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Abstract: In this paper we present Pepsy, a novel prototyping environment for multi-
DSP systems, with the primary goal to support the design and implementation of par-
allel digital signal processing (DSP) applications subject to various design constraints.
Given a specification of the prototyping problem in the form of an application model,
a hardware model and mapping constraints, Pepsy automatically maps and schedules
the DSP application onto the multi-processor system and synthesizes the complete
code for each processor.

A detailed performance model of the parallel application is an integral part of Pepsy.
Important performance parameters such as computation and communication times as
well as memory consumption can be estimated prior to the implementation. Pepsy not
only solves the standard mapping and scheduling problem, but it is also able to explore
various important design goals for embedded systems and DSP applications such as
minimizing memory and power consumption and enforcing the timeliness of tasks. Two
complex case studies demonstrate the feasibility of our prototyping environment.
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bedded systems; data flow
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1 Introduction

Parallel processing is a key technique in satisfying the steadily increasing per-
formance requirements of many applications. Parallel processing is applied to
boost the performance not only of general-purpose applications using supercom-
puters but also of embedded systems with dedicated hardware. Examples of such
embedded systems include applications in the field of digital signal processing
(DSP) and mobile computing. The design and implementation of such paral-
lel applications, however, are tedious and more complex than a single-processor
solution. In times of high market pressure and ever decreasing time-to-market,
support for the design and implementation of parallel DSP applications is cru-
cial.
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In the conventional design process, specification, analysis and implementa-
tion are applied in a strict sequential order. DSP applications are commonly
specified using block-oriented descriptions or data flow models [LP95]. Analysis
is then performed only at the simulation level. While a simulation-based anal-
ysis may result in a detailed functional evaluation, the performance can only
be roughly evaluated. A main problem of this design process is that specifi-
cation faults are only detected late in the process and the development time
is, therefore, increased. In a design process based on rapid prototyping [DK96],
the application can be analyzed on the target platform before implementation.
Simulation and/or emulation can be used to perform a functional as well as
performance analysis in detail. Specification faults can, therefore, be detected at
early stages in the design process.

The key steps in developing parallel DSP applications are partitioning, map-
ping and scheduling. The overall application has to be partitioned into smaller
units (tasks); these tasks have to be mapped onto individual processing elements;
and the execution order of all tasks has to be determined for each processing el-
ement. Given the large number of possible partitionings, there are numerous po-
tential mappings and schedules and finding the optimal solution is NP-complete
in the general case and in several restricted cases [Ull75]. In the implementation
process, code is written (or synthesized), compiled and linked for each processor.
This code includes the application tasks as well as communication and synchro-
nization routines.

We have developed Pepsy, a prototyping environment for multi-DSP sy-
stems, with the primary goal to support the design and implementation of par-
allel DSP applications [MSS99, RRS01, MRS+00, RSW03]. Pepsy automati-
cally maps a DSP application onto a multi-processor system, generates a static
schedule for each processor and synthesizes the complete multi-processor source
code (1). In order to approximate an optimal mapping and scheduling, Pepsy

accurately predicts the performance of the parallel application. The estimated
computation and communication times as well as other cost factors such as the
memory usage and task deadlines are used to evaluate the design goals of the
parallel application prior to its implementation.

The contributions of this research include:

– Pepsy provides a complete framework for prototyping various applications.
This framework consists of (i) a specification notation for the prototyp-
ing problem, (ii) an optimizer for approximating an optimal mapping and
scheduling, (iii) a code synthesizer which automatically generates, compiles
and links code for the target system and (iv) a convenient graphical user
interface to control the prototyping process. With the Pepsy framework
the prototyping time of multi-processor applications can be dramatically
reduced.
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Figure 1: Overview of our prototyping framework Pepsy. Pepsy approximates
an optimal implementation I given a specification S (consisting of an applica-
tion model, a hardware model and mapping constraints) subject to an objective
function and resource constraints. The optimizer extends the application model
by introducing communication tasks and computes a mapping µ and schedule
τ . The optimized implementation is then automatically synthesized.

– Pepsy casts the prototyping problem as approximating an optimal map-
ping and schedule for a given specification. Pepsy uses a generic optimizer
based on simulated annealing [KJV83] for this optimization. Both Pepsy’s
specification notation as well as the optimizer are flexible and expressive.
As a result, Pepsy not only solves the standard mapping and scheduling
problem, but it is also able to explore various important design goals for
embedded systems and DSP applications such as minimizing memory and
power consumption and enforcing the timeliness of tasks.

– Pepsy’s optimizer is combined with a detailed performance model for the
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parallel application. A main focus of this model is the inter-processor com-
munication on the target system. This performance prediction can be applied
to check the fulfillment of the design goals prior to its implementation. Due
to the high accuracy of the performance prediction, simulation-based proto-
typing is often sufficient for the performance analysis resulting in a further
reduction of the development time.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work. Section 3 presents an overview of our prototyping framework and
introduces a formal specification of the prototyping problem. Section 4 describes
how the prototyping problem is approximated by simulated annealing. Pepsy’s
generic optimizer is also presented, and our model for estimating the perfor-
mance is discussed in detail. Section 5 describes the code synthesis of Pepsy.
Section 6 presents Pepsy’s prototyping capabilities demonstrated on two case
studies in the area of digital signal processing. Section 7 concludes the paper
with a discussion.

2 Related Work

There is a vast body of work known in the literature on design automation of
multi-processor systems. We divide the work related to our prototyping frame-
work into design automation and task scheduling.

2.1 Design Automation

Recently much effort has been performed in developing methods and tools for
the automation of (embedded) system design [Wol94, GV95, SDMH00, SVM01].
The design problem typically consists of finding an optimal implementation for
a task-level specification on a heterogeneous target system comprised of software
programmable components and dedicated hardware. A huge design space must
be explored considering several and sometimes competing objectives such as cost,
power dissipation and computing performance [ETZ00].

There are related prototyping systems for digital signal applications known
in the literature. Madisetti [Mad96] presented the state of the art and identified
future challenges in prototyping large DSP systems in the mid nineties. He has
developed a conceptual prototyping method for embedded DSP systems. This
method partitions the overall design flow into several stages in order to allow
the designer to focus on the right level of detail during the design process. This
program has been implemented as part of the rapid prototyping application-
specific signal processor (RASSP) DARPA program [HPK97].

Fresse et al. [FAD00] have developed a prototyping environment for a multi-
DSP system targeted for image processing applications. Their environment re-
quires a functional description in the form of a data flow graph and generates
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a parallel implementation onto a heterogeneous target platform. The timing
information for the individual tasks is determined from a single-processor imple-
mentation. A comparison with our approach is difficult because no details about
the mapping and scheduling have been presented.

The Grape-II [LEAP95] environment uses synchronous and cyclo-static data
flow graphs as application models. Grape-II maps and schedules the application
tasks onto a heterogeneous target system comprised of digital signal processors
and dedicated hardware (FPGA) [GR01]. Data transfer is also realized using
communication buffers [CLP97]. Although Grape-II provides more functionality
such as HW/SW codesign than Pepsy, it has only a limited performance model.
The performance can, therefore, only be evaluated by emulation.

Ptolemy and its successor Ptolemy II [BML99, DHK+01] are frameworks for
modeling and design of heterogeneous embedded systems. A major emphasis of
Ptolemy lies on the methodology for defining and producing embedded software.
It supports various models of computation such as data flow models, discrete
event models and asynchronous message passing.

2.2 Task Scheduling

Task scheduling is known to be NP-complete in its general form as well as several
restricted cases [ERAL95]. Researchers have, therefore, studied methods for ef-
ficiently finding suboptimal solutions to the scheduling problem. These methods
can be grouped into heuristic approaches and approximation approaches.

The basis of most heuristic scheduling algorithms is the classical list-schedul-
ing approach [ACD74, Gra69]. In list scheduling, the scheduler assigns the tasks
priorities and places the tasks in a ready list arranged in a descending order
of priority. There are several tools that support the development of parallel
applications using heuristic schedulers. These tools include CASCH [AKW00],
Parallax [LER93] and Pyrros [YG92]. They basically differ in their underlying
assumptions on the task set, the available scheduling heuristics and the generated
output.

Another method used in finding (sub-)optimal solutions of the scheduling
problem is realized by casting scheduling as an optimization problem. Particu-
larly interesting in the scheduling context are approximation methods based on
genetic algorithms (GA), tabu search and simulated annealing (SA). All these
methods avoid trapping into local minima of the optimization problem by ran-
dom choices during the approximation. These approximation methods are fur-
ther domain independent, i.e., they do not require auxiliary information such as
gradient-based techniques or greedy methods in order to work properly. Multi-
processor scheduling approaches based on simulated annealing include [BM91],
[BS96], [NS00] and [TBW92]. These approaches have been applied to a wide
range of parallel applications and on various target architectures.
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3 The Prototyping Framework Pepsy

3.1 Overview

Figure 1 depicts the overall architecture of our prototyping framework Pepsy.
Pepsy supports the prototyping of data-flow oriented applications onto hetero-
geneous multi-processor systems, i.e., it computes an optimized multi-processor
implementation given a specification, resource constraints and an objective func-
tion.

The specification S of the prototyping problem is based on two models. The
application model describes the overall application in the form of an extended
data-flow graph GA [BML99], in which the nodes of this graph represent (func-
tional) tasks of the application and the arcs represent data dependencies between
the tasks. The hardware model describes the multi-processor system onto which
the application is mapped. Each processing element is represented by a node of
this graph GH . Physical point-to-point connections are described by the arcs.
Restrictions on the mapping of tasks onto processing elements may be specified
by mapping constraints m.

The optimizer computes an optimized multi-processor implementation I, i.e.,
it approximates an optimal mapping and scheduling for all tasks given the spec-
ification S subject to an objective function f and resource constraints Q. The
mapping and scheduling generated by the optimizer consist of a task list for each
processor. This task list includes the application tasks as well as sender and re-
ceiver tasks introduced for the purpose of inter-processor communication. For
each task, start and end times are estimated by the optimizer using our commu-
nication model for buffered data transfer [MRS+00]. This communication model
is the basis of Pepsy’s performance estimation. Additional parameters such as
each task’s memory requirement and deadline, and each processor’s memory ca-
pacity, may be specified and can be used to express design goals more complex
than the standard multi-processor scheduling problem.

The final step in our prototyping environment is automatic code generation
and synthesis. The goal of this step is to generate, compile and link the complete
source code for the multi-processor system.

3.2 Problem Formulation

We refine the description of our prototyping framework by a formal specification
of the input, output and main intermediate steps of the framework depicted in
Figure 1.

We start our problem formulation by defining the application model as a
graph.
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Definition 1. The application model is a directed graph GA(VA, EA) where VA

is the set of (application) tasks T1, . . . , Tn and EA ⊆ (VA × VA) is a set of arcs.
The arcs correspond to the data dependencies between the tasks.

Resource parameters, represented by the set RA, may be optionally specified.
Resource parameters can be assigned to nodes or arcs.

In our framework the application is represented as a data dependency graph
[LP95] augmented by resource parameters. Resource parameters are useful in
specifying additional information required for the optimization step in our frame-
work. Examples for such parameters include the execution time of tasks and the
amount of data to be transferred between tasks.

Definition 2. The hardware model is an undirected graph GH(VH , EH) where
VH is the set of processing elements P1, . . . , Pm and EH ⊆ (VH × VH) is the set
of communication links between processing elements.

Resource parameters, represented by the set RH , may be optionally specified.
Resource parameters can be assigned to nodes or edges.

Similarly to the application, the (target) hardware is modeled as an aug-
mented undirected graph. Examples of resource parameters in the hardware
model are the clock frequency and memory capacity of the processing elements
and the transfer rates of the communication links.

Definition 3. The mapping constraints are represented by a function m : VA ×
VH �→ {0, 1} where m(Ti, Pj) = 0 indicates that no mapping of task Ti is allowed
on processing element Pj . Conversely, m(Ti, Pj) = 1 indicates that a mapping is
possible.

These constraints specify restrictions for the mapping of tasks onto processing
elements. Given Definitions 1 to 3 we can now define a specification as it is used
in our framework.

Definition 4. The specification of the prototyping problem is the tuple S =
(GA, GH , m).

With this specification, we can define a mapping of tasks onto processing
elements.

Definition 5. A mapping of a specification S is a function µ : VA×VH �→ {0, 1}
such that ∀Ti∈VA∃Pj∈VH µ(Ti, Pj) = 1. The mapping function µ(Ti, Pj) = 1 has
the natural interpretation that task Ti is mapped onto processing element Pj . A
mapping is feasible iff ∀i,j µ(Ti, Pj) = 1 ⇒ m(Ti, Pj) = 1, i.e., µ does not violate
any mapping constraint.1

1 Note that this definition allows to map the same task onto multiple processing ele-
ments. We can, therefore, introduce replica tasks into the overall schedule.
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A. Every arc between tasks mapped onto

different processing elements is replaced by a pair of communication tasks.

Definition 6. For a given specification S and a mapping µ a schedule is a func-
tion τ : VA �→ R that satisfies ∀(Ti,Tj)∈EA

τ(Tj) ≥ τ(Ti) + δ(Ti, µ). τ(Ti) rep-
resents the start time of a task Ti and δ(Ti, µ) represents the execution time of
task Ti on a given mapping µ.

This definition of a schedule based on the start and execution times of all
tasks allows only the orderings of tasks in time that do not violate the data
dependencies given in GA. Time for transferring data between tasks is not con-
sidered in Definition 6. This may be feasible for scheduling on a single processor
but not for scheduling on a multi-processor system where communication times
cannot be neglected. We account for inter-processor communication by extending
our application model.

Definition 7. Given a specification S and a mapping µ, we replace every arc
between tasks mapped onto different processing elements by a pair of communi-
cation tasks Ts and Tr and the corresponding arcs. Thus, all arcs

e = (Ti, Tj) ∈ EA : µ(Ti, Pk) = 1 ∧ µ(Tj , Pl) = 1 ∧ k 
= l

are replaced by the tasks Tsi and Trj and the arcs (Ti, Tsi), (Tsi, Trj) and (Trj, Tj).
The communication tasks are mapped onto the corresponding processing ele-
ments, i.e., µ(Tsi, Pk) = 1 and µ(Trj, Pl) = 1.

This extended application model is referred to as G′
A = (V ′

A, E′
A). The tasks

from the original application model Ti ∈ VA are referred to as application tasks;
Tsi and Trj are referred to as communication tasks.
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Now, the time required for inter-processor communication can be expressed
as components δ(Ts, µ) and δ(Tr, µ). Introducing communication tasks for inter-
processor communication is also motivated from a practical point of view. In
most multi-processor systems, inter-processor communication is realized by ded-
icated transfer functions. These functions can, therefore, be directly mapped
onto communication tasks in our framework. The extended application model is
depicted in Figure 2.

In general, resource constraints can be expressed as a set of functions Q :
qi(RA, RH , µ) ≥ 0. These constraints are typically used to set limits on resources
such as memory consumption, completion times of tasks and other costs.

We define a feasible schedule τ of a specification S as a schedule that satisfies
all resource constraints Q in addition to the mapping constraints and dependen-
cies. This is also referred to as an implementation of a prototyping problem. Our
goal can, therefore, be formulated as finding the optimal implementation.

Definition 8. Given a specification S and the resource constraints Q a (valid)
implementation I is the tuple (µ, τ) where µ is a feasible mapping and τ is a
feasible schedule.

Definition 9. Finding the optimal implementation is the following optimization
problem:

minimize f(µ, τ)
subject to

µ is a feasible mapping
τ is a feasible schedule

In order to easily focus on different design goals, the objective function is
specified as a weighted sum of several components in our prototyping framework.
These components include parameters such as memory usage and completion
times (cp. Section 4.1.4).

Given this specification notation, the remaining problem is how to compute
the mapping µ and the schedule τ consistent with the resource constraints Q.
We describe this computation in the following section.

4 Optimization and Performance Prediction

The key component of our prototyping framework is the optimizer which ap-
proximates an optimal mapping and scheduling. This approximation is based on
simulated annealing and an accurate prediction of the performance on the target
platform.

Simulated annealing (SA) is an optimization technique which belongs to the
class of stochastic local search algorithms [KJV83, Ĉer85]. It avoids trapping into
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local minima during search by adding a stochastic component to the process of
neighborhood state selection and acceptance [LA89].

The simulated annealing method is easy to adapt to different optimization
problems because of its domain-independent structure. The adaption to a specific
optimization problem requires the specification of four SA-elements: (i) a state
description as manifestation of a problem solution, (ii) a mechanism to generate
neighborhood states, (iii) a strategy to explore the neighborhood and (iv) a cost
function to control the optimization process.

4.1 Casting Mapping and Scheduling as a SA-Problem

In order to cast the prototyping problem defined in Definition 9 as a SA-problem
we have to specify the four SA-elements.

4.1.1 State Description

In our SA-framework, a state is defined as a schedule of the application tasks
onto the processing elements. The state represents, therefore, the mapping of
application tasks onto processing elements as well as their temporal ordering.
There are a large number of possible states for a given problem specification
(cp. Definition 4), and many of these states are infeasible due to the violation
of some constraints. To reduce the number of states during optimization, we
consider only states that do not violate the data dependency constraints as
given in the application model GA. The generation of new states is combined
with a list scheduling algorithm. Therefore, states violating data dependencies
are excluded from further processing and no expensive evaluation of the cost
function is required.

The generation of the (initial) states consists of four steps. First, a global task
priority list is generated that includes all application tasks. The tasks’ priorities
correspond to the partial task order specified in GA. Second, the application
tasks are mapped randomly onto the processing elements. As a consequence of
this mapping, the global task priority list is then partitioned into local priority
lists, one for each processing element. Next, the extended application model
G′

A is generated by introducing communication tasks between adjacent tasks
mapped onto different processing nodes. These communication tasks are also
inserted into the priority lists. Finally, the cost (discussed in Section 4.1.4) of
the initial state is computed based on Pepsy’s performance estimation.

Note that the schedule can be directly derived from the priority lists by
ordering the tasks with non-increasing priorities. Tasks with the same priority
are randomly ordered.
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4.1.2 Neighborhood Generation

During optimization, rearrangements of the system are applied by choosing
neighbor states of the current state. Neighbor states are simply generated by
moving an application task from one processing element to another. The task
lists of both processing elements as well as the extended application model must
then be updated. This may result in the deletion of old communication tasks
and the insertion of new ones.

4.1.3 Neighborhood Exploration

Our SA optimizer explores only states that do not violate the data depen-
dency constraints during optimization. However, the optimizer may generate
non-feasible solutions (states) violating resource and mapping constraints. Such
states are not rejected from the optimization process a priori. This helps in im-
proving the convergence rate of the optimizer. Nevertheless, to avoid getting
trapped in such a non-feasible state, these states are assigned with higher costs.

4.1.4 Cost Function

The cost function E corresponds to the objective function f of the optimizer and
is computed for each state during the optimization process. In our SA-framework
the cost function is a sum of weighted partial costs Ei:

E = Eetket + Ectkct + Epmkpm + Emokmo + Ewmkwm + Ewrkwr (1)

The cost can be divided into components related to the solution quality, the
resource constraints and the mapping constraints. Cost components related to
the solution quality are (i) the overall completion time of the multi-processor
application Eet, (ii) the total time required for inter-processor communication
Ect and (iii) the number of processors Epm with at least one task mapped. A
component related to resource constraints is the total memory overflow Emo,
i.e., the amount by which the required memory exceeds the amount of available
memory on all processing elements. Partial costs related to mapping constraints
are (i) the number of tasks mapped onto excluded processing elements Ewm and
(ii) the number of replica tasks mapped onto identical processing elements Ewr.

Different optimization objectives are easily obtained by modifying the weight-
ing factors ki. To achieve only solutions that do not violate the mapping and
resource constraints it is recommended to make the weights kmo, kwm and kwr

significantly larger than the other weights. The cost function can be easily ex-
tended to consider further resource constraints.
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Figure 3: Realizing buffered intra- and inter-processor communication by in-
troducing buffers (Dij) and communication tasks (TS and TR). Inter-processor
communication is realized by point-to-point links with hardware buffers of lim-
ited size (MS and MR) and may result in the synchronization of TS and TR.

4.2 Performance Prediction

The computation of the individual cost components of Equation 1 is based on
a performance prediction of each state during optimization. Each feasible state
corresponds to an implementation I of the prototyping problem. Pepsy’s perfor-
mance prediction includes the estimation of the memory utilization and the ex-
ecution time. The performance prediction is based on the communication model
applied in our prototyping framework.

4.2.1 Communication Model

Data transfer in Pepsy’s optimized multi-processor applications is based on
buffered communication (Figure 3). In this communication model each task
writes its output data into a communication buffer. The task(s) receiving this
data read(s) from that buffer. As a result of this model, asynchronous communi-
cation is guaranteed and both sender and receiver tasks are decoupled when the
buffer size is larger than the amount of data transferred. To realize buffered com-
munication, the optimizer must allocate communication buffers between tasks
transferring data. If both tasks Ti and Tj are mapped onto the same processing
element, a buffer of size Dij is allocated. If the tasks are mapped onto different
processing elements, a buffer of size Dij is required on both processing elements.
In this case, the optimizer additionally introduces a sender task TS on one pro-
cessor and a receiver tasks TR on the other processor (see Figure 3).2 TS reads
data from the buffer Dij and writes it to the corresponding hardware buffer
(MS) of the communication interface, which is of fixed size. A similar transfer
but in reverse order applies for task TR whose hardware buffer is MR.
2 Introducing additional communication tasks corresponds to the extended application

model G′
A.
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symbol description unit
KAi maximum execution time of each Ti ∈ GA cycles
MAi memory (code and data) required for each Ti ∈ GA bytes
Dij size of transferred data between each (Ti, Tj) ∈ EA bytes
KPi execution speed of each Pi ∈ GH cycles/sec.
MPi amount of local memory on each Pi ∈ GH bytes
Cij transfer mode of each link (Pi, Pj) ∈ EH uni-/bidirec.
LSij data send initialization time for each (Pi, Pj) ∈ EH cycles
LRij data receive initialization for each (Pi, Pj) ∈ EH cycles
KSij data transfer rate (send) for each (Pi, Pj) ∈ EH bytes/cycle
KRij data transfer rate (receive) for each (Pi, Pj) ∈ EH bytes/cycle
MSij size of the output buffer for each (Pi, Pj) ∈ EH bytes
MRij size of the input buffer for each (Pi, Pj) ∈ EH bytes

Table 1: Resource parameters for our performance prediction. The first three
parameters are included in RA, the others are included in RH .

To reduce the number of communication buffers, the optimizer allocates only
a single buffer among tasks receiving the same input data from an individual task.
These tasks are identified in the application model. Communication buffers can
be allocated either statically or dynamically. Statically allocated buffers result in
a faster execution. Dynamically allocated buffers are more memory efficient, since
buffers can be released after the last receiving task has read the buffered data.
Dynamically allocated buffers are useful in target systems with tight memory
limitations such as embedded systems.

4.2.2 Resource Parameters and Mapping Constraints

Resource parameters (RA and RH) are useful in specifying additional informa-
tion about the application and the target hardware, respectively. Table 1 presents
the various resource parameters of the application and the hardware model that
are used with our performance prediction.

There are two reasons for including mapping constraints in our framework.
First, tasks with special resource requirements such as I/O may only be mapped
onto special processing elements. Second, replica tasks must not be mapped onto
the same processors for fault tolerance.

4.2.3 Memory Estimation

The memory requirement Mk of a processing element is the sum of the memory
MAi required for Ti mapped onto Pk, and the memory required for all commu-
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nication buffers on this processing element. Thus, the total memory required on
processing element Pk is given as:

Mk =
∑

µ(Ti,Pk)=1

MAi +
∑

eij :µ(Ti,Pk)=1∨µ(Tj ,Pk)=1

Dij (2)

Note that a communication buffer is required for both intra- as well as inter-
processor communication. Equation 2 derives an upper bound for the memory
requirement since it does not consider allocating a single buffer among tasks
receiving the same input or allow for dynamic buffer allocation. Both techniques
may reduce the memory requirements but the reduction is strongly dependent
on GA.

4.2.4 Time Estimation

The execution time on each processing element is comprised of the execution
times of the tasks mapped onto this processing element and the communication
times between these tasks. The task execution times are specified in the resource
parameters; no further estimation is therefore required. There are two kinds of
communication: intra-processor communication and inter-processor communica-
tion. In our model, we assume that the intra-processor communication time is
included in the task execution time. This assumption is reasonable since intra-
processor communication is guaranteed not to be synchronized (or blocked). The
intra-processor communication time is determined by writing or reading to or
from communication buffers. These buffer access times can be easily included in
the task execution times. As a result, only the inter-processor communication
times have to be computed during the approximation process.

For simplicity in the following analysis, we omit the indices for identifying
the sender and receiver tasks as well as for the resource parameters. Parameters
associated with the sender and receiver tasks are labeled by S and R, respectively.

Due to the limited size of the input and output hardware buffers (MR and
MS) of the processing elements, synchronization between sender and receiver
tasks may occur in inter-processor communication. We model buffered inter-
processor communication to determine the execution times of sender and receiver
tasks transferring D data words over a buffered communication link of size B =
MR + MS . KS and KR represent the transfer rates for writing to and reading
from the buffers, respectively.

Figure 4 presents the timing diagram of the inter-processor data transfer be-
tween a sender and a receiver task. Three important time points can be identified
for the sender as well as the receiver. At tS1 and tR1, the sender and receiver
tasks are initiated. After some initialization (LS for the sender and LR for the re-
ceiver), the sender task starts writing data words into the communication buffer
at tS2, and the receiver task starts reading data words from the communication
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Figure 4: Timing diagram of a synchronized inter-processor communication.

buffer at tR2. Writing and reading data to and from the buffer is finished at tS3

and tR3, respectively.
Data transfer over a buffered communication link can be separated into four

phases. If we know the duration for each phase, the execution times for the sender
and receiver tasks can be determined. In phase 1, only the sender writes data into
the buffer. The duration of this phase is given as t1 = tR1 + LR − (tS1 + LS). At
the end of the first phase (tR2), A(tR2) = min(B, D, t1KS) data words are stored
in the buffer. In phase 2, both sender and receiver write/read data to/from the
buffer asynchronously.3 During this phase, the amount of data in the buffer is
given by

A(t) = A(tR2) + (KS − KR)(t − tR2). (3)

Phase 2 ends when synchronization between sender and receiver is enforced.
If we consider that the sender is faster than the receiver (KS > KR), synchro-

nization is enforced when the buffer is completely filled (A(t) = B). Thus, by
combining the synchronization condition with Equation 3, the synchronization
time point can be determined as

tsyn =
B − A(tR2)
KS − KR

+ tR2. (4)

Synchronization does not occur if too little data is transmitted to fill the buffer
(D ≤ KS(tsyn − tS2)). In this case, phase 3 is skipped and the duration of

3 Phase 2 is only entered if sufficient data has to be transmitted (D > A(tR2)).
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phase 2 is given as t2 = D−A(tr2)
KS

. If sufficient data is transmitted, the duration
of phase 2 is t2 = tsyn − tR2. During phase 3 the sender and the receiver tasks
are synchronized. Data is written to and read from the buffer at the slower
transfer rate. In the case considered, the remaining data is written to the buffer
at the speed of the receiver. Thus, the duration of phase 3 is given by t3 =
D−KS(tsyn−tS2)

KR
. In the final phase, the receiver only reads data from the buffer.

The duration of phase 4 is given as t4 = A(tS3)
KR

.

For the other cases, i.e., if the sender is at the same speed or slower than the
receiver (KS ≤ KR), the durations of phases 2 to 4 can be determined similarly.
To summarize, the total execution time for the sender task TS to write D words
into the communication buffer is tS = LS + t1 + t2 + t3, and the execution
time for the receiver task TR to read D words from the communication buffer is
tR = LR + t2 + t3 + t4.

With these equations, the time for inter-processor communication can be es-
timated resulting in the computation of the total execution times of each process-
ing element. The individual costs as specified in Section 4.1.4 can be determined
given the memory requirements Mk as well as the execution and communication
times (KAi, tRij and tSij) for all tasks mapped onto processing element Pk.

5 Code Synthesis

Central to Pepsy’s code synthesis is the generation of an executive for each
processing element. The executive corresponds to the top-level function of each
processing element and is responsible for the memory allocation and the ex-
ecution of all application and communication tasks in the order given by the
optimized static schedule. The complete multi-processor application, i.e., exe-
cutable code for all processing elements, is finally synthesized using commercial
compiler and linker tools.

In order to synthesize the complete multi-processor application, we need the
code for the application tasks, the communication and synchronization routines,
the memory allocation and the executive. Pepsy’s code synthesis requires the
user-specified code for the application tasks and the hardware-specific code for
communication and synchronization as input. The executive is automatically
generated by Pepsy’s code generator.4

In the following, we briefly describe the main code modules.

Application Tasks. The user has to provide the code for all application tasks
in the form of a source code library which must follow the buffered com-
munication model, i.e., the input and output to a task is given by (pointers
to) communication buffers. In the source code library, each application task

4 In the current implementation, Pepsy generates ANSI-C source code.
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Ti is realized as an individual function with a well-defined interface (func-
tion prototype). Each function has a unique name which corresponds to the
task identifier specified in the application model. Thus, the interface of the
function taski that implements task Ti looks like:

void taski(inb1, . . . , inbm, outb1, . . . , outbn).

Formal parameters of this function are the references (pointers) to all input
buffers inbk where k = 1 . . .m, and all output buffers outbl where l = 1 . . . n.
A function implementing a task must not return a value.

Communication Routines. Inter-processor communication is realized by in-
troducing dedicated communication tasks that transfer data from a buffer to
a different processor or vice versa. Buffered inter-processor communication
requires that two communication routines be available on each processing el-
ement: a sender function send and a receiver function receive. These func-
tions are hardware-specific and their code must be provided for each target
system. Formal parameters of both functions are the reference to the output
or input buffer, respectively, and the identifier of the destination processor.

Memory Allocation. In our buffered communication model, a communication
buffer bk is required for each arc in our extended application model. The size
sk of this communication buffer is determined by the amount of transferred
data which is specified in the application model using resource parameters.
For the code synthesis, buffers with sufficient size must be provided by either
static or dynamic allocation.

Executive. The main steps in the automatic generation of the executive source
code are as follows: First, unique names for the communication buffers are
generated. Second, code for the memory allocation is inserted at the begin-
ning of the executive file. Third, the call to the executive function is inserted.
Finally, the function calls for the application and communication tasks are
generated in the order given by the schedule. The formal parameters are
replaced by the actual buffer names and the processor identifiers.

6 Experimental Results

Over the last few years the complete prototyping framework for multi-DSP sys-
tems, Pepsy has been developed. A graphical user interface implemented in
Java combines the individual tools of Pepsy. Pepsy’s SA-optimizer and the
code synthesis tool have been written in C and Java, respectively. The data
transfer between the individual components as well as their configuration is re-
alized by XML files.
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Figure 5: Screen shot of the task graph of the MP3 decoder.

6.1 Parallel Implementation of an MP3 Decoder

We demonstrate the automated design of a multi-processor application with
Pepsy by parallelizing an MPEG-1 layer 3 (MP3) decoder. Figure 5 shows the
task graph of this example generated with Pepsy’s graph editor. MP3 decoding
is decomposed into 31 tasks.

The target hardware platform consists of 4 TMS320C40 TIM modules on a
TRANSTECH ISA daughterboard each processor running at 50MHz; each of
these processors has at least one direct link to every other processor. No special
mapping constraints or resource constraints were taken into account for this
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sample design.
In this design example the primary goal was to minimize the overall execu-

tion time. Thus, the weighting factor were given as ket = 1, and all other cost
components were not considered, i.e., their weighting factors were specified as
zero. The achieved implementation resulted in a final schedule with a total of 28
communication tasks introduced to realize inter-processor communication. The
speedup of this multi-processor application is estimated as 3.911.

6.2 Optimization Performance

We evaluate our SA-based optimizer by comparing its performance with an ex-
haustive search over all mappings and schedules. The exhaustive search finds the
optimal solution of the parallelization problem. However, it is only feasible for
small problem sizes.

Three different problem classes have been selected for this comparison; all
of them are scalable in the sense that the number of tasks can be varied. The
target platform is fixed for all problem classes. It consists of a homogeneous
four-processor multi-DSP system connected in a ring structure. The problem
class ”independent” consists of a set of independent tasks with different task
execution times. The problem class ”recursive” corresponds to an application
with two recursive procedure calls per level. In the upper part of the task graph,
each task is connected to two child tasks doubling the number of tasks at each
level. In the lower part, each task has two predecessors converging to a single task
at the bottom level. The problem class ”chained” corresponds to an application
with parallel threads that start and terminate at a single task. All tasks in the
classes ”recursive” and ”chained” have the same execution times, and only a
single word is transferred between adjacent tasks.

Table 2 compares the (optimal) costs and computation times achieved by
exhaustive search with the costs and computation times achieved by our SA-
optimizer. These results demonstrate that our optimizer finds solutions very
close to the optimum within a reasonable time. This is true also for complex
problems that are infeasible for the exhaustive search. For all problem classes,
the deviation from the optimal solution has never exceeded 2%.

6.3 Automatic Parallelization of a Complex Audio Application

In this case study, we demonstrate the performance of Pepsy on the paralleliza-
tion of a complex audio application, i.e., a simulator of the human peripheral
auditory system is automatically mapped and scheduled onto a multi-DSP sys-
tem. Based on a functional model of the human ear, this simulator generates
the excitation pattern for the auditory nerve given an audio signal as input
[MWB98]. The model of the human ear consists of various (non-linear) filters
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exhaustive search simulated annealing
problem class # tasks cost computation time cost computation time

10 140 7 140 4
11 170 24 170 5
12 200 88 200 2

independent 13 230 408 230 3
14 270 1708 270 2
22 n.a. 108∗ 640 4
46 n.a. 3 · 1022∗ 2710 136
94 n.a. 2 · 1051∗ 11170 1243
10 504 86 504 17

recursive 22 n.a. 109∗ 810 180
46 n.a. 4 · 1023∗ 1421 584
94 n.a. 3 · 1052∗ 2656 5309
10 405 128 407 25
14 505 32768∗ 512 57

chained 22 705 2 · 109∗ 714 135
46 1505 6 · 1023∗ 1531 1051
94 2505 5 · 1052∗ 2555 3719

Table 2: Comparison of exhaustive search and our SA-based optimizer with
regard to cost and computation times (in s) for three different problem classes.
Results marked with ’∗’ have been analytically extrapolated.

and transformation functions. A single-processor implementation of the simula-
tor written in C and assembler serves as the starting point for our evaluation.

To derive an application model, we have partitioned the simulator into 93
tasks. This partitioning has been motivated by the functional structure of the
simulator. In most cases, the individual tasks correspond to transformations and
filtering steps such as Fourier transformations and gamma tone filters. Figure 6
depicts an abstracted data flow graph of the simulator. Tasks which require the
same input data are combined to blocks in this graph. The execution times as
well as the memory consumption of all 93 tasks have been measured using the
simulator running on a single processor.

The PPDS from Texas Instruments is used as the target system. This multi-
DSP platform consists of four TMS320C40 processors running at 32 MHz;
each of these processors has at least one direct link to every other processor.
The resource parameters RH for this platform have been determined by sev-
eral experiments. They are given as KPi = 1, MPi = 64000 bytes, LS = LR =
0 cycles, KS = KR = 0.05 bytes/cycle and MS = MR = 8 bytes. The simulation
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Figure 6: Task graph of the simulator of the human peripheral auditory system.
The task required for sampling is not depicted in this figure.

Proc. AT CT Data tc [ms]
A 22 68 5385 76.4
B 18 23 5304 75.5
C 24 31 3364 75.5
D 29 34 5805 75.5

total 93 156 19858 76.4

Table 3: Optimization result. The optimizer maps the application tasks (AT) and
introduces communication tasks (CT) onto each processor. For each processor,
the number of transferred data and the completion time (tc) are shown in the
last two columns.

of a block of 1024 data samples requires 251.7 ms on a single processor and
serves as reference for this evaluation.

Table 3 summarizes the results of the optimization step for the parallelization
of the simulator onto 4 processors labeled A to D. The optimizer introduces a
total of 156 communication tasks to implement the data transfer among all 4
processors. A total of 19858 bytes is transferred between the processor and thus
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performance prediction measurement
Proc. tcomp tcomm tcomp tcomm

A 60.0 8.4 59.9 7.5
B 63.0 7.3 63.4 7.2
C 62.3 4.8 62.5 4.4
D 66.8 8.0 69.9 7.3

Table 4: Comparison of the overall computation and communication time tcomp

and tcomm estimated by the optimizer and measured on the multi-DSP system
for each processor. All times are given in ms.

represents the total memory required for inter-processor communication. The
last column shows the completion time on each processor, i.e., the time when
the last task in the processor schedule terminates. Processor A has the longest
completion time because the last task of the overall data flow graph is mapped
onto this processor. Thus, the optimizer estimates the overall execution time for
the four processor solution as 76.4 ms.

The complete C-code for all executives has been automatically generated
by our prototyping environment. The application tasks have been synthesized
from the single-processor code with only minor modifications. Parameterized
functions implementing individual tasks have been wrapped by an additional
function to realize the task interface corresponding to our convention. Code for
the static allocation of all necessary communication buffers has been introduced.
The communication routines (send and receive) have been provided for the
target system.

The parallel implementation results in an overall execution time of 75.9 ms

which is almost identical to the estimated execution time. The overall speedup of
the parallel implementation is, therefore, given as 3.3. Table 4 compares the com-
putation and communication times derived by Pepsy’s performance estimation
with the times measured on the four-processor implementation automatically
generated by the synthesis step of our prototyping environment. The estimated
times are very close to the measured times on the implementation. The maxi-
mum deviation for the computation time is 4 % and 10 % for the communication
time, respectively.

7 Conclusion

In this paper we have presented Pepsy, a novel prototyping environment for
the automated design and implementation of parallel DSP applications subject
to various design constraints. Our environment is grounded on a formal speci-
fication of the prototyping problem, an accurate modeling of the performance

141Rinner B., Schmid M., Weiss R.: A Rapid Prototyping Environment ...



on all processors and a generic optimizer based on simulated annealing. Our SA
optimizer results in a solution of the prototyping problem that is close to the
optimum.

As demonstrated in a complex audio application, Pepsy’s performance es-
timation is also very close to the measured performance on the implemented
multi-processor application. This is due to the following reasons. First, the op-
timizer uses measured instead of simulated or estimated task execution times.
The tasks in this audio application have almost no data dependency and, there-
fore, almost no variation of the execution times. Second, the optimizer uses an
accurate communication model to estimate the (inter-processor) communication
times. This model accounts also for the blocking of a communication task as well
as synchronization between sender and receiver.

Our prototyping environment dramatically reduces the development time of
multi-processor applications. Typically, the most time-consuming procedure in
the development is the generation of the application model. When the code
for the application tasks is already available, the development time is basically
determined by the execution time of the optimizer. As a result, a parallelization
onto a different number of processors and/or a different target system can be
realized within minutes.

Pepsy has already been extended by a reconfiguration environment in order
to enable a modification of software tasks while the multi-DSP application is run-
ning [RSW03]. Directions for future work include (i) extending this framework to
various target platforms, (ii) integrating additional different design constraints
for embedded systems such as minimizing the energy consumption, and (iii)
investigating the feasibility of this framework to hardware/software codesign.
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