1, j ∈ L3};
– R′

5 > R′
4; R

′
2 > R′

3.

The system Π works as follows. Initially, the symbol-objects corresponding
to the axiom w′ of G, together with the rules of table h′

1 are present in region 3,
the output region. These rules simulate the application of a rule of h1 over the
symbol-objects present in region 3 (the dummy symbols d1 produced by such
rules are immediately deleted by the rule d1 → λ).

At the beginning the rules of h′
2 are in region 2, while the rules of h3 are in

region 4.
In order to pass from table 1 to table 2 (and viceversa) we use the antiports

in R′
3. These antiports exchange each rule of one table with a rule in the other

table. We need to guarantee a full “swap” of the rules (i.e., that all rules from
one table are exchanged with all rules of the other table). Ensuring that the
passage from one table to the other is “complete” is essential, since we need to
avoid having rules of table h′

1 mixed with rules of table h′
2 in region 3. That is

checked by the antiport rules in R′
2. In fact, if the passage from one table to the

other one is not correct, then rules from both tables will be present in region
2 simultaneously. In that case, one of the antiports in R′

2 is applied (it has a
higher priority over the antiports in R′

3) and then the rule # → # is imported
in region 2 (because the symbol # is present in region 2, this leads to a non
halting computation). Thus, such a construction ensures that the passage from
one table to the other one is made in a correct way.

549Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

The rules of table h′
2 from region 3 simulates the application of a rule from

h2 over the symbol-objects present in that region (the dummy symbols d2’s
produced by such rules are immediately deleted by the rule d2 → λ). The change
from table h′

2 to table h′
1 is made similarly to the above described way for the

passage from table h′
1 to h′

2.
Finally, we need to guarantee that the computation halts only when all

symbol-objects in region 3 have been transformed into terminals of G. To halt
the computation we have to stop the movements of rules made possible by the
antiports in R′

3. This can be made using the antiports in R′
4 that move the rules

of table h′
1 into region 4 and the rules of table h3 into region 3. These antiports

exchange each rule of one table with the corresponding rule in the other table.
After applying such antiports, the antiports in R′

3 cannot be applied anymore
(the rules of h′

1 and h′
2 are in region 4 and 2 respectively). The complete passage

from table h′
1 to table h3 is guaranteed by antiports in R′

5 that work similarly
to the ones described above for antiports in R′

2 (notice that R′
5 > R′

4). In par-
ticular, if it happens that rules from h′

1 and from h3 are simultaneously present
in region 4, then the rule # → # is moved to region 4 using one of the antiports
in R′

5 and this leads to a non halting computation. Therefore, the passage from
table h′

1 to h3 must be made in a “complete” way, as well.
On the other hand, the rules of h3 (that are of the kind Y → #, Y ∈ N)

check that there are only terminal symbol-objects in region 3: if this is not the
case, then the symbol # is produced in region 3 and using the rule # → #
present in that region a non halting computation is obtained.

Therefore, the computation halts iff all symbol-objects corresponding to ter-
minals of G are obtained in region 3. Thus, the system Π generates (in region
3) exactly the Parikh set of L(G). �

4.2 Simulating Indian Parallel Grammars

If we use antiports with a bounded weight and no priorities among the transport
rules, then we can at least generate the Parikh set of the languages generated
by the Indian parallel grammars.

Before presenting the proof of this result, we recall the definition of an Indian
parallel grammar (for a more detailed discussion of such grammars we refer the
reader to [Dassow and Păun 1989] and [Fernau 2003]).

An Indian parallel grammar is a construct G = (N, T, S, P), where at each
step of the derivation every occurrence of one letter is rewritten using the same
production.

This means that the derivations are defined in the following way: for every
x, y ∈ (N ∪ T)+ we write x ⇒ y if and only if x = x1Ax2A · · ·xnAxn+1, for
some A ∈ N, xi ∈ ((N ∪ T) − A∗), 1 ≤ i ≤ n + 1, and y = x1wx2w · · ·xnwxn+1,
for A → w ∈ P .

550 Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

The language generated by G is L(G) = {w ∈ (N ∪ T)∗ | S ⇒∗ w} ∩ T ∗,
where ⇒∗ denotes the reflexive and transitive closure of ⇒.

The family of languages generated by Indian parallel grammars is denoted
by IPG.

Theorem 5. PsIPG ⊆ PsCRP2(0, 2, ncoo).

Proof. Given an Indian parallel grammar G = (N, T, S, P), we construct a new
Indian parallel grammar G′ = (N ′ = N ∪ {S′}, T, S′, P ′ = P ∪ {S′ → S}). It
is obvious that L(G′) = L(G). In addition, we assume that P does not contain
trivial rules of the kind X → X, X ∈ N .

We construct the CR P system

Π = (O, R, l, µ, w1, w2, R1, R2, R
′
1, R

′
2, 2),

where:

– O = N ′ ∪ T ∪ {Z, D} with Z, D /∈ N ′ ∪ T ;

– R = P ′ ∪ {D → D, Z → Z} ∪ {X → X | X ∈ N ′};
– l is an injective labeling of the rules in R; let l1 = l(D → D) and l2 = l(Z →

Z);

– µ = [1[2]2]1;

– w1 = ∅, w2 = S′;

– R1 = {S′ → S′, Z → Z} ∪ P ;

– R2 = {X → X | X ∈ N ′} ∪ {S′ → S, D → D};
– R′

1 = ∅;
– R′

2 = R′′
2 ∪ R′′′

2 ∪ R′′′′
2 , where

R′′
2 = {(x, in; y, out) | x = l1l(X → X), y = l(X → w) with X → w ∈ P ′},

R′′′
2 = {(x, in; y, out) | x = l(X → w), y = l1l(X → X) with X → w ∈ P ′},

Riv
2 = {(x, in; y, out) | x = l2l(X → X), y = l(X → w) with X → w ∈ P ′}.

The system Π works in the following way. The symbol-objects corresponding
to a sentential form generated by the grammar G′ are present in region 2. At
the beginning, only the symbol-object S′ is present in region 2. The basic idea
is to simulate a derivation of the grammar G′ in region 2. The antiports in R′

2

are used to bring in region 2, one at a time, the rules of the grammar G′. In
particular, the antiports in R′′′

2 are used to bring inside region 2 a new rule of
G′ to be applied, while the antiports in R′′

2 are used to bring back the rule of
G′ that has been used in region 2. The antiports in Riv

2 are used to stop the

551Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

computation. The rules X → X, X ∈ N ′, are used to check that no symbol-
objects corresponding to nonterminals of G′ are present in region 2 at the time
the computation halts.

In particular, when one of the antiports in R′′′
2 is applied, then a rule X → w

moves from region 1 to region 2 and, at the same time, the rules D → D and
X → X move in the opposite direction. A rule from P ′ can move from region
1 to region 2 only by using one of the antiports in R′′′

2 and then only when the
dummy rule D → D is present in region 2. The role of the dummy rule D → D

is to guarantee that only one rule of P ′ is present in region 2 at any particular
moment of time. The rule X → X is also moved from region 2 to 1 to avoid a
“mixed” application of the rules X → w and X → X in region 2.

After a rule X → w enters region 2, it can be applied or it can exit without
being applied. Without loss of generality we can assume that the rule is applied
and in the next step it exits or is re-applied. After it has been applied a certain
number of times (0, 1 or more), the rule must exit and a new rule from P ′ must
enter region 2.

To achieve this, the antiports in R′′
2 must be used. Using one of the antiports

in R′′
2 , the rule X → w can move from region 2 to 1. At the same time, in the

opposite direction, the dummy rule D → D and the rule X → X move back
from region 1 to 2. At this point a new rule from P ′ can be moved inside region
2 using one of the antiports in R′′′

2 as described above. As mentioned earlier,
only one rule of G′ can be present in region 2 at each moment, because of the
dummy rule D → D in the antiports of R′′′

2 . In fact, only one copy of the rule
D → D is present in the system and this copy moves between regions 2 and 1.

To halt the computation the movement of rules between regions 2 and 1
should be stopped. This can be achieved by applying one of the antiports in
Riv

2 . The last rule X → w from P ′ used in region 2 is moved out and, at the
same time, the dummy rule Z → Z and the rule X → X are moved to region
2. Notice that the dummy rule D → D is not moved back in this case. After
applying such an antiport, the movement of rules between regions 2 and 1 stops.
At that time, the dummy rule D → D is in region 1 and there are no rules from
P ′ in region 2. Thus, no antiports from R′′′

2 can be applied anymore.
On the other hand, the presence of the rules {X → X | X ∈ N ′} guarantees

that no symbol-objects corresponding to nonterminals of G′ are present in region
2 when the computation halts.

Therefore, the system Π generates exactly the Parikh set of L(G′). �

5 Using One Catalyst: Universality

If we use catalysts, then we can inhibit the parallelism in the application of the
evolution rules and we can simulate sequential grammars. In this case CR P

552 Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

systems become computationally universal. In this section we present an univer-
sality result where CR P systems simulate matrix grammars with appearance
checking using one catalyst, antiports of weight 2, and 3 membranes.

Because of the way CR P systems work and in particular since it is not
possible to move objects, inhibiting the parallelism without using catalysts seems
a very hard task.

5.1 Matrix Grammar Simulation

In this section we recall the definition and notations used for matrix grammars
with appearance checking in the Z-binary normal form (we assume that the
reader is familiar with the notion of a matrix grammar; for more details, the
reader can consult the introduction presented in [Păun 2002]). We say that a
matrix grammar with appearance checking (ac) G = (N, T, S, M, F) is in the
Z-binary normal form if N = N1 ∪N2 ∪{S, Z, #} with these three sets mutually
disjoint and the matrices in M of the following forms:

1. mi : (S → XinitAinit), with Xinit ∈ N1, Ainit ∈ N2, i = 0,

2. mi : (X → Y, A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2, 1 ≤
i ≤ k,

3. mi : (X → Y, A → #), with X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2, k + 1 ≤ i ≤ n,

4. mi : (Z → λ), i = n + 1.

There is only one matrix of type 1, F consists of all rules A → # appearing
in the matrices of type 3, and if a sentential form in G contains Z, it is of the
form Zw, with w ∈ (T ∪ {#})∗.

Lemma6. For each language L ∈ RE there is a matrix grammar with appear-
ance checking in the Z-binary normal form such that L = L(G).

We use the above lemma to show the following result:

Theorem 7. PsRE = PsCRP3(0, 2, cat1).

Proof. The idea is to simulate matrix grammars with ac in the Z-binary nor-
mal form. We start from such a grammar G = (N, T, S, M, F) in the standard
notation given above. We construct the CR P system

Π = (O, R, l, µ, w1, w2, w3, R1, R2, R3, R
′
1, R

′
2, R

′
3, 2),

where:

– O = N ∪ T ∪ {d, g, g′, g′′, g′′′, giv, #} ∪ {i | 1 ≤ i ≤ n};

553Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

– R = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5, where
S1 = {X → iY d, cA → icxd | mi = (X → Y, cA → cxd) ∈ M, 1 ≤ i ≤ k},
S2 = {X → iY d, A → i# | mi : (X → Y, A → #) ∈ M, k + 1 ≤ i ≤ n},
S3 = {Z → d | mn+1 : (Z → λ)} ∪ {g′′ → g′′, g′′′ → g′′′, giv → giv, i → λ},
S4 = {g → g, d → λ},
S5 = {g′ → g′, d → #, # → #};

– l is an injective labeling of the rules in R;
let ri,1 = l(X → iY d) with X → iY d ∈ S1 ∪ S2,
ri,2 = l(cA → icxd) = l(A → i#) with cA → icxd ∈ S1, A → i# ∈ S2,
rf = l(Z → d),
rm
0 = l(gm → gm) with 1 ≤ m ≤ 4, r0 = l(g → g);

– µ = [1[2[3]3]2]1;

– w1 = λ,

w2 = cXinitAinit,

w3 = cZX1X2 · · ·Xm′A1A2 · · ·Am′′ , Xi ∈ N1, Aj ∈ N2;

– R1 = S1 ∪ S2 ∪ S3;

– R2 = S4;

– R3 = S5;

– R′
1 = ∅;

– R′
2 = S′

1∪S′
2∪{(rfr′′0 , in; r0, out), (r′′′0 , in; r′′0 , out), (riv

0 , in; r′′′0 rf , out)}, where
S′

1 = {(ri,1ri,2, in; r0, out) | 1 ≤ i ≤ n},
S′

2 = {(r0, in; ri,1ri,2, out) | 1 ≤ i ≤ n};
– R′

3 = S′′
1 ∪ S′′

2 ∪ {(rf , in; r′0, out)}, where
S′′

1 = {(ri,j , in; r′0, out) | 1 ≤ i ≤ k, j ∈ {1, 2}},
S′′

2 = {(ri,1, in; r′0, out) | k + 1 ≤ i ≤ n}.

The system Π works in the following way. Initially, the evolution rules cor-
responding to the matrices of the matrix grammar are present in region 1. In
particular, S1 is the set of rules corresponding to the matrices of type 2, S2 is the
set of rules corresponding to matrices of type 3. Moreover, the final rule Z → d

is also present. Each one of these rules has been modified to generate a special
symbol d that will be used to check if a rule has been applied. The purpose of the
symbol i produced by a rule when applied (except by the final rule) is to distin-
guish between the rules (otherwise, two identical rules in two different matrices
get the same label). This symbol i is immediately deleted when generated.

The sentential form is stored in region 2, the output region of the system. At
the beginning of the computation only the objects Xinit, Ainit and the catalyst

554 Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

c are present in region 2. The idea is that, step after step, the productions
of the matrix grammar are applied to the symbol-objects present in region 2. If
something goes wrong during the application of the rules of the matrix grammar,
then the symbol # is generated in region 3 and the computation will never halt.

We now show in a greater detail how the computation proceeds. Using the
antiports in S′

1 two rules of the same matrix i, with labels ri,1, ri,2, are moved
from region 1 into region 2. Once the rules with labels ri,1, ri,2 are in region 2,
they can be applied or they can exit together moving from region 2 to region
1 using one of the antiports in S′

2 (and in this case a new pair of rules can be
introduced in region 2). If both rules are applied, then, in the next step, they can
be reapplied or they can exit together, as in the previous case. Because of the
maximality of the parallelism and because the two rules can only exit together,
if they can be applied, both are applied or both come back to region 1 without
being applied. The “dummy” rule with label r0 is used only to ensure that only
one pair of rules moves inside region 2 (i.e., when r0 is in region 1 then no other
rules can enter region 2).

Now suppose that only one of the two rules can be applied and let us assume
that the rules are associated with a matrix of type 2. Without loss of generality,
suppose that the first rule ri,1 can be applied and it is applied in region 2
at step j. In the same step j, the other rule ri,2 cannot be applied because the
corresponding nonterminal object is not present. In this case, because ri,2 cannot
come back “alone” to region 1 using one of the antiports in S′

2, and because of
the maximality of the parallelism, during step j, this rule moves from region 2
to region 3, using one of the antiports of S′′

1 . Once the rule ri,2 is in region 3,
the computation will never halt, because the symbol # will be generated. In this
way we make sure that both rules of the matrix of type 2 are applied.

Suppose now that the two rules ri,1 and ri,2 that are inside region 2 corre-
spond to a matrix of type 3 (with ac). In this case, if the rule ri,2 (used in the ac
mode) is applied, but not the rule ri,1, then the situation described above will
occur and the computation will never halt. If the rule ri,1 is applied in step j but
not the other one ri,2, then this rule simply “waits” that the first rule is applied.
In fact, this rule cannot be moved neither to region 1 where the two rules can
move only together, nor to region 3, because there are no antiports in S′′

2 that
can move the rules corresponding to the rules used in ac mode. After the rule
ri,1 is applied, the two rules can move together to region 1, using antiports in
S′

2, or they can remain in region 2 again. In this way the ac mode is respected.
In order to halt the computation (i.e., to terminate the symport/antiport

movements of rules) it is necessary to bring the rules with labels rf and r′′0
inside region 2 using the antiport (rf r′′0 , in; r0, out) in R′

2 at some step j. If Z is
not present in region 2, then in step j + 1 the antiport (rf , in; r′0, out) in R′

3 is
applied and this leads to a non halting computation because the symbol # will

555Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

be generated in region 3. In the case that Z is present in region 2, the rule rf

is applied in the step j + 1 and in the same step the antiport (r′′′0 , in; r′′0 , out) in
R′′

2 is applied (then r′′′0 comes inside region 2). Therefore, in the step j + 2 the
rule rf can move from region 2 to region 1, together with the rule r′′′0 using the
antiport (riv

0 , in; r′′′0 rf , out) in R′
2. If the current multiset contains only terminal

objects (that is, # is not present), then the computation halts (no evolution
rules and no symport/antiport rule can be applied in any region).

In this way, the system Π generates exactly the Parikh set of L(G). �

6 Concluding Remarks and Open Problems

In this paper we have presented a new type of P systems called P systems
with symport/antiport of rules (CR P systems in short). The idea of this model
is quite simple: during the computation, objects can evolve but they cannot be
moved; at the same time, using classical symport/antiports rules, evolution rules
are moved across the membranes of the system.

We have shown that, using non-cooperative rules and antiports of unbounded
weight or antiports of bounded weight and priorities among the transport rules,
such systems generate at least the Parikh set of ET0L languages.

If we use one catalyst, then CR P systems using antiports of weight 2 and 3
membranes become universal.

The paper leaves open many interesting questions. For instance, the uni-
versality has been obtained considering antiports of weight 2 and no symports.
What can we obtain considering only antiports of weight 1? Are such systems
still universal? (From Example 3.1 we know that such systems can generate the
Parikh set of some non-semilinear languages.)

Moreover, what can CR P systems using only symport of rules simulate?
A simple example of such a system has been presented in Example 3.2. Is it
possible to claim more about such a restricted class of systems?

On the other hand, is it possible to get the Parikh images of ET0L languages
in the case of non-cooperative evolution rules, using antiports of a bounded
weight and no priority? We recall that, in the proof presented here, the bound
on the weight of the antiports used is obtained at the price of using priorities
among the communication rules.

Also, it would be interesting to consider two other basic variants of CR P
systems: the first variant is to use multisets of rules; what happens if we do not
consider rules in the set sense in the regions, but in a multiset sense? (i.e., more
than one copy of a rule can be present in a region); the second variant is to use
strings instead of symbol-objects.

A more general suggestion is to use CR P systems considering the vari-
ants already investigated for P systems with classical symport/antiport rules

556 Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

[Păun 2002] and for evolution-communication P systems [Alhazov 2003],
[Cavaliere 2003, Krishna and Păun 2003] (for instance, considering approaches
where the symport/antiport rules have priority over the evolution rules (or vicev-
ersa)).

A possible variant of CR P systems, studied in [Freund and Oswald 2004], is
obtained by dividing the computation into two substeps that are applied in an
interleaved way: first all possible communication rules are applied, and then the
evolution rules are applied, in a non-deterministic, maximally parallel manner.
In this case, using non-cooperative evolution rules, the systems generate exactly
the Parikh set of ET0L languages. Is it possible to prove the same upper bound
for CR P systems? Actually, using our definition of CR P systems, this seems
harder because of the mixed application of communication and evolution rules.
On the other hand, in [Freund and Oswald 2004] the universality is obtained
using only one pure catalyst. Is it possible to obtain the same result in the case
of CR P systems? These are some of the questions that remain to be answered
in the future.

We would like to conclude this paper with some (maybe) “philosophical”
considerations: moving rules instead of objects is, somehow, a new approach for
computing, where, instead of moving data, we move the instructions that act
on such data (just opposite to the classical approach used, for example, in the
area of distributed computing also linked with P systems in several papers; see
[Ciobanu et al. 2003]). It would be interesting to compare such a “non-standard”
approach with the classical ones, investigating possible advantages and disad-
vantages.

References

[Alhazov 2003] Alhazov A.: “Minimizing Evolution-Communication P Systems and
ECP Automata”; New Generation Computing (2003), accepted

[Alhazov and Cavaliere 2004] Alhazov A., Cavaliere M.: “Proton Pumping P Sys-
tems”; “Membrane Computing. International Workshop WMC2003. Revised Pa-
pers” (C. Mart́in-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa, eds.),
Lecture Notes in Computer Science 2933, Springer, Berlin (2004), 70–88

[Cavaliere 2003] Cavaliere M.: “Evolution–Communication P Systems”; “Membrane
Computing. International Workshop WMC2002. Revised Papers” (Gh. Păun, G.
Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture Notes in Computer Science
2597, Springer, Berlin (2003), 134–145

[Ciobanu et al. 2003] Ciobanu G., Desai R., Kumar A.: “Membrane systems and dis-
tributed computing”; “Membrane Computing. International Workshop WMC2002.
Revised Papers” (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture
Notes in Computer Science 2597, Springer, Berlin (2003), 187–202

[Dassow and Păun 1989] Dassow J., Păun Gh.: “Regulated Rewriting in Formal Lan-
guage Theory”; Springer, Berlin (1989)

[Fernau 2003] Fernau H.: “Parallel Grammars: A Phenomenology”; Grammars, 6, 1
(2003), 25–87

557Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

[Freund and Oswald 2004] Freund R., Oswald M.: “P Systems with Antiport Rules for
Evolution Rules”; Technical Report 01/2004, “Brainstorming Week on Membrane
Computing 2004”, Research Group on Natural Computing, University of Sevilla,
Sevilla (2004).

[Krishna and Păun 2003] S.N. Krishna, A. Păun: “Some Universality Results on
Evolution-Communication P Systems”; Technical Report 26, Brainstorming Week
on Membrane Computing 2003 (M. Cavaliere, C. Mart́ın-Vide, Gh. Păun, eds.), Re-
search Group on Mathematical Linguistics, Rovira i Virgili University, Tarragona
(2003)

[Păun 2002] Păun Gh.: “Membrane Computing. An Introduction”; Springer, Berlin
(2002)

[Păun 2004] Păun Gh.: “Membrane Computing: Some Non-Standard Ideas”; “Aspects
of Molecular Computing, Essays Dedicated to Tom Head on the Occasion of His 70th
Birthday” (N. Jonoska, Gh. Păun, G. Rozenberg, eds.), Lecture Notes in Computer
Science 2950, Springer, Berlin (2004), 322–377

[Rozenberg and Salomaa 1997] Rozenberg G., Salomaa A. (eds.): “Handbook of For-
mal Languages”; Springer, Berlin (1997)

558 Cavaliere M., Genova D.: P Systems with Symport/Antiport of Rules

