
Two Experiences in Software Dynamics

Artur Boronat
(Polytechnic University of Valencia, Spain

aboronat@dsic.upv.es)

Jennifer Pérez
(Polytechnic University of Valencia, Spain

jeperez@dsic.upv.es)

José Á. Carsí
(Polytechnic University of Valencia, Spain

pcarsi@dsic.upv.es)

Isidro Ramos
(Polytechnic University of Valencia, Spain

iramos@dsic.upv.es)

Abstract: This paper presents an outline of a formal model management framework that
provides breakthroughs for legacy systems recovery (RELS) and for data migration (ADAM).
To recover a legacy system, we use an algebraic approach by using algebras in order to
represent the models and manipulate them. RELS also generates automatically a data migration
plan that specifies a data transfer process to save all the legacy knowledge in the new recovered
database. The data migration solution is also introduced as a support for the O-O conceptual
schemas evolution where their persistent layers are stored by means of relational databases, in
the ADAM tool. Contents and structure of the data migration plans are specified using an
abstract data migration language. Our past experience in both projects has guided us towards
the model management research field. We present a case study to illustrate our proposal.

Key Words: data reverse engineering, rewriting rules, data migration, migration patterns
Categories: D.2.7, D.2.9, E.2, H.1.0, H.2.4

1 Introduction

Information systems are inherently dynamic. One reason for an information system to
change is the inaccuracy of its requirements specification. This inaccuracy is usually
caused by misunderstandings between the user and the system analyst, inexperience
of the analyst or the imprecise knowledge of the user. Other reasons for variability are
changes in the requirements of a software application, adaptation to new technologies,
the satisfaction of new standards, the high level of competitiveness in the market
place and their volatile business rules.

Statistics given regarding the time invested and the cost of people involved in the
maintenance process are 80% of the total expense of software development [Yourdon,
1996]. This fact has intensified interest in software evolution research over the past
few years in order to cope with the problem and to reduce the costs. A great deal of

Journal of Universal Computer Science, vol. 10, no. 4 (2004), 428-453
submitted: 17/10/03, accepted: 2/2/04, appeared: 28/4/04 © J.UCS

work has been done in this area, and it has focused mainly on the automatic software
development approach to improve the time and cost invested in the life cycle of a
software system. Our work is based on the paradigm of automatic prototyping
proposed in [Balzer, 1985] [see Fig. 1].

Existing CASE tools are able to generate applications from specifications. They
are commonly referred to as model compilers, and they use visual models from which
the application code and the database schema can be generated automatically from the
conceptual schema of a system. The automatic generation can be complete, e.g.,
Oblog Case [Sernadas, 1994], or partial, e.g., Rational Rose [Rational], System
Architect [SystemArchitect], Together [TogetherSoft]. However, none of these tools
provides full support for the volatile nature of an information system. Technologies
used for software development become obsolete, when new technologies providing
new and better features appear. However, software products are kept in use as long as
they are useful and efficient, and gather much knowledge in their databases.
Nevertheless, as they become obsolete they become more difficult to maintain. Such
systems are called legacy systems and their adaptation to new technologies or even
the introduction of changes involves much effort.

Another problem related to the dynamic behavior of an information system
concerns the addition of new requirements during the life cycle. Using one of the
above-mentioned tools, the change may be applied to the model and the new
application and its database are regenerated automatically. Consequently, we have
two conceptual schemas, i.e., the original and the evolved one, and we obtain two
databases, the one corresponding to the first conceptual schema, which stores all the
knowledge that the original application has produced while it has been working, and
the new generated one, which remains empty. In this case, the problem solution
focuses on finding a way to migrate the information produced by the first application
into the new database.

In this paper, we present a solution for both model management problems. We
explain how to solve them by means of two tools that use algebraic formalisms and
pattern techniques: the legacy system recovery tool and the data migration tool. The
rest is organized as follows: first, we present a motivating scenario involving both
problems: a legacy system recovery and its evolution [see Section 2]; we then present

Figure 1: Paradigm of automatic prototyping

429Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

the legacy system recovery tool [see Section 3] and the data migration tool [see
Section 4], along with some experimental results [see Section 5]; we report on the
related work [see Section 6], and present some conclusions and future work directions
[see Section 7].

2 Motivating Scenario

[Fig. 2] presents a motivating scenario and exemplifies the recovery of a legacy
system and its later evolution. It is a car maintenance company that has been working
for a large car dealership. The maintenance company works with an old application in
which the information is stored in a simple relational database that does not take
integrity constraints into account. The car dealership has recently acquired the car
maintenance company and they have decided to migrate the old application so that it
is O-O, although the database layer will remain relational. This time, new integrity
constraints are provided in the new relational database in order to improve
maintainability. Consider the part of the legacy system that stores information about
invoices in the example. Each invoice contains data about the task performed in a
specific period of time and at a specific price.

To recover the legacy system, a designer has to build a semantically equivalent
O-O conceptual schema that captures the semantics in the legacy system. This task is
usually done manually, which is prone to human errors and amounts to high
development costs. The first step is a manual, reverse-engineering process in which
the designer detects that the legacy table can be divided into two classes: one
containing the information about a task to be performed, and another that represents
the collection of tasks performed for a specific customer, i.e., the InvoiceLine class
and the Invoice class. (The results in [Hainaut, 1996], [Premerlani, 1994] or

Figure 2: Motivating scenario

430 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

[Ramanathan, 1996] can be applied here.) Once the model is complete, the relational
database has to be generated. Here the designer can use a CASE tool to generate the
new relational schema automatically. Despite obtaining a relational schema, these
tools do not take into account legacy data.

The experience of the maintenance company is stored in its database and, it is
expected to be preserved in the new database. Several DBMS allow for data migration
using their own ETL (Extract, Transform & Load) tools. This migration can be done
by means of SQL statements or user defined scripts which can be executed on the
database. Although ETL tools provide friendly interfaces to migrate data, DB
administrators must write migration code manually, which is error-prone and costly.

Once the O-O conceptual schema has been obtained from the legacy database and
its data has been migrated to the new database, a design problem is detected in the
resulting schema: information about the same tasks is repeated and appears in several
instances of the InvoiceLine class. Then, the designer decides to change the O-O
conceptual schema by dividing the InvoiceLine class into two classes: a new class
called Task that represents a task with information such as the price per hour, and the
InvoiceLine class that keeps the remaining information. The change is applied to
the conceptual schema and a new empty database is generated by means of the
previous CASE tool. The data migration problem comes up again. Although ETL
tools can be used as before, this situation differs from the first case since the data
migration process has to be specified. Now, the original O-O conceptual schema must
be compared with the evolved one in order to obtain mappings between their
respective databases. Thus, the designer that has applied changes to the original O-O
conceptual schema must supervise the data migration process in order to provide
knowledge about the system, and it becomes a very complex solution.

Information migration

Access to the
information of the DB

User interaction

Obtaining (input)

Access to the relational
schema

Generation (output)

INFORMATION STREAM

Figure 3: Legacy database recovery process in the RELS tool

431Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

In the following sections, we present two tools that provide a solution for both
problems using formalisms and pattern techniques. This solution consists of an
automated process that backs up the designer’s work easily and efficiently.

3 RELS: Reverse Engineering of Legacy Systems

Legacy systems can be defined informally as “software we do not know what to do
with, but still performs a useful job” [Ward, 1995]. They are information systems that
have been developed by means of methods, tools and database management systems
that have become obsolete, but they are still being used due to their reliability. The
following features characterize them:

− Software architecture based on obsolete technology that may have been
patched to adapt to new requirements, which complicates maintenance.

− Poor, complex documentation that prevents effective maintenance, making it
necessary to check the source code to understand the functionality.

− Cumulative experience working with the system that has filled its database
with information that is significant for the company.

As in all complex systems with a medium life cycle, the requirements for this

kind of applications change continuously. There are two main approaches to
performing changes in these systems. On the one hand, the legacy system can be
patched. The disadvantages to this approach are that the technology does not consider
new features to improve either code reuse, quality or documentation generation, and
that the staff that will develop the new part of the system needs to be re-trained. On
the other hand, the whole system can be developed with a new technology taking
advantage of all of its features. Both approaches imply a high cost, but we prefer the
second option because the former delays the transition to into a new technology only
temporarily, which makes maintenance harder each time the system is changed.

RELS (Reverse Engineering of Legacy Systems) provides a solution to this
problem by applying the second approach to the structure of an application. It uses a
reengineering process to rebuild the legacy system into a semantically equivalent one
with a new technology. This process consists of the following steps:

− A data reverse engineering process that extracts an abstract description from

the legacy system database to find its structure and its behavior. Changes can
be applied to it in order to adapt the systems to new requirements or to new
technologies. Our tool recovers a legacy database and obtains the static
component of an equivalent O-O conceptual schema using formal methods.

− A forward engineering process that generates the software application (its
structure in our case) based on a specific technology from the abstract
description extracted from the legacy system. We use the Rose Data Modeler
add-in by Rational [Boggs, 2002].

432 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

Our tool also allows to migrate data from the legacy database to the new one. The
data reverse engineering process and the data migration process reduces the time
needed and the number of people involved in the data evolution process. This
optimization can be achieved due to the tasks that are performed behind the scenes,
and it produces results that can be modified by the analyst. In this case, the process is
semi-automatic. The tool performs the following phases [see Fig. 3]:

− A UML conceptual schema is obtained by applying a data reverse

engineering process in order to recover a relational legacy database. Both
relational and UML conceptual schemas are represented using an algebra.

− The data migration plan is compiled into DTS1 packages whose execution
migrates data from the legacy database to the new one automatically.

− The rewriting rules applied in the first phase and the patterns used by the
Rose Data Modeler add-in to generate the new relational schema are used to
describe a data migration plan using a declarative language.

3.1 Data Reverse Engineering Phase

This phase takes the relational model of the legacy database as input and generates an
O-O model that is equivalent to the previous one. These models are represented as
terms of ADTs (Abstract Data Types) that are related by means of rewriting rules that
are applied to the term that represents a relational schema by a TRS (Terms Rewriting
System).

Term Rewriting Mechanism: An ADT is composed of a group of specification
modules, each of which provides a set of operations (constructors and functions) to
define terms and axioms to establish relations among them. Therefore, we define two
ADTs in order to represent both relational and O-O conceptual schemas:

− A relational conceptual schema is represented as an algebraic term that is

based on the syntactic and semantic rules provided by the relational ADT,
which consists of several specification modules, each of which is related to a

1 Data Transformation Services (DTS) is a SQL Server feature that allows the transfer
of data among heterogeneous databases.

Table 1: Relational specification module

433Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

relevant element of the relational model. The relational model specification
module (m-rel in [Tab. 1]) is the core module that provides rules to define
a relational conceptual schema term. A constructor is used to define an
element of the relational model as a term, e.g., a table. Furthermore, axioms
are used to specify the natural composition order between elements of the
relational model, e.g., tables are composed of columns, indicating a
compositional relationship between the specification modules of the
relational ADT.

− The O-O model specification module (m-oo in [Tab. 2]) is the core module
of the O-O ADT. It is composed of other modules that represent elements of
the O-O model, e.g., a class or an aggregation, and it expresses how to
generate terms that combine the rules of its components. Thus, it provides
the rules to generate O-O conceptual schema terms.

Once we can define conceptual schemas as terms of both relational and O-O
ADTs, we can relate each element of the relational ADT with different elements of
the O-O ADT that are semantically equivalent. An ADT consists of specification
modules, and a module can be formed by other modules, as we saw in the cases of the
m-rel and m-oo modules. Thus, a new ADT is defined to relate elements of both
relational and O-O ADTs. The rules of m-rel-oo relate the operators of the specific
ADTs so that a term of the relational ADT is translated into a term of the O-O ADT.
These rewriting rules, which represent the correspondences between elements of the
relational model and elements of the O-O model, are applied automatically by a term
rewriting system. Ours is finite and non-confluent, because we can obtain several O-O
terms from the same relational term, i.e. several possible representations. When the
TRS applies the rewriting rules of the m-rel-oo specification module to a relational
term, subterms of both relational and O-O ADTs coexist in the intermediate terms that
belong to m-rel-oo ADT. At the end of the rewriting process, the entire term
belongs to the O-O ADT [Pérez, 2003].

The rewriting process is automatic but the user can validate whether the rules
applied are the most suitable, because an element of the relational model might be

Table 2: O-O specification module

434 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

represented by several elements of the O-O model. The tool supports decisions of this
kind by providing the user with a set of potential rewriting rules that are syntactically
correct in each rewriting step. To reduce the interactions required by the user, we
have taken into account the criterion that legacy databases were usually designed with
access efficiency in mind.

The Data Reverse Engineering Process: The input of this phase is a relational
schema of a legacy database, and it generates two XML documents as output: one that
represents the O-O conceptual schema generated, and another that contains the
rewriting rules applied to obtain the final O-O conceptual schema. In this phase the
process that produces these outputs has three steps:

− Reading the relational schema of the legacy database. The access to the
relational schema is performed by means of an API called RSAO in [Fig. 3].
This step builds a term of the defined relational ADT that represents the
relational schema obtained from the legacy database. It also considers
features of the old DBMS or other repository forms that do not allow for the
definition of integrity or reference constraints, which are usually built into
the business logic of the legacy system. Thus, user interaction may be
necessary to provide additional information to obtain a complete relational
conceptual schema. This extra information is added to the relational term
obtained from the relational database by means of an intuitive graphical
interface.

− Translation of the relational term into an O-O term by means of the rewriting
rules described in the previous section. The user may decide to apply other
rewriting rule than the default rules chosen by the TRS in order to generate
an O-O term that is more accurate.

− Storage of the O-O term as an O-O conceptual UML schema in XMI, which
allows to read the O-O conceptual schema generated with most CASE tools.
The rewriting rules applied in the translation process are written to an XML
document that will be used in the second phase.

3.2 Relational Migration Plan Generator

This phase generates a migration plan that specifies what information must be copied
from the legacy database to the new database. Its inputs are two XML documents that
contain the mappings between elements of the legacy relational schema and elements
of the recently generated O-O conceptual schema, and between the elements of this
O-O conceptual schema and elements of the new relational schema generated by the
Rose Data Modeler add-in.

The migration plan generator applies a set of patterns to the input
correspondences and produces a migration plan that is specified using a relational
declarative language. The use of a declarative language provides independence from
the specific DBMSs used to support the databases. Additionally, this phase checks the
constraints of the target database in order to avoid constraint violation.

Relational Migration Plan: A relational migration plan specifies the actions that must
be performed to copy data from the legacy database to the new one, generated from

435Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

the recovered O-O conceptual schema. The migration plan consists of a set of
migration modules. There is one such module for each table of the target database that
assigns a view over the legacy database to each target table. Migration modules
contain a set of mappings between columns of the source view and the target table
that constitute the migration expressions that can be used in a migration plan and they
are specified by means of the relational declarative language.

The automatic generation of the migration plan takes its structure and its contents

into account. Thus, two kinds of patterns are used: migration patterns and migration
expression patterns. The migration plan generator gets the rewriting rules applied
during the reengineering process from the two input XML documents, one from the
data reverse engineering phase and another from the Rose Data Modeler. These rules
provide enough information to determine what migration modules are needed and
which tables of the legacy database form the source view for each module. Thus, the
generator constructs the migration modules by applying the migration patterns. Then,
it applies the migration expression patterns in order to map the attributes of the source
view onto the corresponding attributes of the target table in each migration module
Once the migration plan is finished, the generator writes it to an XML file.

Constraint Checking: Referential and integrity constraints in the target database
imply new problems to the migration process because the legacy database is not
supposed to support them. The migration plan generator checks these constraints to
avoid errors during the data migration execution. To obtain the meta-information
required about referential and integrity constraints of a database to generate the data
migration plan, we focus on SQL99 [Türker, 2001]. Relational DBMS that are
compliant with SQL99 associate to each database a set of tables that contain

add_ctr_pk([code, invoice_line], LegacyInvoice,
add_ctr_unique([code, invoice_line],
LegacyInvoice,
add_column(price/hour, currency, false,
LegacyInvoice,
add_column(task, string, false, LegacyInvoice,
add_column(duration, int, false, LegacyInvoice,
add_column(description, string, false,
LegacyInvoice,
add_column(invoice_line, int, false,
LegacyInvoice,
add_column(invoice_date, date, false,
LegacyInvoice,
add_column(code, int, false, LegacyInvoice,
add_table(LegacyInvoice,
create_database())))))))))))))

add_identif(line_number, InvoiceLine,
add_identif(code, Invoice,
add_unique(line_number, InvoiceLine,
add_unique(code, Invoice,
add_vbl_att(price_hour, currency, true,
add_vbl_att(task, string, true,
add_vbl_att(duration, int, true,
add_vbl_att(description, string, false,
add_ctt_att(line_number, int, true,
add_vbl_att(invoice_date, date, true,
add_ctt_att(code, int, true,
(add_aggregation(agg_Invoice_InvoiceLine,
Invoice, InvoiceLine, 1, 1, 1, n, false, true, false,
true,
add_class(Invoice,
add_class(InvoiceLine, create_schema())))))))))))))))

(a) (b)

Table 3: A relational term that represents the Invoice table of the legacy
database (a), and an O-O term that represents the two aggregated classes of the
new conceptual schema

436 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

information about its schema. We have developed an API that reads these tables by
means of the OLEDB interface [Lee, 2002].

The migration order is a sequence in which the tables of the target database must
be filled to avoid violations of referential constraints. In the example in [Fig. 2], the
InvoiceLine table has a foreign key into the Invoice table. If the migration
process fills the InvoiceLine table first, the underlying referential constraint to the
foreign key would be violated, i.e., the correct migration order Invoice first and
InvoiceLine later. The generator of the migration plan produces a correct
migration order by analyzing the relational schema of the database as if it was a
directed graph in which the tables are the nodes and the foreign keys are the arcs. The
generator takes into account foreign keys to the same table (loops), several foreign
keys between two tables (parallel arcs) and cycles among several tables. This order
becomes the sequence in which the modules of the migration plan must be performed.
Furthermore, it also considers the integrity constraints of the legacy and the target
database, because the analyst might complete the relational schema manually in the
first phase. Thus, the schema generated might contain some constraints that are not
considered in the legacy database. A simple not null constraint over a column that
is added to the new database can cause an error if there is a tuple that has a null
value for its source column in the legacy data. Furthermore, the generator compares
the relational schema of the source view and the target table for each migration
module. When the tool detects an inconsistency, it proposes several solutions to the
user, i.e., population filters, default values and data transformations.

3.3 The Migration Plan compiler

This phase compiles the migration plan into a specific technology and executes it.
Each DBMS has its own ETL tool that allows to migrate data among databases. We

<UML:Association xmi.id='G.1' name='Invoice_InvoiceLine' visibility='public' isSpecification='false'
isRoot='false' isLeaf='false' isAbstract='false'>

<UML:Association.connection>
<UML:AssociationEnd xmi.id='G.2' name=''
 visibility='public' isSpecification='false' isNavigable='true' ordering='unordered' aggregation='none'
targetScope='instance' changeability='changeable' type='S.363.1034.45.4'>

 ...
 </UML:AssociationEnd>
 <UML:AssociationEnd xmi.id='G.3' name='' visibility='public' isSpecification='false'
 isNavigable='true' ordering='unordered' aggregation='aggregate'
 targetScope='instance' changeability='changeable' type='S.363.1034.45.1'>
 ...
 </UML:AssociationEnd>

</UML:Association.connection>
</UML:Association>
<UML:Class xmi.id='S.363.1034.45.1' name='Invoice' visibility='public' isSpecification='false' isRoot='true'
isLeaf='true' isAbstract='false' isActive='false' namespace='G.0'>
 ...
</UML:Class>
<UML:Class xmi.id='S.363.1034.45.4' name='InvoiceLine' visibility='public' isSpecification='false' isRoot='true'
isLeaf='true' isAbstract='false' isActive='false' namespace='G.0'>
 ...
</UML:Class>

Table 4: XMI document that contains information about the generated O-O
conceptual schema

437Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

use the Data Transformation Services (DTS) by Microsoft SQL Server, which allows
to migrate data between heterogeneous relational DBMS. The DTS code that
performs data migration is structured into DTS tasks that perform actions such
copying data between two tables, executing SQL commands, or connecting to other
databases.

The compiler receives an XML document that describes the migration plan from
the second phase of RELS and obtains a set of DTS packages that are able to perform
the specified migration plan between the legacy database and the new one. The
compiler parses the migration plan and generates the structure of a DTS package. For
each type of input module, there is a specific pattern that produces a set of DTS tasks.
Once the structure of the final DTS packages is built, the compiler parses the
migration expressions of each migration module and generates the contents of the
DTS tasks of the corresponding DTS module.

The migration plan avoids target database constraint violations by means of
several solutions. One of them is to ignore inconsistent data so that there may be
much legacy information that is not copied to the target database. The execution
environment provides an option to migrate the inconsistent data to error tables that
have no constraints so that the designer can query them and recover more information
by means of a wizard that applies the solutions of the second phase to these error
tables.

3.4 Example

In our motivating scenario, we began with a legacy system whose database consists of
a table without any integrity constraint. RELS reads the legacy relational schema, and

<migration_plan>
 ...
 <target_table operation="insert">
 <target_name operation="empty">INVOICE</name _destino>
 <target_pk> <pk_field>CODE</pk_field></target_pk>
 <source_table>
 <source_field>LEGACY_INVOICE</source_field>
 <source_pk><pk_field>CODE</pk_field></source_pk>
 <target_field operation="insert">
 <target_name operation="empty">CODE</target_name>
 <source_field>
 <source_field>LEGACY_INVOICE.CODE</source_field>
 <condition>UNIQUE</condition>
 <condition>NOT_NULL_VALUE</condition>
 </source_field>
 </target_field>
 <target_field operation="insert">
 <target_name operation="empty">date</target_name>
 <source_field>
 <source_field>LEGACY_INVOICE.DATE</source_field>
 </source_field>
 </target_field>
 </source_table>
 </target_table>
 ...
<migration_plan>

Table 5: Fragment of the relational migration plan that specifies the data migration
to the table Invoice of the target database

438 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

the designer adds metadata that provides information about integrity constraints. The
tool generates then the relational term in [Tab. 3.a]. The rewriting process obtains the
O-O term that appears in [Tab. 3.b]. In this process, the designer has participated
because the default rule that applies to a unique table generates a unique class, i.e., the
user has chosen one of the rules proposed by the tool and has generated two
aggregated classes.

In [Tab. 4], we show part of the XMI document generated. We use Rational Rose
to open this document and its Data Modeler add-in to generate the corresponding
relational schema. This new relational schema is different from the legacy one
because the analyst has provided information about new integrity constraints and has
also participated in the rule rewriting process. [Tab. 5] shows the migration module
that specifies the data copy to the Invoice table of the target database. In this step,
the tool has detected possible integrity constraint violations due to the not null
value constraint on the columns of the table.

Finally, the migration plan is compiled into DTS code. Depending on the user’s
choices the compiler generates one package containing all the migration modules of
the plan (compiled mode) or two DTS packages (step-by-step mode). They can be
opened from the same SQL Server DTS tool. If the migration plan is compiled by
means of the step-by-step mode, the DTS packages can be executed one after the
other. The graphical interface allows to query the data in order to check the
information migrated, and it provides several wizards to recover inconsistent data
from the error tables generated during the migration process.

4 ADAM: Automatic DAta Migration

Nowadays, CASE tools can evolve applications by modifying their conceptual
schema and regenerating the code and the database schema from the modified
conceptual schema [see Fig. 2]. However, these model compilers do not take into
account the data stored in the database during the evolution process. When an
information system undergoes an evolution, its conceptual schema is updated and a

Migration
Plan
Compiler

Migration
Plan
Compiler

Phase 2Phase 1

Old
Conceptual

Schema

New
Conceptual

Schema

ComparatorComparator

Phase 3

olddb

newdb

DTS packages

Migration
Plan
Generator

Migration
Plan
Generator

Migration
Plan

Figure 4: Data migration with ADAM

439Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

new schema results. A model compiler generates new code and a new empty database
from the new schema. The structure and the properties of the new database might be
different from the older database. As the data remains compliant to the older database
schema, the designer must preserve the data of the company by migrating it so that it
satisfies the constraints of the new database.

The migration task is necessary and is usually performed manually. This task

increases considerably the maintenance cost of a software product. For this reason, an
important issue is the improvement of the database maintenance process. Our
proposal is the ADAM tool. The starting point was the work done by Carsí on OASIS
reflection [Carsí, 1999]. OASIS is a formal language to define conceptual models of
O-O information systems [Letelier, 1998], and it was extended in Carsí’s work to
support the evolution of models. As a result, the AFTER tool [Carsí, 1998] was
developed. This is a CASE tool prototype that builds on Transaction-Frame Logic
[Kifer, 1995] and allows the definition, validation and evolution of OASIS models.
As the data model of OASIS and UML are basically the same, the solution applied to
OASIS models can be applied to UML models as well.

In ADAM, the data migration process transfers and updates information system
data from the old database to the new one [see Fig. 4]. Despite ADAM performs its
steps automatically, the results can be modified easily, in which case the process is
semi-automatic.

4.1 Matching between Conceptual Schemas

This phase is necessary to be able to discover the changes that have occurred in the
old conceptual schema. The changes can be obtained by applying a matching
algorithm whose result is the set of correspondences between the old and new

Conceptual
Schema

Class Aggregation
Association Specialization

Attributes

Figure 5: Tree representation of a conceptual schema

OLD CONCEPTUAL NEW CONCEPTUAL
Invoice Invoice
InvoiceLine InvoiceLine
Null Task

Table 6: Correspondences between classes of the recovered and the evolving
systems

440 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

conceptual schemas. The matching is done automatically [Silva, 2002a]. Our
algorithm obtains the correspondences between both schemas and shows whether an
element is new or a modification of an older element. The matching algorithm is
based on dynamic programming techniques and graph theory.

To apply the algorithm, ADAM represents conceptual schemas as trees breaking
cycles in relationships between their elements [see Fig. 5]. The nodes are classified
into classes, aggregation and association relationships, specialization relationships,
and attributes. This categorization of the matching space reduces the complexity,
thereby reducing the processing. The algorithm can also use different matching
criteria and combinations [Silva, 2002b]. A matching criterion allows to distinguish
whether two elements of two different conceptual schemas come from each other.
Nowadays, the matching criteria that the algorithm applies are: the object identifier
(OID), the name of the element, the number of attributes, or the creation date.
Depending on the matching criterion selected by the user or the combination of them,
the result of the algorithm is different. For this reason, the knowledge of the user
about the system helps to select the most convenient criterion.

The matching of a sample of conceptual schemas provided by our industrial
partners allowed us to validate the algorithm, and it achieved a high rate of correct
matchings. As a result of this phase, ADAM produces the correspondences between
the elements of the conceptual schemas that have been compared. For instance, in
[Tab. 6], we show the correspondences of the algorithm using the name matching
criterion for the classes of the example presented in [Section 2].

4.2 Generation of a Data Migration Plan

From the correspondences detected in the first phase of the migration process, the
second can generate the first version of a data migration plan automatically. A data
migration plan is a set of data changes that are specified using a data migration
language (ADML) [Pérez, 2002a]. A data migration plan must include all the
necessary changes to perform a correct migration in the right order. ADAM structures
its data migration plans as a set of migration expressions, changes and modules,
namely:

Migration expressions: They can be used in a data migration plan. Each type has
different semantics and follows different syntactic constraints. Examples include
Data Source, Transformation Function, Filters, and so on.
Changes: A change is the set of migration expressions that specify the updates
undergone and the filters applied to the old database instances.

Figure 6: Price/Hour attribute of Task and InvoiceLine classes

441Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

Migration modules: They contain the set of transformations applied to obtain a
target element; it has a transactional behavior when it is executed by the ADAM
tool. The composition of modules forms a data migration plan. Finally, it is
important to note that there is one migration module for each class, aggregation
and specialization of the new conceptual schema.

Each change in the old database is specified using a declarative O-O language.

The advantage of ADML is the independence from DBMSs due to its high abstraction
level. For this reason, ADAM allows the expression of a migration plan in an easy
and user friendly way and it does not need to take into account implementation
details. Object-oriented conceptual schema elements are the data that are managed by
the migration language that is object-oriented and uses path expressions to specify:

− The changes undergone by a conceptual schema element.
− The data that belongs to the old conceptual schema.
− The filters that will be applied on the data, if necessary.

Inputs: The ADAM migration plan generation requires several data sources to create
the structure and the contents of the plan. The inputs of this process are the following:

− The correspondences between conceptual schemas produced previously.
− Properties of the elements of the conceptual schemas. They are necessary in

order to know the changes between the elements of a matching and to
generate the implied transformations. These transformations must be applied
on the data of the old element to be compliant with the new element. This
information is in the conceptual schemas, where the properties of each
element are defined. In our example, we focus on the following
correspondence: The Price/hour attribute of the Task class of the new
conceptual schema obtains its data from the Price/hour attribute of the
InvoiceLine class of the old conceptual schema. The properties of both
attributes are included in the specification of the classes [see Fig. 6]. [Fig. 5]
shows that the prices of the InvoiceLine class were in Spanish Pesetas,
and that they must be in Euro in the new Task class. As a result, the data
type of the price/hour attribute was integer in the old schema, but
double in the new one. The price/hour value must also be converted to
the equivalent in Euro.

− The migration order is the sequence in which the data should be migrated.
This order preserves the database in consistent states during the migration
process. Moreover, this order facilitates the combination of migration
modules as well as the migration order between non-related modules. The
migration order algorithm analyses the structure of the new conceptual
schema to obtain the relationships between elements. These relationships
imply dependencies determining the order to be followed in the data
migration process. The migration order obtained by the algorithm for the
new conceptual schema of our example is the following: Invoice, Task,
InvoiceLine.

442 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

Process: First, ADAM generates the structure by creating an empty migration module
for each element of the new conceptual schema and includes the modules in the data
migration plan in the computed migration order. Next, the module content is
generated by providing the migration expressions of each migration module and
including them into their modules. Finally, a complete migration plan results. This
automatic and complete generation plan is performed using two types of patterns:
migration and migration expressions [Pérez, 2002b]. We have specified them using
the patterns design criteria proposed by [Gamma, 1994]. Each pattern is composed of
several sections that give different qualities of the pattern.

Migration expression patterns: There is a pattern for each of the element
properties that can be changed by the schema evolution process and for any of
their possible combinations. Each pattern produces a migration expression or a set
of migration expressions that specify the correct transformation of data. The
generation of the migration expressions for a new element consists of determining
which old element is related to it through mapping and consulting their different
properties. Next, it applies the instantiated specific element pattern that specifies
the migration expression code for the updated properties, and the resulting
migration expressions are generated. Finally, these expressions are included in the
new element module. When the data migration plan is executed, the generated
migration expressions of an element will be evaluated and the instances migrated
to the new database. An example of a migration expression pattern is the one for
an attribute when the “name” and the “data type” properties change (P-08) [see
Tab. 7].

In our example, ADAM uses the necessary patterns for each of the
correspondences established between the attributes of the new Task class and the
old InvoiceLine class. Moreover, we need to take into account that the
transformation function generated by
IntToDouble(OldCS.Product.UnitPrice) must be modified by the user to
add the currency conversion function2. As a result, the transformation function
that will be included in the data migration plan is
PtsToEuro(IntToDouble(OldCS.Product.UnitPrice).

Migration patterns: For each type of target conceptual schema elements,
migration patterns establish the way of migrating data. They also establish the
necessary actions to migrate each type of conceptual schema element and the
allowed migration expressions for each one. During the design process of a
migration pattern, we must take into account the type of the conceptual schema
element, because the transformations that may undergo each element are
different.

A type of a conceptual schema element can have different associated patterns
because there are different properties that influence the migration process. For
example, the migration of a specialization relationship is different if its condition
is more restrictive or less restrictive than the previous one, or is different because

2 The PtsToEuros conversion function is included in the ADAM set of built-in
transformation functions, and it converts from old Spanish Pesetas into Euro.

443Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

we must apply different types of filters on the data and different migration
expressions in a different place. An example of a migration pattern is the pattern
of the elemental class (P-01) [see Tab. 8].

The first version of the data migration plan should be validated by the user
after it is generated by ADAM. In addition, the users can modify the plan as
needed. ADAM provides a graphical user interface to perform these tasks in an
easy, user-friendly way. This interface shows the correspondences between
elements using a tree and the differences between them by means of textual
expressions, symbols and colors [see Fig. 7].

Outputs: After applying the necessary patterns to generate the data migration plan
automatically, it is written to an XML document. This format makes the reading and
translation of the data migration plan easier. This document makes the second and
third phases of ADAM independent from each other.

P-08: Pattern for an attribute when the “name”and the “data type” properties
change.
Solution
The solution presents the generic migration expressions that specify the attribute
changes of “name”, “data type” and “not null value” properties. In this case, as in
the P-041 and P-081 patterns, it is necessary to perform a type conversion in the
transformation function as follows:
old_data_typeTOnew_data_type (old_attribute)
This pattern is a composition of the “name” and the “data type” property patterns
(P-031 and P-04). The migrations expressions that express these changes are the
following:
Transformation_Func.: generic_func‘(‘IDENT_class‘.‘IDENT_attr‘)‘
Example
The prices of the products were in Pesetas, and now they must be in Euro. As a
result, the data type of the price/hour attribute was integer in the old schema and
is double in the new schema and the price/hour value must be converted to Euro.

OCS (Old Conceptual Schema)

price/hour: Integer;

INVOICELINE

NCS (New Conceptual Schema)

price/hour: Double;

PRODUCT

Text Format
 Transformation_Function: IntToDouble(OldCS.InvoiceLine.price/hour)
XML Format
 <Transformation_Function> IntToDouble(OldCS.InvoiceLine.price/hour)
 </Transformation_Function>

Table 7: Solution and example sections of the migration expression patter P-08

444 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

P-01.Pattern: Elemental class
Solution

 Let S be a set of schemas, C be an alphabet of classes, A be a set of attributes,
G be a set of filters that are applied on old class population, GC be a set of
conditions that are applied over old attributes, F be a set of transformation
functions, SM be a set of matches between conceptual schemas, CM be a set of
matches between classes of new and old conceptual schemas, and AM be a set
of matches between attributes of conceptual schemas.

S1, S2 ∈ S ∧ S1.C1, S2.C2 ∈ C ∧ S1.C1.a1, S2.C2.a2 ∈ A ∧ f1, .., fn ∈ F
∧ g1,...,gn ∈ G ∧ gc1,...,gcn ∈ GC ∧ SM1 ∈ SM ∧ CM1 ∈ CM ∧ AM1∈
CA ∧ SM1.old=S1 ∧ SM1.new=S2 ∧ CM1.old=S1.C1 ∧
CM1.new=S2.C2 ∧ AM1.old=S1.C1.a1 ∧ AM1.new=S2.C2.a2 ! data
(S2.C2) = {y | ∃x ∈ data(S1.C1) ∧ ∀i ⊨ x gi i=1,..,n ∧ ((y.a2 = fnofn-

1...of1(x.a1) v y.a2 = cte) ∧ ∀i ⊨ x↓a1 gci)}

Example
The Task class of the new conceptual schema obtains its data from the
InvoiceLine class of the old conceptual schema. However, the analyst of this
system is only interested in the products that have a price that is higher than
1000. Moreover, all its attributes must be migrated with their transformations
and conditions.

Text Format:
S1, S2 ∈ S ∧ S1.InvoiceLine, S2.Task ∈ C ∧ S1.InvoiceLine.task,
S1.InvoiceLine.price/hour, S2.Task.code, S2.Task.descriptor, S2.Task.price/hour ∈ A ∧
IntTODouble, RightTrunc, PtsToEuro ∈ F ∧ {S1.InvoiceLine.price/hour > 1000pts}∈
G ∧ SM1 ∈ SM ∧ CM1 ∈ CM ∧ AM1, AM2, AM3.AM4 ∈ CA ∧ SM1.old=S1
∧ SM1.new=S2 ∧ CM1.old=S1.InvoiceLine ∧ CM1.new=S2.Task ∧
AM1.old=S1.InvoiceLine.task ∧ AM1.new=S2.Task.code ∧
AM2.old=S1.InvoiceLine.price/hour ∧ AM2.new=S2.Task.price/hour ∧
AM3.new=S2.Task.descriptor ! data (S2.Task) = { y | ∃x ∈ data(S1.InvoiceLine) ⊨ x
(S1.InvoiceLine.price/hour > 1000 ∧ (y.code = x.task) ∧ (y.descriptor = “ ”) ∧ y.Price
= PtsToEuro(IntToDouble(x.UnitPrice)) }

Table 8: Solution and Example sections of the migration pattern P-01

445Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

XML Format:
<New_Conceptual_Schema>
 <Class>
 <Name> Task </Name>
 <Origin>
 <Name> InvoicedLine </Name>
 <Filtered>
 <Filter> OldCS.CS1.InvoicedLine.price/hour > 1000
 </Filter
 <Attribute>
 <Name> code </Name>
 <OriginAttribute> OldCS.InvoiceLine.Task </OriginAttribute>
 <Transformation_Function> OldCS. InvoiceLine.Task
 </Transformation_Function>
 </Attribute>
 <Attribute>
 <Name> Descriptor </Name>
 <OriginAttribute> Null </OriginAttribute>
 <Transformation_Function> ” ”
 </Transformation_Function>
 </Attribute>
 <Attribute>
 <Name> price/hour </Name>
 <OriginAttribute> OldCS.InvoiceLine.price/hour </OriginAttribute>
 <Transformation_Function>
 PtsToEuro(IntToDouble(OldCS.InvoiceLine.price/hour))
 </Transformation_Function>
 </Attribute>
 </Class>
</New_ConceptualSchema>

Table 8 (cont.): Solution and Example sections of the migration pattern P-01

4.3 Data Migration Plan Compiler

Finally, the third phase of the migration process compiles the data migration plan into
code. The code execution migrates data from the old database to the new one [Anaya,
2003]. This phase generates automatically the code that a migration tool must produce
manually using its script languages. Thus, ADAM reduces the people and time
invested in the creation of a migration plan between databases.

In ADAM, the target language was selected taking into account the ability to
specify complex expressions and migrate data between heterogeneous databases. SQL
was excluded because it does not provide enough expressivity to specify complex
expression transformations. The compilation of the data migration plan produces a set
of DTS packages. A DTS package includes a set of connections to the data sources,
where data are read and stored, and a set of tasks to migrate the information. To
generate the specific DTS packages that perform the data migration, we define a set of
semantic correspondences between the object-oriented migration plan and the
elements of a DTS package. These correspondences are shown in [Tab. 9].

446 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

5 Experimental Results

In this section, we indicate how we tested our tools on data migration.

5.1 Experimental Results with RELS

The RELS tool consists of several modules that are communicated by means of XML
documents. This modularity has allowed us to use technologies that run on different
operating systems, such as MAUDE system, which runs on Linux, and DTS, which
runs on Windows. As [Fig. 3] shows, the RSAO API reads the meta-information that
constitutes the relational schema of the legacy database and structures this
information into an XML document that is read by the translation module (phase 1),
which uses the MAUDE system and produces two additional XML documents: one
that describes the O-O model generated in XMI, and another that specifies the rules
applied during the rewriting process.

The XMI document is used by Rational Rose to obtain the O-O conceptual model
to generate the relational schema of the target database. The migration plan generator
module (phase 2) obtains the XML document that describes the rewriting process
followed in phase 1, and obtains the generation rules applied by the Data Modeler
add-in of the Rational Rose tool. This module (phase 2) generates an XML document
that specifies the data migration plan, which is compiled by the DTS compiler module
(phase 3), obtaining the DTS packages, whose execution performs the data migration
from the legacy database to the target one.

Figure 7: Graphical representation of the differences between elements

447Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

One of the tests that we applied to the RELS tool was a free accounting
application, which stored its information into a relational database. We used RELS to
recover this database, obtaining an O-O conceptual schema that could be edited in
Rational Rose and a new relational database that contained the information of the
legacy database. This process was carried out in an almost automatic manner. The
user only interacted with RELS to indicate that the table could be broken down into
several classes. By doing so, the RELS tool saved us from using a team to build the
new database and to migrate the information, which reduces costs in both staff and
time.

5.2 Experimental Results with ADAM

The ADAM tool has a 3-tier architecture: the client layer includes the interface;
the server layer implements services that allow ADAM to manage the data migration
process; the database stores the information about schemas, the matchings between
them and data migration plans. Moreover, ADAM needs a checker of ADML
migration expressions in order to validate the migration expressions defined by users
syntactically and semantically. The ActiveX checker has been generated using
VisualParse ++, and a file of rules has been designed. The checker is invoked by the
server layer using the function fu_validate(string_formulae,

type_formulae). Each it is called, it reports if the migration expression is valid
and provides the decomposition of the migration expression in a XML tree. In
addition, the checker needs information about the conceptual schema elements that
includes the migration expression during its validation process. This information is
gathered by querying the server.

Data Migration Plan DTS Code
Migration Module Package
Migration Sub module Task
Data Filter WHERE condition of task query
Transformation Function Function specified using the script language and

defined at the transformation section of a task
Attribute Condition Condition specified using the script language and

defined at the transformation section of a task

Table 9: Solution and example sections of the migration pattern P-01

448 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

With regard to the server layer, it implements the three phases needed to create a
data migration plan [see Fig. 4]. Input conceptual schemas are XMI documents that
are loaded into the database of the ADAM tool. This information is used by a module
that implements the comparison algorithm, and the results are stored in the database.
Another module implements the generation of the data migration plan. It uses the data
stored in the database and its results are stored in an XML document. The structure of
these XML documents is briefly presented in the migration patterns [see Tab. 8].
Finally, the XML document that stores the data migration plan is used by the last
module that implements the server layer of the tool. This module is the one
responsible for compiling this XML document into DTS packages in order to be
executed. This execution allows the data migration from the old database to the new
one. It is important to keep in mind that XMI documents allow us to manage any kind
of conceptual schema that is able to be stored in accordance with this standard, and
XML documents allows us to achieve independence among the phases of the ADAM
tool.

ADAM was tested using several examples that were provided by industrial
partners and were used in order to evolve their data. We obtained better results than
our industrial partners doing these tasks manually. Due to the privacy policies of the
companies, we cannot publish these results; however, we can disclose that one of our
analyst, who was not familiar with the information system, migrated the database
using ADAM for two days and a half, whereas the same database took one month to
be migrated manually by a experts who were familiar with the information system.

6 Related Work

In [Bisbal, 1999], a general migration process is split into several phases. We
compare RELS and ADAM and their application with the tools studied in this survey
for each proposed phase. In [Bisbal, 1999], the justification phase is when the benefits
and risks of recovering a legacy system are discussed. Although there are software
quality metrics for estimating the level of technical difficulty involved and there are

Figure 8: ADAM architecture

449Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

tools like RENAISSANCE [ESPRIT, 1996] to support this task, we have not yet
considered them.

An understanding process of the legacy system is necessary in order to know its
functionality and how it interacts with its domain. [Müller, 2000] presents a roadmap
for reverse engineering research that builds on the program comprehension theories of
the 80s and the reverse engineering technology of the 90s. We focus on database
understanding tools and we found the DB-Main CASE tool [DB-Main]. This tool
applies a data reverse engineering process and recovers the conceptual schema from
the logic schema to obtain traceability between different layers of the database, to
create new databases in other DBMSs and to reduce the dependence on the
technology. [Henrard, 2002] describes and analyzes a series of strategies to migrate
data-intensive applications from a legacy data management system to a modern one
that builds on the DB-Main CASE tool. Rational Rose also obtains O-O conceptual
schemas from many DBMSs by means of the Data Modeler add-in. However, none of
them takes into account legacy data recovery.

Not only does RELS support development of relational schemas by hiding their
physical database design, but it also provides an automated translation across
ontologies, i.e., the relational and the O-O metamodels. In the target system
development phase, which is based on three-layer target systems, we produce the
persistent layer. The testing phase ensures that the new recovered system provides the
same functionality as the legacy system. This is a complex task that can be supported
by a Back-to-Back testing process [Sommerville, 1995]. We can shorten it by
generating a relational schema that is semantically equivalent to the legacy database
schema.

For the migration phase, we contrast the use of our tool with the other approaches
presented in [Bisbal, 1999]. The Big Bang approach [Bateman, 1994], also referred to
as the Cold Turkey Strategy [Brodie, 1993], involves redeveloping a legacy system
from scratch using the software and hardware of the target environment. This
approach was criticized in [Brodie, 1993], where the authors present their Chicken
Little approach. This strategy proposes migration solutions for fully-, semi- and non-
decomposable legacy systems by using a set of gateways that allow the recovery of
the legacy system in an incremental way. These gateways relate the legacy and
recovered databases during the migration process, so that both systems coexist during
the migration process, sharing data. Nevertheless, [Wu, 1997] presents the Butterfly
methodology, which discredits the Chicken Little approach by arguing that the
migration process maintained by means of gateways is too complex. With the
Butterfly approach, new subsystems can be developed; however they are only taken
into production once the whole system is finished using the Cold Turkey approach.
The last phase involves a data migration process that eliminates the need for data
gateways. RELS follows this approach and supports the automated generation of the
new database by means of a formal data reverse engineering process.

RELS and ADAM focus on the data migration process, and takes into account
heterogeneous relational DBMSs and manages inconsistencies that might be produced
during the migration of the legacy data to the new database. Additionally, the high
level of user involvement in these approaches is drastically reduced by means of data
inconsistency wizards and automated support for schema generation. RELS focuses

450 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

on relational DBMS, but it can also be applied to COBOL legacy systems whose
persistent layer is based on a flat file by interpreting it as a relational table.

Several DBMS allow for data migration using their ETL tools. This migration can
be done by means of SQL statements or user-defined scripts that can be executed on
the database. However, these tools do not provide automatic support for the
generation of these statements and scripts as the data migration tool does. For this
reason, DB administrators must write the migration code manually.

There are several proposals that study new algorithms to perform data migration
more efficiently, e.g., [Anderson, 2001] and [Khuller, 2003]. They focus on the
physical consistency of the data persistence when the physical storage configuration
must be changed, whereas we stay at a high logical level.

The most similar approach to ADAM is TESS [Staund, 2000], which revolves
around an automatic process that is based on schema evolution, and it uses an
intermediate language that is generated from the relational schema code. This is an
important difference with our approach, because we deal directly with the O-O
conceptual schemas, and do not have to translate them into an intermediate language.
The O-O conceptual schemas give us a higher level of abstraction and eliminate the
translation process.

The Varlet Database [Jahnke, 1998] support to transform a relational schema into
an O-O conceptual schema and migrates the legacy data to the new O-O database.
However, our approach considers a relational database as the persistence layer of an
object society and migrates information to it. Furthermore, in Varlet, the legacy
relational schema is enriched with semantic information that is extracted from several
sources as the application source code. In our approach, this semantic information is
given by the user interactively.

7 Final Remarks and Further Work

This paper reports on two experiences in software evolution that provide support to
legacy system recovery and data migration. To recover a legacy system, we use an
algebraic approach by using algebra terms to represent models. RELS provides a data
reverse engineering process supported by a term rewriting system that applies a set of
rewriting rules, and obtains the term that represents the target O-O model. RELS also
generates a data migration plan that specifies the data copy process to keep all the
legacy knowledge in the new recovered application database. This entire process
should be checked by a designer who could intervene, if necessary, to obtain a more
accurate result.

The data migration problem is also introduced for the O-O conceptual schemas
evolution where persistent layers are formed by relational databases. In this case, a
matching process is applied between both O-O models to generate mappings between
them that are used in the generation of the data migration plan. The automatic
generation process gives us a preliminary version of a data migration plan that can be
modified later by the designer. The contents and structure of the data migration plan
are generated by means of a set of patterns. The high abstraction level of the
migration language allows us to be independent from the underlying DBMS.

RELS and ADAM work for several heterogeneous models by means of mappings
between them that allows transformations between models of heterogeneous

451Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

metamodels. Model management aims at solving problems related to model
representation and its manipulation. This is done by considering models as first-class
citizens that are manipulated by means of abstract operators. This approach permits
the automation of model manipulation tasks. Therefore, it completely involves all the
tasks carried out in our projects. In future projects, we will propose a model
management platform that permits model representation and manipulation using an
algebraic approach.

References

[Anderson, 2001] Anderson, E., Hall J., Hartline, J., Hobbes, M., Karlin, A., Saia, J.,
Swaminathan, R., Wilkes, J. (2001). An Experimental Study of Data Migration Algorithms.
Proc. of Workshop on Algorithm Engineering, pages 145-158.

[Anaya, 2003] Anaya, V., Carsí, J.A., Ramos, I. (2003). Automatic evolution of database data.
Novática, 164: 51-55.

[Balzer, 1985] Balzer, R. (1985). A 15 Year Perspective on Automatic Programming. IEEE
Transactions on Software Engineering, 11(11): 1257-1268.

[Bateman, 1994] Bateman, A., Murphy, J. (1994). Migration of Legacy Systems. School of
Computer Applications, Dublin City University, Working Paper CA-2894.

[Bisbal, 1999] Bisbal, J., Lawless, D., Wu, B., Grimson, J. (1999). Legacy Information
Systems: Issues and Directions. IEEE Software. 16(5): 103-111.

[Boggs, 2002] Boggs, W., Boggs, M. (2002). Mastering UML with Rational Rose 2002. Sybex.
[Brodie, 1993] Brodie M., Stonebraker M. (1993). DARWIN: On the Incremental Migration of

Legacy Information Systems; Technical Report TR-022-10-92-165 GTE Labs Inc.
[Brodie, 1995] Brodie, M. and Stonebraker, M. (1995). Migrating Legacy Systems: Gateways,

Interfaces and the Incremental Approach. Morgan Kaufmann.
[Carsí, 1998] Carsí, J.A., Camilleri, S., Canós, J.H., Ramos, I. (1998). Homogeneous graphical

user interface to design and use information systems. Proc. JIS’98, III Workshop on
Software Engineering, Murcia, Spain.

[Carsí, 1999] Carsí, J.A. (1999). OASIS as conceptual framework to treat the software
evolution, PhD Thesis, Technical University of Valencia, Spain (in Spanish).

[Chaffin, 2000] Chaffin, M., Knight, B., Robinson, T. (2000). Professional SQL Server 2000
DTS (Data Transformation Services), Wrox.

[DB-Main] Hick, J., Englebert, V., Roland, D., Henrad, J., Hainaut, J. The DB-MAIN Database
Engineering CASE Tool. http://www.fundp.ac.be/recherche.

[ESPRIT, 1996] Lancaster University (1996). RENAISSANCE Project - Methods & Tools for
the evolution and reengineering of legacy systems.

[Gamma, 1994] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software. Addyson-Wesley.

[Hainaut, 1996] Hainaut, J. L., Henrard, J., Roland, D., Englebert, V., Hick, J.M (1996).
Structure Elicitation in Database Reverse Engineering. Proc. WCRE’96, pages 131-140.

[Henrard, 2002] Henrard, J., Hick, J.M., Thiran, P., Hainaut, J.L. (2002). Strategies for Data
Reengineering. Proc. WCRE’02, Richmond, Virginia, USA.

[Jahnke,1998] Jahnke, J.H., Zundorf, A. (1998). Using Graph Grammars for Building the
Varlet Database Reverse Engineering Environment. Theory and Application of Graph
Transformations. Technical Report TR-RI-98-201, University of Paderborn, Germany.

[Khuller, 2003] Khuller, S., Kim, Y., Wan, Y. (2003) Algorithms for Data Migration with
Cloning. SIAM Journal on Computing, 33(2): 448 – 461.

[Kifer, 1995] Kifer, M. (1995). Deductive and Object Data Languages: A Quest for Integration,
Proc. of the DOOD’95. Singapore.

452 Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

[Lee, 2002] Lee, W. (2002). The Evolution of Data-Access Technologies. SQL Server
Magazine. http://msdn.microsoft.com/library.

[Letelier, 1998] Letelier, P., Sánchez, P., Ramos, I., Pastor, O. (1998). OASIS 3.0: A formal
Approach for O-O Conceptual Modelling. Universidad Politécnica de Valencia.

[Müller, 2000] Müller, H.A., Jahnke, J.H., Smith, D.B. (2000). Reverse Engineering: A
Roadmap. In A. Finkelstein, editor, The Future of Software Engineering, ACM Press.

[Pérez, 2002a] Pérez, J., Carsí, J.A., Ramos, I. (2002). ADML: A Language for Automatic
Generation of Migration Plans. Proc. of the First Eurasian Conference on Advances in
Information and Communication Technology. Tehran, Iran. Springer LNCS vol n.2510.

[Pérez, 2002b] Pérez, J., Carsí, J.A., Ramos, I. (2002). On the implication of application’s
requirements changes in the persistence layer: an automatic approach. Proc. DBMR'02,
IEEE International Conference of Software Maintenance, pages 3-16. Montreal, Canada.

[Pérez, 2003] Pérez, J., Anaya, V., Cubel, J.M., Ramos, I., Carsí, J.A. (2003). Data Reverse
Engineering of Legacy Databases to Object Oriented Conceptual Schemas. Electronic
Notes in Theoretical Computer Science, 72(4): 1-10.

[Premerlani, 1994] Premerlani, W.J., Blaha, M. (1994). An approach for reverse engineering of
relational databases. Communications of the ACM, 37(5): 42-49.

[Ramanathan, 1996] Ramanathan, S., Hodges, J. (1996). Reverse Engineering Relational
Schemas to Object-Oriented Schemas; Technical Report MSU-960701, Mississippi State
University, Mississippi.

[Rational] Rational Software, Rational Rose, http://www.rational.com/.
[Sernadas, 1994] Sernadas, A., Costa, J.F., Sernadas, C. (1994). Object Specifications Through

Diagrams: OBLOG Approach. INESC Lisbon.
[Silva, 2002a] Silva, J.F., Carsí, J.A., Ramos, I. (2002). An algorithm to compare O-O-

Conceptual Schemas. Proc. of the ICSM’02, Montreal, Canada.
[Silva, 2002b] Silva, J.F., Carsí, J.A., Ramos, I., Theoric analyze of the criteria of O-O

conceptual schemas comparison, Ingeniería Informática Magazine, 7: 1-12.
[Sommerville, 1995] Sommerville, I. (1995). Software Engineering. Addison-Wesley.
[SystemArchitect] System Architect. http://www.popkin.com.
[Staund, 2000] Staund Lerner, B. (2000). A Model for Compound Type Changes Encountered

in Schema Evolution. ACM Transactions on Database Systems. 25(1):83-127.
[TogetherSoft] TogetherSoft Corporation. http://www.togethersoft.com.
[Türker, 2001] Türker, C., Gertz, M. (2001). Semantic Integrity Support in SQL-99 and

Commercial (Object-)Relational Database Management Systems. The VLDB Journal —
The International Journal on Very Large Data Bases archive. 10(4): 241 - 269.

[Versant] Versant Object Technology, Versant. http://www.versant.com.
[Ward, 1995] Ward, M.P., Bennett, K.H. (1995). Formal Methods to Aid the Evolution of

Software. Journal of Software Maintenance: Research and Practice, 7(3): 203-219.
[Wu, 1997] Wu, B., Lawless, D., Bisbal, J., Richardson, R., Grimson, J., Wade, V., O'Sullivan,

D. (1997). The Butterfly Methodology: A Gateway-free Approach for Migrating Legacy
Information Systems. Proc. ICECCS’97. Italy.

[Yourdon, 1996] Yourdon, E. (1996). Rise and Resurrection of the American Programmer.
Yourdon Press, Upper Saddle River, NJ.

453Boronat A., Perez J., Carsi J.A., Ramos I.: Two Experiences in Software ...

